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Abstract
This paper throws a small “wet blanket” on the hot topic
of GPGPU acceleration, based on experience analyzing
and tuning both multithreaded CPU and GPU implemen-
tations of three computations in scientific computing.
These computations—(a) iterative sparse linear solvers;
(b) sparse Cholesky factorization; and (c) the fast mul-
tipole method—exhibit complex behavior and vary in
computational intensity and memory reference irregular-
ity. In each case, algorithmic analysis and prior work
might lead us to conclude that an idealized GPU can
deliver better performance, but we find that for at least
equal-effort CPU tuning and consideration of realistic
workloads and calling-contexts, we can with two mod-
ern quad-core CPU sockets roughly match one or two
GPUs in performance.

Our conclusions are not intended to dampen interest
in GPU acceleration; on the contrary, they should do the
opposite: they partially illuminate the boundary between
CPU and GPU performance, and ask architects to con-
sider application contexts in the design of future coupled
on-die CPU/GPU processors.

1 Our Position and Its Limitations

We have over the past year been interested in the anal-
ysis, implementation, and tuning of a variety of irreg-
ular computations arising in computational science and
engineering applications, for both multicore CPUs and
GPGPU platforms [4, 11, 5, 16, 1]. In reflecting on this
experience, the following question arose:

What is the boundary between computations
that can and cannot be effectively accelerated
by GPUs, relative to general-purpose multi-
core CPUs within a roughly comparable power
footprint?

Though we do not claim a definitive answer to this
question, we believe our preliminary findings might sur-

prise the broader community of application development
teams whose charge it is to decide whether and how
much effort to expend on GPGPU code development.

Position. Our central aim is to provoke a more real-
istic discussion about the ultimate role of GPGPU ac-
celerators in applications. In particular, we argue that,
for a moderately complex class of “irregular” compu-
tations, even well-tuned GPGPU accelerated implemen-
tations on currently available systems will deliver per-
formance that is, roughly speaking, only comparable to
well-tuned code for general-purpose multicore CPU sys-
tems, within a roughly comparable power footprint. Put
another way, adding a GPU is equivalent in performance
to simply adding one or perhaps two more multicore
CPU sockets. Thus, one might reasonably ask whether
this level of performance increase is worth the potential
productivity loss from adoption of a new programming
model and re-tuning for the accelerator.

Our discussion considers (a) iterative solvers for
sparse linear systems; (b) direct solvers for sparse linear
systems; and (c) the fast multipole method for particle
systems. These appear in traditional high-performance
scientific computing applications, but are also of increas-
ing importance in graphics, physics-based games, and
large-scale machine learning problems.

Threats to validity. Our conclusions represent our in-
terpretation of the data. By way of full-disclosure up-
front, we acknowledge at least the following three major
weaknesses in our position.

• (Threat 1) Our perspective comes from relatively
narrow classes of applications. These computations
come from traditional HPC applications.
• (Threat 2) Some conclusions are drawn from partial

results. Our work is very much on-going, and we
are carefully studying our GPU codes to ensure that
we have not missed additional tuning opportunities.

1



• (Threat 3) Our results are limited to today’s plat-
forms. At the time of this writing, we had access
to NVIDIA Tesla C1060/S1070 and GTX285 sys-
tems. Our results do not yet include ATI systems or
NVIDIA’s new Fermi offerings, which could yield
very different conclusions [12, 13]. Also, some of
the performance limits we discuss stem in part from
the limits of PCIe. If CPUs and GPUs move onto
the same die, this limitation may become irrelevant.

Having acknowledged these limitations, we make the
following counter-arguments.

Regarding Threat 1, we claim these classes have two
interesting features. First, as stated previously, these
computations will have an impact in increasingly sophis-
ticated emerging applications in graphics, gaming, and
machine learning. Secondy, the computations are non-
trivial, going beyond just a single “kernel,” like matrix
multiply or sparse matrix-vector multiplication. Since
they involve additional context, the computations be-
gin to approach larger and more realistic applications.
Thirdly, they have a mix of regular and irregular behav-
ior, and may therefore live near the boundaries of what
we might expect to run better on a GPU than a CPU.

Regarding Threat 2, we would claim that we achieve
extremely high levels of absolute performance in all our
codes, so it is not clear whether there is much room left
for additional improvement, at least, without resorting to
entirely new algorithms.

Regarding Threat 3, it seems to us that just moving
a GPU-like accelerator unit on the same die as one or
more CPU-like cores will not resolve all issues. For ex-
ample, the high-bandwidth channels available on a GPU
board would, we presume, have to be translated to a fu-
ture same-die CPU/GPU socket to deliver the same level
of performance we enjoy today when the entire problem
can reside on the GPU.

2 Iterative Sparse Solvers

We first consider the class of iterative sparse solvers.
Given a sparse matrix A, we wish either to solve a lin-
ear system (i.e., compute the solution x of Ax = b) or
compute the eigenvalues and/or eigenvectors of A, using
an iterative method, such as the conjugate gradients or
Lanczos algorithms [6]. These algorithms have the same
basic structure: they iteratively compute a sequence ap-
proximate solutions that ultimately converge to the solu-
tion within a user-specified error tolerance. Each itera-
tion consists of multiplying A by a dense vector, which
is a sparse matrix-vector multiply (SpMV) operation. Al-
gorithmically, an SpMV computes y ← A · x, given A
and x. To first order, an SpMV is dominated simply by
the time to stream the matrix A, and within an iteration,

SpMV has no temporal locality. That is, we expect the
performance of SpMV—and thus the solver overall—to
be largely memory-bandwidth bound.

We have with others for many years studied auto-
tuning of SpMV for single- and multicore CPU plat-
forms [16, 14, 10]. The challenge is that although SpMV
is bandwidth bound, a sparse matrix must be stored us-
ing a graph data structure, which will lead to indirect and
irregular memory references to the x and/or y vectors.
Nevertheless, the main cost for typical applications on
cache-based machines is the bandwidth-bound aspect of
reading A.

Thus, GPUs are attractive for SpMV because they de-
liver much higher raw memory bandwidth than a multi-
socket CPU system within a (very) roughly equal power
budget. We have extended our autotuning methodolo-
gies for CPU-tuning [14] to the case of GPUs [5]. We
do in fact achieve a considerable 2× speedup over the
CPU case, as Figure 1 shows for a variety of finite-
element modeling problems (x-axis) in double-precision.
(This figure is taken from an upcoming book chap-
ter [15].) Our autotuned GPU SpMV on a single
NVIDIA GTX285 system achieves a state-of-the-art 12–
19 Gflop/s, compared to an autotuned dual-socket quad-
core Intel Nehalem implementation that achieves 7–8
Gflop/s, with 1.5–2.3× improvements. This improve-
ment is roughly what we might expect, given that the
GTX285’s peak bandwidth is 159 GB/s, which is 3.1×
the aggregate peak bandwidth of the dual-socket Ne-
halem system (51 GB/s).

However, this performance assumes the matrix is al-
ready on the GPU. In fact, there will be additional costs
for moving the matrix to the GPU combined with GPU-
specific data reorganization. That is, the optimal imple-
mentation on the GPU uses a different data structure than
either of the the optimal or baseline implementations on
the CPU. Indeed, this data structure tuning is even more
critical on the GPU, due to the performance requirement
of coalesced accesses; without it, the GPU provides no
advantage over the CPU [2].

The host-to-GPU copy is also not negligible. To see
why, consider the following. Recall that, to first order,
SpMV streams the matrix A, and performs just 2 flops
per matrix entry. If SpMV runs at P Gflop/s in double-
precision, then the “equivalent” effective bandwidth in
double-precision is at least (8 bytes) / (2 flops) * P , or
4P GB/s. Now, decompose the GPU solver execution
time into three phases: (a) data reorganization, at a rate
of βreorg words per second second; (b) host-to-GPU data
transfer, at βtransfer words per second, without increas-
ing the size of A; and finally (c) q iterations of SpMV, at
an effective rate of βgpu words per second. On a multi-
core CPU, let βcpu be the equivalent effective bandwidth,
also in words per second. For a matrix of k words, we
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Figure 1: The best GPU implementation of sparse matrix-vector multiply (SpMV) (“Our code”, on one NVIDIA GTX
285) can be over 2× faster than a highly-tuned multicore CPU implementation (“Tuned Nehalem”, on a dual-socket
quad-core system). Implementations: ParCo’09 [16], SC’09 [2], and PPoPP’10 [5]. Note: Figure taken from an
upcoming book chapter [15].

will only observe a speedup if the CPU time, τcpu, ex-
ceeds the GPU time, τgpu. With this constraint, we can
determine how many iterations q are necessary for the
GPU-based solver to beat the CPU-based one:

τcpu ≥ τgpu (1)

⇒ k · q
βcpu

≥ k ·
(

1

βreorg
+

1

βtransfer
+

q

βgpu

)
(2)

⇒ q ≥
1

βreorg + 1
βtransfer

1
βcpu −

1
βgpu

(3)

From Figure 1, we might optimistically take βgpu= (4
bytes/flop) * (19 Gflop/s) = 76 GB/s, and pessimistically
take βcpu= (4 bytes per flop) * 6 Gflop/s = 24 GB/s; both
are about half the aggregate peak on the respective plat-
forms. Reasonable estimates of βreorg and βtransfer, based
on measurement (not peak), are 0.5 and 1 GB/s, respec-
tively. The solver must, therefore, perform q ≈ 105
iterations to break-even; thus, to realize an actual 2×
speedup on the whole solve, we would need q ≈ 840 it-
erations. While typical iteration counts reported for stan-
dard problems number in the few hundreds [6], whether
this value of q is large or not is highly problem- and
solver-dependent, and we might not know until run-time
when the problem (matrix) is known. The developer
must make an educated guess and take a chance, rais-
ing the question of what she or he should expect the real
pay-off from GPU acceleration to be.

Having said that, our analysis may also be pessimistic.
One could, for instance, improve effective βtransfer term
by pipelining the matrix transfer with the SpMV. Or, one

might be able to eliminate the βtransfer term altogether by
assembling the matrix on the GPU itself [3]. The main
point is that making use of GPU acceleration even in this
relatively simple “application” is more complicated than
it might at first seem.

3 Direct Sparse Solvers

Another important related class of sparse matrix solvers
are direct methods based on explicitly factoring the ma-
trix. In contrast to an iterative solver, a direct solver has
a fixed number of operations as well as more complex
task-level parallelism, more storage, and possibly even
more irregular memory access behavior than the largely
data-parallel and streaming behavior of the iterative case
(Section 2).

We have been interested in such sparse direct solvers,
particularly so-called multifrontal methods for Cholesky
factorization, which we tune specifically for structural
analysis problems arising in civil engineering [9]. From
the perspective of GPU acceleration, the most rele-
vant aspect of this class of sparse direct solvers is that
the workload consists of many dense matrix subprob-
lems (factorization, triangular multiple-vector solves,
and rank-k update matrix multiplications). Generally
speaking, we expect a GPU to easily accelerate such sub-
computations.

In reality, however, the size of these subproblems
changes as the computation proceeds, and the subprob-
lems themselves may execute asynchronously together,
depending on the input problem. That is, the input
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Figure 2: Single-core CPU vs. GPU implementations of sparse Cholesky factorization, both including and excluding
host-to-GPU data transfer time. Though the GPU provides a speedup of up to 3×, this is compared to just a single
CPU core of an 8-core system. Note: Figure also to appear elsewhere [9].

matrix determines the distribution of subproblem sizes,
and moreover dictates how much cross-subproblem task-
level parallelism exists. Thus, though the subproblem
“kernels” map well to GPUs in principle, in practice the
structure demands CPU-driven coordination, and the cost
of moving data from host to GPU will be critical.

Figure 2 makes this point explicitly. (This figure is
taken from Guney’s thesis [9].) We show the perfor-
mance (double-precision Gflop/s) of a preliminary im-
plementation of partial sparse Cholesky factorization, on
benchmark problems arising in structural analysis prob-
lems. Going from left-to-right, the problems roughly
increase in problem size. The different implementa-
tions are (a) a well-tuned, single-core CPU implemen-
tation, running on a dual-socket quad-core Nehalem sys-
tem with dense linear algebra support from Intel’s Math
Kernel Library (MKL); and (b) a GPU implementation,
running on the same Nehalem system but with the cores
just for coordination and the GPU acceleration via an
NVIDIA Tesla C1060 with CUBLAS for dense linear
algebra support. Furthermore, we distinguish two GPU
cases: one in which we ignore the cost of copies (blue
bar), and one in which we include the cost of copies
(beige bar). The GPU speedup over the single CPU core
is just 3×, meaning a reasonable multithreaded paral-
lelization across all 8 Nehalem cores is likely to match
or win, based on results on other platforms [9].

4 Generalized N -body Solvers

The third computation we consider is the fast multipole
method (FMM), a hierarchical tree-based approximation

algorithm for computing all-pairs of forces in a particle
system [7, 18, 17]. Beyond physical simulation, large
classes of methods in statistical data analysis and min-
ing, such as nearest neighbor search or kernel density es-
timation (and other so-called kernel methods), also have
FMM-like algorithms. Thus, a good FMM implementa-
tion accelerated by a GPU will inform multiple domains.

In short, the FMM approach reduces an exact O(N2)
algorithm forN interacting particles into an approximate
O(N) orO(N logN) algorithm with an error guarantee.
The FMM is based on two key ideas: (a) a tree represen-
tation for organizing the points spatially; and (b) fast ap-
proximate evaluation, in which we compute summaries
at each node using a constant number of tree traversals
with constant work per node. The dominant cost is the
evaluation phase, which is not simple: it consists of 6
distinct components, each with its own computational in-
tensity and varying memory reference irregularity.

All components essentially amount either to tree
traversal or graph-based neighborhood traversals. Like
the case of sparse direct solvers, the computation within
each component is regular and there is abundant paral-
lelism. However, the cost of each component varies de-
pending on the particle distribution, shape of the tree, and
desired accuracy. Thus, the optimal tuning has a strong
run-time dependence, and mapping the data structures
and subcomputations to the GPU is not straightforward.

Figure 3 summarizes the results from a recently pub-
lished cross-platform comparison, which includes both
CPU and one- and two-GPU implementations [4]. Prior
work by others had suggested we should expect signif-
icant speedups (30–60×) from GPU acceleration com-
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Figure 3: Cross-platform comparison of the fast multipole method. All performance is shown relative to an “out-of-
the-box” 1-core Nehalem implementation; each bar is labeled by this speedup. VF = Sun’s Victoria Falls multithreaded
processor. Note: Figure also appears elsewhere [4].

pared to a single CPU core [8]. As Figure 3 shows, our
own GPU implementation did in fact yield this range of
speedups compared to a baseline code on a single Ne-
halem core [11]. However, we also found that explicit
parallelization and tuning of the multicore CPU imple-
mentation could yield an implementation on Nehalem
that nearly matched the dual-GPU code, within about
10%. Like both of the previous computation classes, the
same issues arise: (a) there is overhead from necessary
GPU-specific data structure reorganization and host-to-
GPU copies; and (b) variable workloads, which results in
abundant but irregular parallelism as well as sufficiently
irregular memory access patterns.

5 Concluding Remarks

The intent of this paper is to consider much of the recent
work on GPU acceleration and ask for CPU comparisons
in more realistic application contexts. Such comparisons
are critical for applications like the ones we consider
here, which lie somewhere between computations that
are completely regular (e.g., dense matrix multiply) and
those that are “wildly” irregular (tree-, linked-list, and
graph-intensive computations). For our computations,
adding a GPU to a CPU-based system is like adding
roughly one or two sockets of performance.

This performance boost is not insignificant, and sug-
gests the fruitfulness of hybrid CPU/GPU implementa-
tions, which we are in fact pursuing. However, our obser-

vations also raise broader questions about the boundary
between when a GPU outperforms a CPU, and whether a
productivity loss (if any) of tuning specifically for a GPU
is outweighed by the performance gained.
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