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ABSTRACT

This study presents the first constrained sparse tensor factorization
(cSTF) framework that optimizes and fully offloads computation
to massively parallel GPU architectures, and the first performance
characterization of cSTF on GPU architectures. In contrast to prior
work on tensor factorization, where the matricized tensor times
Khatri-Rao product (MTTKRP) is the primary performance bot-
tleneck, our systematic analysis of the cSTF algorithm on GPUs
reveals that adding constraints creates an additional bottleneck in
the update operation for many real-world sparse tensors. While exe-
cuting the update operation on the GPU brings significant speedup
over its CPU counterpart, it remains a significant bottleneck. To fur-
ther accelerate the update operation, we propose cuADMM, a new
update algorithm that leverages algorithmic and code optimization
strategies to minimize both computation and data movement on
GPUs. As a result, our framework delivers significantly improved
performance compared to prior state-of-the-art. On 10 real-world
sparse tensors, our framework achieves geometric mean speedup of
5.1x (max 41.59%) and 7.01X (max 58.05X) on the NIVIDA A100 and
H100 GPUs, respectively, over the state-of-the-art SPLATT library
running on a 26-core Intel Ice Lake Xeon CPU.

CCS CONCEPTS

« Computing methodologies — Massively parallel algorithms;
« Mathematics of computing — Mathematical software per-
formance.
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1 INTRODUCTION

Sparse tensor factorization (STF) is an important technique in
unsupervised learning for extracting low-dimensional latent fea-
tures from high-dimensional data, which are typically represented
as sparse tensors. STF is becoming increasingly critical in sig-
nal analysis[27], anomaly detection[15, 34], cybersecurity[6, 12],
and trend analysis[35], as it enables researchers in different do-
mains to extract valuable insights from large, complex, and multi-
dimensional datasets. Utilizing sparse tensor analysis methods in
practical applications involves unique computational challenges.

The first challenge comes from the highly sparse nature of real-
world tensors, which leads to irregular memory access, workload
imbalance, and synchronization overhead. These properties make
computation involving sparse tensors particularly challenging to
execute efficiently on massively parallel GPU architectures. This is
demonstrated by the matricized tensor times Khatri-Rao product
(MTTKRP) operation, which is the primary performance bottle-
necks in most unconstrained STF algorithms for both CPUs[7, 32]
and GPUs|[20, 23].

The second challenge comes from constraints inherent in many
real-world tensors. For instance, multi-dimensional sensory input
data often comprises of non-negative values. Therefore, imposing
such constraints on the factors typically results in a more inter-
pretable output for domain scientists, making it a crucial aspect of
tensor analysis. Various update methods are used on the dense factor
matrices to impose constraints, and several optimized libraries exist
for CPUs|[5, 28]. However, as far as we are aware, no studies have
been conducted on optimizing update methods for constrained sparse
tensor factorization (cSTF) on massively parallel GPU architectures.

As such, we draw on prior studies on CPUs for constrained tensor
factorization to estimate the performance characteristics of cSTF
and the impact of the update methods on the overall performance on
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GPUs. Figure 1 (under DenseTF) shows a breakdown of execution
time for constrained dense tensor factorization using three different
update methods on a synthetic 400 X 200 X 100 X 50 tensor with a
factorization rank of R = 32, obtained using the PLANC library [5].
For dense tensors, the MTTKRP operation dominates the overall
execution time. We can attribute this to the proportionally larger
size of the dense tensor (400 - 200 - 100 - 50 elements) compared to
its factor matrices ((400 + 200 + 100 + 50) - R elements in total).

In contrast, real-world sparse tensors demonstrate very high
levels of sparsity, where the size of the tensors (i.e., number of non-
zero elements) is comparable to the size of the factor matrices (see
Table 2 for examples). Therefore, we expect the update process to be
at least as expensive as the MTTKRP operation. To test our hypothesis,
we modified the PLANC library to execute constrained sparse tensor
factorization on the Delicious sparse tensor using the same update
method and factorization rank (R = 32). Figure 1 (under SparseTF)
shows a breakdown of execution time. As expected, we see that the
update process is significantly more expensive than the MTTKRP
operation.

From this preliminary study, we hypothesize that offloading the
entire cSTF algorithm to the GPU will significantly improve per-
formance compared to CPU-based implementations. The update
process operates over the dense factor matrices with regular mem-
ory access, taking full advantage of the higher memory bandwidth
and compute performance of modern GPUs. Offloading the entire
end-to-end cSTF computation to the GPU eliminates the need to
transfer data between host and GPU over the slower PCle or NVLink
interconnect. While the MTTKRP operation on the sparse tensor is
also a significant performance bottleneck for cSTF, existing GPU
work [20, 23] can be leveraged to further reduce the end-to-end
execution time.

In summary, we make the following contributions:

(1) We present the first GPU-accelerated framework for end-
to-end constrained sparse tensor factorization (cSTF). We
integrate the alternating optimization with alternating di-
rection method of multipliers (AO-ADMM) update method,
a fast and robust algorithm for applying constraints, to fully
operate on the GPU.

(2) We analyze performance bottlenecks of the ADMM algo-
rithm on GPUs and propose cuADMM, an optimized ADMM
algorithm that eliminates redundant computation and data
movement. cuADMM achieves a 1.8X geometric mean speedup
over generic ADMM on an NVIDIA H100 GPU across 10 real-
world sparse tensors.

(3) By offloading cSTF entirely to the GPU, our framework
outperforms state-of-the-art CPU-based libraries, such as
SPLATT [32]. We evaluate our framework on 10 real-world
tensors and show that it achieves a geometric mean speedup
(and maximum speedup) of 5.1 (41.59%) and 7.01x (58.05X)
on the latest NVIDIA A100 and H100 GPUs, respectively.

(4) We also demonstrate our framework’s flexibility by incorpo-
rating the state-of-the-art sparse MTTKRP GPU kernel [20]
and two additional GPU-based non-negativity constraint al-
gorithms, HALS and MU, which achieve significant speedups
over their CPU counterparts.
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Figure 1: Execution time breakdown of constrained tensor
factorization for dense (DenseTF) and sparse (SparseTF) ten-
sors using the ADMM update methods from the PLANC li-
brary [5]. For dense tensors, MT TKRP dominates the overall
execution time. However, for sparse tensors, the ADMM up-
date process for Non-negative CP factorization takes signifi-
cantly longer than MTTKRP. The dense tensor is a synthetic
400 X 200 X 100 X 50 tensor, while the sparse tensor is the
Delicious tensor (Table 2). A factorization rank of R = 32 is
used for both.

2 BACKGROUND

We present a brief overview of tensor notations and factorization
methods. For an in-depth discussion on tensor factorization algo-
rithms and applications, we refer the readers to the seminal work
by Kolda and Bader [13].

2.1 Tensor Notations and Operations

Tensors are multi-dimensional generalization of matrices and ar-
rays. A N-mode (or N-order) tensor is an array with N modes or
dimensions. The following notations are used in this paper:

(1) Scalars are written with lowercase letters (e.g., a).

(2) Vectors are written with bold lowercase letters (e.g., a € RY).

(3) Matrices are written with bold capital letters (e.g., A € RI*J).
The (i, /)" entry of A € R/ is denoted a; ;.

(4) Higher-order tensors are written with Euler script letters (e.g.,

X e REXXINY The (iy,.. ., iN)" entry of the N-order ten-

sor X € RI*"XIN j5 denoted Xiy, o in-

Fibers are the analogue of matrix rows/columns for higher-

order tensors. A mode-n fiber of a tensor X is any vector

formed by fixing all indices of X, except the n'" index (e.g.,

a matrix column is defined by fixing the second index, and

is therefore a mode-1 fiber). We denote fibers using a colon

for the variable index (e.g., the j" column of a matrix A is

denoted by a. ;).

(6) Hadamard product is an element-wise product between two
vectors or matrices, and is denoted by “+”.

(7) Kronecker product between two matrices A € R/ and B €

—
(&3)
=

REXL produces the matrix C € RI*KL wwhere
al,lB al,zB a1’]B
az’lB az’zB az’]B
a[,lB a[,zB a[JB

and is denoted A ® B.
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2.2 Canonical Polyadic Decomposition

The canonical polyadic decomposition (CPD) is a widely used model
for tensor factorization that approximates a mode-N tensor X as a
sum of R outer products of N vectors. Each outer product is a rank-1
tensor, and in tensor analysis, each rank-1 tensor corresponds to
a latent feature of the data. The R vectors corresponding to each
of the N modes can be combined to form a factor matrix for the
corresponding mode by arranging them as column vectors of the
matrix.

For example, the factorization of a tensor X € RIP}JIXK can
be written in terms of factor matrices A € RI*XR B € R/XR and
C e RKXR where the columns of A (and respectively, B and C) are
the vectors used in forming the R outer products along mode-1 (and
respectively, mode-2 and mode-3).

Formally, an unconstrained CPD for the three mode X with
factors A,B and C can be defined as

R
argmin X = »" A(;r) oB(5r) o C(, 1) 1)
ABC =
, where A(:,r) oB(:,r) o C(:, r) is the outer product of the rt" vector
that yields a rank-1 one tensor.

To calculate a CPD factorization of a tensor X, the CANDE-
COMP/PARAFAC Alternating Least Squares (CP-ALS) algorithm
is mostly commonly used due to its fast execution time and the
simplicity of its algorithm. CP-ALS is an Block Coordinate Descent
(BCD) type iterative algorithm, where in each iteration, the factor
matrices are updated one mode at a time. When calculating the
factor matrix of mode n, the factor matrices of the remaining modes
are fixed, and a linear least squares problem is solved to update the
factor matrix for mode n.

A critical and computationally intensive component of CP-ALS,
as well as numerous other tensor algorithms, is the matricized ten-
sor times Khatri-Rao product (MTTKRP) operation. The MTTKRP
operation involves two basic operations:

(1) Tensor matricization is the process by which a tensor is un-
folded into a matrix. The mode-n matricization of a tensor X,
denoted X (), is obtained by laying out the mode-n fibers of
X as the columns of X ).

(2) Khatri-Rao product [18] is the “matching column-wise” Kro-
necker product between two matrices. That is, given matrices
B € R/*R and C € RK*R  their Khatri-Rao product K, de-
noted K =B © C, where Kis a (J - K) X R matrix, is defined
as:BOC=[b;®c1by®c2...bgQcg].

For a mode-3 tensor X, the mode-1 MTTKRP operation can
be expressed as X(;) (B © C). Note that for sparse tensors, the
MTTKRP operation does not explicitly calculate the Khatri-Rao
product, which typically results in a very tall and skinny matrix,
as described above. Instead, the row of the Khatri-Rao product
matrix required for each non-zero element in the sparse tensor is
calculated on-the-fly using the corresponding rows of the factor
matrices. Figure 2 illustrates the sparse MTTKRP operation for a
single non-zero element. Note that the key distinction between
sparse MTTKRP and dense MTTKRP is in the granularity of the
MTTKRP computation (a non-zero element vs. large matrix derived
from matricized tensor)
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(2) Compute corresponding row
of the Khatri-Rao Product

J bj,: \
k / bj.ocy, m,

Ck,:

m;. +=x; i - (b ° k)

(1) Retrieve corresponding  (3) Scale by non-zero value and
rows from factor matrices ~ accumulate to corresponding
row of target matrix

Figure 2: Illustration of the mode-1 sparse MTTKRP oper-
ation for a 3-mode tensor. For each non-zero element x; ; t,
the jth row and k' row from factor matrices B and C, re-
spectively, are loaded from memory. These are denoted by
b;. and ¢; .. A Hadamard product between the two rows are
computed (which corresponds to calculating the Khatri-Rao
product on-the-fly), and then the resulting vector is scaled
by the non-zero value of x; ; ;. This vector is then accumu-
lated to the i*" row of a temporary matrix M (i.e., m; ), which
is later used to calculate the factor matrix A. Note that the
computational workload for a sparse MTTKRP operation is
bounded by the number of non-zero elements, while for a
dense MTTKRP operation, it is determined by the product
of the dimensions across each tensor mode.

2.3 Sparse Tensor Formats

The efficient representation and manipulation of sparse tensors
are foundational to the performance of the sparse MTTKRP op-
eration, particularly when accelerated on massively parallel GPU
architectures. Various sparse tensor formats have been proposed to
store and process the non-zero elements efficiently on GPUs [17,
20, 22, 25]. The state-of-the-art sparse tensor format and MTTKRP
implementation for GPUs is the blocked linearized coordinate or-
dering (BLCO) [20]. We leverage this work to accelerate the sparse
MTTKRP kernel in our c¢STF framework.

2.4 Constrained Tensor Factorization

Imposing constraints on factorization, such as non-negativity, can
benefit data analysis by retaining the property of the tensor data
specific to the application domain. As such, there has been a wide
variety of work dealing with imposing various types of constraints
in matrix and tensor factorization algorithms. [8, 9, 11, 19, 29]

From an optimization problem standpoint, it simply extends
Equation 1 by adding the target constraint (e.g., non-negativity) to
yield the following optimization problem:

@)

AB,C
subjectto A,B,C > 0.

R
argmin X = )" A(>r) 0 B(,r) 0 C(, )|
r=1

In this study, we focus on the alternating optimization with
alternating direction method of multipliers (AO-ADMM) update
method [9], as it demonstrates fast convergence in practice, even
for non-smooth functions and weak convexity conditions. However,
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Algorithm 1 Computing constrained tensor factorization for the
CPD model using AO-ADMM

Input: XisI; X --- X Iy tensor, R is approximation rank
1: % Initialize the factor matrices (H)
2: forn=1to N do
3 Initialize H®

g = g(mM Ty

4:

s5: end for

6: repeat

7: forn=1to N do

8: §(m =G 4... 6 gD L, g1+ 4 ..., g(N)
9 M) = MTTKRP(X,H(K|K=“’N]‘{"}>)

10: H™ = ADMM($(™W, M(™)

11: H(™, A = normalize(H™, 1)

12: G =gMTH()

13: end for

14: until convergence is reached
Output: X ~ [H,... HN]

our framework can seamlessly incorporate a wide variety of update
methods, such as HALS and MU, as we demonstrate in Section 5.4.

3 ACCELERATING CONSTRAINED SPARSE
TENSOR FACTORIZATION ON GPUS

In this section, we present a high-level motivation for accelerat-
ing c¢STF on massively parallel GPU architecture. We begin by
describing the overall cSTF algorithm, and then provide a detailed
description of how ADMM is used within the c¢STF algorithm. We
then use our analysis of the computational and data movement cost
of ADMM to motivate the use of GPUs for accelerating cSTF.

3.1 Overview of the ¢STF Algorithm

Algorithm 1 illustrates the pseudo-code of the c¢STF algorithm,
and the update of a single factor matrix is described in lines 8-12.
The computation of the factor matrix for a given mode consists of
four primary operations—Gram (lines 8 and 12), MTTKRP (line 9),
ADMM update (line 10), and normalize (line 11)—which is represen-
tative of how constraints are applied in general. In this study, we
focus primarily on the update part, which we show in later sections
to be a significant performance bottleneck in c¢STF that will benefit
from GPU acceleration.

3.2 Overview of the ADMM algorithm

ADMM is a popular and effective method for solving large-scale
convex optimization problems with several favorable characteristics
[2]. It decomposes the problem into smaller sub-problems that
can be solved more easily and converges to a solution quickly.
In contrast to other algorithms that are limited to one particular
constraint, ADMM supports various types of constraints, such as
sparsity (L1 norm) and smoothness.

ADMM has been recognized for its effectiveness in solving con-
strained tensor factorization problems. Instead of directly applying
ADMM to address the non-convex optimization problem as defined
in Equation 2, recent advancements have led to the development of
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Algorithm 2 ADMM Algorithm

Input: M,;S,H,U,R > M is the MTTKRP matrix, R is the rank
of the factors, S is the Hadamard of gram matrix, H, U are the
primal and dual variables respectively

: Initialize H and U

: p « trace(S)/R

. Calculate L from the Cholesky decomp. of S + pI = LLT

: repeat

Ho «—H

He— D) LM+ pH+U)T

H < argming r(H) + '%HH -HT + U||fv

U« U+H-HT

o. until |[H-H|? /|HI? < € and [H-Hol2 /|[U]% <

10: return H

> Cholesky solve

P =T B TR R

o

alternating optimization with ADMM (AO-ADMM). This method
applies the alternating least squares (ALS) approach to ADMM,
where the algorithm alternately shifts its focus between variables
(i.e., modes) to solve each sub-problem using ADMM [9, 29]. In
essence, the cSTF algorithm described in Algorithm 1 is using AO-
ADMM, as it is using ADMM (line 10) for computing the factor
matrix for each mode. In the rest of this paper, we will use AO-
ADMM and ADMM interchangeably.

Algorithm 2 illustrates the pseudocode for ADMM in the context
of constrained tensor factorization. ADMM requires the output of
the MTTKRP operation M, the factor matrix of interest H, which
are both of size I X R, and the Hadamard product of Gram matrices
S of size R X R as input. After initializing the dual variable U and
preconditioning the variable p, it iteratively updates H and U until
convergence. From an optimization perspective, this algorithm
is designed to solve the augmented Lagrangian problem through
iterative updates of primal (H) and dual (U) variables. The goal
is to balance achieving the lowest possible value of the objective
function while adhering to the constraints. The dual variable update
plays a crucial role in guiding the primal variable update to remain
within the acceptable bounds set by the constraints.

3.3 Computation and Data Movement Analysis
for ADMM

In the first step of ADMM, the Cholesky decomposition of S + pI is
computed (line 3). Since this computation is continuously used in
the iterative process, it is typically computed initially and reused.
The second step involves computing H, which is the sum of the
primal and dual variables scaled by the step size p, and then added
with the MTTKRP output M. H is then updated through a Cholesky
solve, which usually requires a sequence of forward and backward
substitutions (line 6). The third step applies the constraint to H— U
via the proximity operator r (line 7). The choice of r depends on the
specific constraints or regularization used, providing algorithmic
flexibility. Finally, the inner iteration updates the dual variable and
checks for the convergence of both the primal and dual variables
(line 9).

To predict the performance characteristics of ADMM, we can
estimate the computational (W) and memory access (Q) costs for a
single iteration, as shown in Equations 3 and 4, respectively.
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Algorithm 3 GPU Optimized cuADMM Algorithm with Preinver-
sion and Operation fusion. With Preinversion, an explicit inverse can
be calculated using a Cholesky solve outside the inner loop (line 4),
and the multiple triangular solve can be replaced with a DGEMM
operation (line 7).

Input: M,S,H,U,R > M is the MTTKRP matrix, R is the rank
of the factors, S is the Hadamard of gram matrix, H, U are the
primal and dual variables respectively

: Initialize H and U

. p « trace(S)/R

. Calculate L from the Cholesky decomp. of S + pI = LLT

(LLT)~1 « Explicit inverse using Cholesky solve

: repeat

H«— compute_auxiliary(M,H, U, p)

H < (LLT)"'H

H « apply_proximity_operator(H, H, U)

U, AH « dual_update(U, H, ﬁ)

. until [AH|% /|H]% < ¢ and [H-Holl% /[UJ% < e

: return H

R A A

—_
[

W = 19IR + 2IR? flops (3)
O = 22IR + R? words 4)
W 19+2R
0" i ks ©)
(22 + 7)8

The computational cost totals 19IR + 2IR? flops, with 19IR de-
rived from matrix-matrix addition operations and 2IR? from the
Cholesky solve. The memory access cost totals 22IR + R? words,
where the predominant component (22IR) involves the read and
write operations for matrices H, U, M, each sized I X R, and storing
intermediate products.

The arithmetic intensity (I, in units of flop/byte) of ADMM is
shown in Equation 5, assuming double-precision data. Assuming
I > R, the arithmetic intensity can be approximated as 191;%1?,
which yields arithmetic intensities of 0.29, 0.47, and 0.83 for ranks
R =16, 32, and 64, respectively.

The low arithmetic intensity suggests that ADMM performance
is limited by memory bandwidth, and therefore can benefit from
High Bandwidth Memory (HBM) available on the latest GPUs. The
highly regular data access pattern offered by ADMM operating
on dense factor matrices suggests that data access can easily be
coalesced on GPUs to fully utilize the available bandwidth. There-
fore, we hypothesize that significant speedup can be achieved by
offloading the entire c¢STF workload onto GPUs.

4 OUR FULLY GPU-RESIDENT CSTF
FRAMEWORK

We modified the CPU-based PLANC library [5], which supports var-
ious constrained update methods for dense tensor factorization, to
handle sparse tensors and their factorization. This was achieved by
incorporating the state-of-the-art MTTKRP algorithm for CPUs (7]
that utilizes the adaptive linearized tensor order (ALTO) sparse ten-
sor format. This adaptation forms the basis for our initial analysis
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in Section 1 and lays the groundwork for subsequent GPU optimiza-
tion. Our GPU cSTF framework leverages the blocked linearized
cooradinate (BLCO) sparse tensor format [21] for the MTTKRP
operation, which represents the state-of-the-art on GPUs. The re-
maining three operations—computing the Gram matrix, ADMM
update, and normalization of the factor matrices—are implemented
using our own CUDA implementations and cuBLAS kernels.

To accommodate various alternating update schemes, we de-
veloped the Alternating Update Non-negative Tensor Factorization
(AUNTF_GPU) class which is designed to operate exclusively on the
GPU, handling factor matrices and Matricized Tensor Times Khatri-
Rao Product (MTTKRP) results, and can be further extended to
support a diverse set of updates schemes, in addition to ADMM.
We will refer to our own framework as ¢cSTF-GPU in the remainder
of this paper.

NELL1 |

g

0% 20%

u GRAM

40% 60% 80%
MTTKRP ®=UPDATE =NORMALIZE

100%

Figure 3: Execution time breakdown of c¢STF on three ten-
sors with the largest number of non-zero elements—F1lickr,
Delicious (denoted DELI), and NELL1. Their execution time
breakdown is representative of the tensors used in our eval-
uation, and illustrates that ADMM update dominates the
overall execution time.

4.1 Profiling the baseline cSTF implementation

We used our modified PLANC library to analyze the performance
of ¢STF on 10 real-world sparse tensors (Table 2). Our analysis in
Figure 1 shows a significant change in the performance bottleneck
when dealing with sparse tensors, with the ADMM update phase
becoming the main bottleneck instead of the MTTKRP phase, which
is the case for dense tensor factorization. Figure 3 illustrates the
execution time breakdown for three largest sparse tensors—Flickr,
Delicious, and NELL1. This execution time breakdown is repre-
sentative of the tensors used in our evaluation, providing further
evidence that ADMM update dominates the overall execution time
for ¢STF, and highlighting the importance of optimizing the update
algorithm for ¢STF.

4.2 cuADMM - GPU-optimized ADMM

algorithm

Every operation in the ADMM algorithm, described in Section 3.2
can be implemented using the highly optimized cuBLAS kernels
(e.g., DGEMM, DGEMYV, and DGEAM) on GPUs. Therefore, it is
easy to assume that the baseline ADMM algorithm will deliver close
to peak peak performance on GPUs, especially given the simplicity
of the operations.

However, when these operations compute over large factor matri-
ces, significant memory traffic can occur while reading and writing
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the intermediate data between kernel calls. This fact can easily be
overlooked, leading to less-than-efficient implementations.

In shared memory systems, attempts have been made to opti-
mize ADMM updates in the tensor factorization domain through
blockwise reformulation, enhancing the temporal locality of matri-
ces [29, 33]. However, these techniques are not effective on GPU
architectures as GPU architectures are optimized for large, uniform
memory access patterns and parallel workloads, rather than the
segmented, blockwise computations.

An additional consideration for optimizing performance on GPU
architectures is addressing the degradation caused by Cholesky
or triangular solves. This computation type involves solving sys-
tems of equations with triangular matrices (either lower or upper)
through sequential forward or backward substitutions. The inher-
ently serialized nature of triangular solves conflicts with GPU ca-
pabilities, which excel in parallel processing across multiple data
elements (i.e., SIMD or vectorized computation). This mismatch can
lead to significant GPU core idle times and suboptimal performance.

In the following subsection, we outline two performance opti-
mization strategies to address these issues. These impact of these
two optimization strategies are evaluated in Section 5.2.

4.3 Optimized ADMM updates Implementation

4.3.1 Operation Fusion. To mitigate the overhead of reading and
writing intermediate data, we leverage operation fusion. Operation
fusion is a technique that combines multiple operations into a sin-
gle kernel, which minimizes both the overhead associated with
excessive kernel invocation and access to global memory for in-
termediate data. Instead of writing the intermediate data to the
slow global memory, it is stored in registers and/or shared memory,
which can be accessed much more quickly. This also reduces the
frequency of global memory accesses, alleviating the stress on the
memory system. This is particularly advantageous when processing
large factor matrices, as it significantly improves computational
throughput.

To address these challenges effectively, we have restructured the
computational graph by developing custom GPU kernels. Specifi-
cally, our compute_auxiliary kernel integrates the calculation of
the auxiliary variable H = M + p(H + U), as specified in Line 6 of
Algorithm 3. Typically, using a DGEAM kernel for matrix addition,
the operation H + U would require 2IR reads and IR writes. Adding
M would necessitate another DGEAM call, leading to an additional
2IR reads and an extra IR write. By fusing these operations into
a single kernel, the memory transactions can be reduced to 3IR
reads and IR writes, effectively decreasing the memory operations
by approximately 33%.

In Line 8, the apply_proximity_operator kernel concurrently
applies the proximity operator to H — U and updates the primal vari-
able H. This kernel optimizes memory usage by eliminating the need
for intermediate storage of H — U. Instead, it directly applies the
proximity operator and writes the results to H. This implementation
leverages the element-wise nature of many proximity operators for
various constraints. Specifically, for the non-negativity constraint,
the proximity operator functions as an indicator function over R,
effectively mapping all negative values to zero.
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Table 1: Hardware and software setup.

\ CPU \ GPU
Intel Xeon NVIDIA NVIDIA
Model
Platinum 8367HC | A100 H100
u-arch Ice Lake (ICX) Ampere Hopper
Frequency 3.2 GHz 1.41 GHz 1.98 GHz
108 (SM) 114 (SM)
Cores 26
6912 (CC) 14592 (CC)
3.3MB L1D,
20.3MB L1D, | 28.5MB L1D
Caches 104MB L2,
40MB L2 50MB L2
143MB L3
DRAM 80 GB 80 GB
400 GB
(Bandwidth) (2039 GB/s) (2039 GB/s)
OS/Driver Ubuntu 20.04 525.85.12 535.54.03
Compiler gee 9.3.0 nvee 11.7 nvec 12.3

The dual_update kernel, mentioned in Line 9, capitalizes on the
shared dependencies between the dual variable update U = U+H—H
and the convergence condition computation |[H—H]|. By reutilizing
the intermediate computation of H — H, this approach conserves
both computational resources and memory reads by reducing them

by IR each.

4.3.2  Pre-inversion. Initerative update frameworks such as ADMM,
we often need to solve large linear systems denoted by AX = B
during each iteration. This process involves using Cholesky de-
composition to extract the L and LT factors of the matrix S + pI
(line 3 in Algorithm 2). We then perform backward and forward
substitutions (line 6) to apply the inverse of S + pI. However, the
dense triangular solve process is inherently sequential, leading to
low computational throughput.

To address this issue, we pre-compute the inverse (line 4) of
the matrix, (LLT)~1. This allows us to replace multiple triangular
solves with a single general matrix-multiply operation (line 7). We
only need to compute (LLT) ™! once and reuse it in all subsequent
steps. This approach maintains the same computational complexity
as Cholesky solve but leverages the high efficiency of DGEMM
operations on modern GPU architectures.

When using this strategy, we must consider the potential for
numerical instability when computing an explicit inverse, especially
for close-to-singular matrices. However, in the ADMM framework,
the formulation of the matrix S + pI—comprising the Hadamard
products of HTH, where H is a tall and skinny matrix, combined
with the stabilizing effect of diagonal loading via adding pI—is
empirically observed to be well-conditioned.

5 EXPERIMENTS AND PERFORMANCE

5.1 Hardware specification and Datasets

The hardware specifications for our experiments are detailed in Ta-
ble 1. Our study utilizes a range of real-world sparse tensor datasets
of varying sizes and sparsity levels, sourced from the FROSTT repos-
itory [30], as shown in Table 2. We conduct tensor factorization
using ranks {16, 32, 64} and take the average of 10 execution times
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Table 2: The sparse tensor data sets used for evaluation, or-
dered by the number of non-zero elements.

Tensor Dimensions ‘ NNZs ‘ Density

NIPS 2.5K X 2.9K X 14K x 17 3.1M 1.8 x 1079
Uber 183 X 24 x 1.1K x 1.7K 3.3M 3.8 x 107%
Chicago 6.2K X 24 X 77 X 32 5.3M 1.5 x 10702
Vast 165.4K x 11.4K X 2 26M 7.8 x 107"
Enron 6K x 5.7K x 244.3K x 1.2K 54.2M | 5.5x107%
NELL2 12.1K x 9.2K x 28.8K 76.9M | 2.4x107%
Flickr 319.7K X 28.2M x 1.6M X 731 1129M | 1.1x 1071
Delicious | 532.9K x 17.3M x 2.5M x 1.4K | 140.1M | 4.3 x 1071
NELL1 2.9M x 2.1M X 25.5M 143.6M | 9.1x 10713
Amazon 4.8M x 1.8M x 1.8M 1.7B 1.1x 10710

for each configuration. We also fix the number of ADMM iterations
to 10 for a fair performance comparison across the different frame-
works, and since ADMM converges in approximately 10 iterations
for all practical purposes.

5.2 Optimized ADMM performance analysis

We evaluate the impact of our two optimization strategies—operation
fusion (OF) (Section 4.3.1) and pre-inversion (PI) (Section 4.3.2)—by
comparing their performance against the basic ADMM GPU im-
plementation. The basic ADMM implementation uses the highly
optimized cuBLAS kernels for its computation. Figure 4 displays
the speedup achieved when our optimization strategies are applied
separately (shown as orange and yellow bars for OF and PI, re-
spectively) and applied together (shown as green bars) for a single
ADMM iteration across a set of representative real-world sparse
tensors for a rank-32 factorization.

In general, pre-inversion has a higher impact on performance
than operation fusion, and combining both optimization always
yields better performance than applying just one or the other.
When both OF and PI are applied, little to no speedup (1.0-1.3X) is
achieved for tensors with small (NIPS) and medium (Enron) factor
matrices (i.e., mode lengths), but substantial speedup (up to 1.8x)
is achieved for tensors with large factor matrices.

In the rest of this section, our framework will include these
two performance optimization strategies when comparing to other
frameworks.

5.3 Comparison against the state-of-the-art on
the latest NVIDIA GPUs

The current state-of-the-art in high-performance cSTF that utilizes
ADMM is the CPU-only SPLATT library [31]. There are very few
studies in ¢STF and ADMM on GPUs, and they are not focused on
performance and/or the code is not available to the public. As such,
we believe SPLATT represents the best comparison for this study,
and comparing against SPLATT helps illustrate the benefit of GPU
acceleration for cSTF.

In a single iteration of ¢STF, four principal computations are
required: Gram, MTTKRP, ADMM update, and normalization. In this
section, we concentrate on the overall end-to-end speedup for a
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single iteration, with particular emphasis on the improvements in
MTTKRP and ADMM update phases, which are the two primary
performance bottlenecks. While optimizing MTTKRP on the GPU
is not part of our research contributions, it is important to illus-
trate its performance against that of ADMM, as the two algorithms
demonstrate a trade-off relationship in performance.

Figures 5 and 6 shows the per-iteration end-to-end speedup of
our framework against SPLATT using ADMM across 10 real-world
datasets on the NVIDIA A100 and H100 GPUs, respectively. We
achieve a geometric mean speedup of 5.10x and 7.01X%, and the
speedup for each tensor ranges from 1.47-41.59x and 1.22-58.05X
on the two GPUs, respectively. We achieve higher speedup on
tensors with larger mode lengths, as having more elements to apply
constraints to on the factor matrices corresponds to more parallel
work that benefits from GPU’s massively parallel execution model.

The H100 GPU demonstrates higher performance compared to
the A100 GPU, despite the two devices having the same memory
bandwidth. Our analysis of the ADMM algorithm (Section 3.3)
reveals a low arithmetic intensity, which suggests that ADMM per-
formance is bounded by the memory bandwidth of the device. The
MTTKRP algorithm demonstrates a similar behavior [3]. The higher
performance on the H100 GPU comes from the higher overall cache
size on the H100 GPU (20.3MB vs. 28.5MB L1D and 40MB vs. 50MB
L2 on the A100 and H100, respectively). This result demonstrates
the importance of data reuse and caches in the performance of cSTF.

Finally, we compare the speedup achieved by our GPU frame-
work’s MTTKRP and ADMM kernels against each other. Figure 7
and 8 displays the speedup divided into two components— MT-
TKRP and ADMM—for the A100 and H100 GPUs, respectively. It
can be seen that speedup for MTTKRP is approximately indirectly
proportional to the speedup for ADMM, with the VAST tensor being
the only exception. When the mode lengths are long (i.e., sparse
tensors on the upper left corner), ADMM benefits more from GPU
acceleration, as described in Section 5.3 (i.e., higher level of paral-
lelism). However, longer mode lengths also result in higher sparsity,
which lowers the performance achieved by the MTTKRP kernel, as
higher sparsity generally lowers data reuse. Conversely, when the
mode lengths are short (i.e., sparse tensors on the lower right cor-
ner), higher speedup is achieved for MTTKRP while lower speedup
is achieved for ADMM. This results illustrates the importance of
optimizing both kernels, as neglecting MTTKRP may result in no
improvement in performance for sparse tensors with short mode
lengths, and neglecting ADMM may result in no improvement in
performance for sparse tensors with long mode lengths.

5.4 Accelerating additional non-negativity
constraint algorithms

To demonstrate the flexibility of our GPU c¢STF framework, we
integrate two additional constraint update schemes—multiplicative
update (MU) [14] and hierarchical alternating least square (HALS)
[4] for non-negativity—and compare its performance against the
CPU-based PLANC library that we modified to support sparse
tensor factorization, as described in Section 4. Figures 9 and 10
show the achieved speedup. Our framework achieves geometric
mean speedup of 6.42x and 5.90x for MU and HALS, respectively,
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and PI, respectively. The datasets are categorized into three groups based on factor matrix size: small (NIPS), medium (Enron),
and large (Flickr, Delicious, and Amazon). Speedup is correlated to the factor matrix size, and can be as high as 1.8x.

=+

100 = ) @ NIPS
. 104 —
& 24.74 A | |* Uber
= 12.61 - 1 | X Chicago
g2 10 7.52 B 11O Vast
: 3.99 5.10 o T o | | ¢ Enron
S 211 260 2.43 g 10t f + | @ NELL2
g 1.47 1.55 § Y 1| % Flickr
2 1 s BN | {dDelicious
. = ([
K A = - |+ NELL1
s < 100 - X | | A Amazon
E - I
9: 0 - b 3 B
»w o E O £ 2 N E 2 9« = = . _
£ 2§ % E3EE S §E — :
zZ 5 £ ® £ B £ ©§T @B § =
= moz = = =z E 3
=} ) < O
=] ] 10-1 L | | I
0 2 4 6 8 10
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Figure 9: Speedup achieved on the A100 GPU by our GPU
c¢STF framework using the MU and HALS update schemes
against PLANC, the state-of-the-art CPU-based cSTF library
that supports MU and HALS.
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Figure 10: Speedup achieved on the H100 GPU by our GPU
c¢STF framework using the MU and HALS update schemes
against PLANC, the state-of-the-art CPU-based cSTF library
that supports MU and HALS.

6 RELATED WORK

In the realm of constrained tensor factorization, several frameworks
and methodologies have been explored to optimize performance and
accuracy. The functionality of supporting generalized loss functions
is central to the work of both [8] and [24], which focus on computing
CP-based tensor factorization for dense static and streaming tensors,
respectively. This approach is characterized by its versatility in
handling a range of loss functions pertinent to various distributions
and its ability to manage corresponding constraints.

[5, 10] introduces a holistic constrained factorization framework
that supports various optimization algorithms for dense matrices
and tensors as well as sparse matrices. It alleviates the cost of MT-
TKRP by reusing partial MTTKRP products and actively offloading
the computations as GEMV and GEMM calls for the GPU. It also
provides scalability for distributed systems by offering paralleliza-
tion strategies that optimize load balance, minimize communication,
and efficiently distribute results.

115

ICPP °24, August 12-15, 2024, Gotland, Sweden

AO-ADMM, initially introduced as an update method for con-
strained matrix and tensor factorization by Huang et al. [9], has seen
further advancements. Smith et al. [29] proposed an accelerated C
implementation for sparse tensor factorization, employing blocked
ADMM to enhance thread parallelism and improve convergence
properties. Soh et al. [33] built upon this by further accelerating
ADMM updates for streaming sparse tensor factorization, utilizing
techniques such as data blocking, operation fusion, and parallel
reduction in residual computations.

[36] solves non-negative dense tensor factorization using accel-
erated proximal gradient (APG) method. It also reduces computa-
tional complexity by computing the MTTKRP through low-rank
approximation.

GPU systems has also been widely adopted for constrained ten-
sor factorization frameworks due to its high throughput and paral-
lel processing capabilities. Specifically, [11] optimizes sparse non-
negative matrix factorization (MF) by employing a randomized
partitioning strategy to distribute workloads efficiently across mul-
tiple GPUs. Also, it reduces the overall communication volume
through the adoption of a point-to-point communication exploiting
the sparsity of the matrix.

For non-negative dense tensor factorizations, [1] accelerates
alternating rank-wise column updates of factor matrices using a
gradient descent based method. To compute the update rate for each
rank, it decomposes the tensor into smaller tiles where it computes
partial sums that is later reduced for rank updates.

For non-negative sparse tensor factorizations, [16] proposes a
fine-grained update scheme that computes a gradient descent-based,
constrained elementwise update for each factor matrix element.
The update imposes non-negativity by setting the learning rate
where the negative values is cancelled out. Using compressed sparse
fibers(CSF) for sparse tensor storage, it spatially partitions subten-
sors and corresponding factor matrices rows onto a grid of GPU
processors.

The decomposability features of Alternating Direction Method
of Multipliers (ADMM) make it particularly suitable for GPU accel-
eration. Schubiger et al. [26] introduced an accelerated GPU imple-
mentation for constrained quadratic programming (QP) problems
using ADMM. The iterative updating of primal and dual variables
in the ADMM process, aimed at satisfying the Karush-Kuhn-Tucker
(KKT) optimality conditions, gains significant efficiency from the in-
corporation of a parallelizable Preconditioned Conjugate Gradient
(PCG) method.

7 CONCLUSION AND FUTURE WORK

In this study, we introduce the first ever software framework for
accelerating constrained sparse tensor factorization specifically
designed for fully offloading computation to GPUs. Although pre-
vious research has extensively explored constrained dense/sparse
matrix factorization and unconstrained sparse tensor factorization
for GPUs, the domain of constrained sparse tensor factorization
remains comparatively under-explored.

Our work represents a pioneering effort in the field of con-
strained sparse tensor factorization on GPUs, introducing novel
algorithmic optimizations specific to massively parallel GPU ar-
chitectures. By fully offloading the computation to the GPU, we
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reduce unnecessary communication overhead between the host
and the GPU, leading to substantial performance improvements.
Empirical evaluations demonstrate that our GPU-based framework
achieves geometric mean speedup of 5.10X (max 41.59%) and 7.01X
(max 58.05X) over state-of-the-art CPU-based SPLATT library on
the latest NVIDIA A100 and H100 GPUs, respectively.

For future work, we plan to create decision models to dynami-
cally determine whether to execute computations on the CPU, on
the GPU, or on both (heterogeneously), providing flexibility and
maximizing the overall performance and resource utilization based
on the characteristics of the data. We also plan to extend our frame-
work to support multi-GPU and distributed-memory computation.
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