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Abstract—High-dimensional sparse data emerge in many criti-
cal application domains such as healthcare and cybersecurity. To
extract meaningful insights from massive volumes of these multi-
dimensional data, scientists employ unsupervised analysis tools
based on tensor decomposition (TD) methods. However, real-world
sparse tensors exhibit highly irregular shapes and data distribu-
tions, which pose significant challenges for making efficient use
of modern parallel processors. This study breaks the prevailing
assumption that compressing sparse tensors into coarse-grained
structures (i.e., tensor slices or blocks) or along a particular dimen-
sion/mode (i.e., mode-specific) is more efficient than keeping them
in a fine-grained, mode-agnostic form. Our novel sparse tensor
representation, Adaptive Linearized Tensor Order (ALTO), en-
codes tensors in a compact format that can be easily streamed from
memory and is amenable to both caching and parallel execution. In
contrast to existing compressed tensor formats, ALTO constructs
one tensor copy that is agnostic to both the mode orientation and
the irregular distribution of nonzero elements. To demonstrate the
efficacy of ALTO, we accelerate popular TD methods that compute
the Canonical Polyadic Decomposition (CPD) model across differ-
ent types of sparse tensors. We propose a set of parallel TD algo-
rithms that exploit the inherent data reuse of tensor computations
to substantially reduce synchronization overhead, decrease mem-
ory footprint, and improve parallel performance. Additionally, we
characterize the major execution bottlenecks of TD methods on
multiple generations of the latest Intel Xeon Scalable processors, in-
cluding Sapphire Rapids CPUs, and introduce dynamic adaptation
heuristics to automatically select the best algorithm based on the
sparse tensor characteristics. Across a diverse set of real-world data
sets, ALTO outperforms the state-of-the-art approaches, achieving
more than an order-of-magnitude speedup over the best mode-
agnostic formats. Compared to the best mode-specific formats,
which require multiple tensor copies, ALTOachieves 5.1× geo-
metric mean speedup at a fraction (25% ) of their storage costs.
Moreover, ALTO obtains 8.4× geometric mean speedup over the
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state-of-the-art memoization approach, which reduces computa-
tions by using extra memory, while requiring 14% of its memory
consumption.

Index Terms—Sparse tensors, tensor decomposition, ALTO,
MTTKRP, CP-APR, poisson tensor decomposition, alternating
poisson regression, multi-core CPU, sapphire rapids.

I. INTRODUCTION

T ENSORS, the higher-order generalization of matrices,
can naturally represent complex interrelations in multi-

dimensional sparse data, which emerge in important application
domains such as healthcare [1], [2], cybersecurity [3], [4], data
mining [5], [6], and machine learning [7], [8]. For example, one
mode (or dimension) of a tensor may identify users while another
mode details their demographic information, and their (poten-
tially incomplete) ratings for a set of products [9]. To effectively
analyze such high-dimensional data, tensor decomposition (TD)
is used to reveal their principal components, where each com-
ponent represents a latent property. One of the most popular
TD models is the Canonical Polyadic Decomposition (CPD),
which approximates a tensor as a sum of a finite number of
rank-one tensors such that each rank-one tensor corresponds to
a tensor component, or a latent property [10], [11]. An important
class of real-world, high-dimensional data sets is sparse tensors
with non-negative count data [12], [13], which encodes critical
information, such as the number of packets exchanged across
a network, or the number of criminal activities in a city. For
these tensors, the CP Alternating Poisson Regression (CP-APR)
algorithm is a powerful tool for detecting anomalies and group
relations. In contrast to other CPD algorithms that assume a
Gaussian distribution for randomly distributed data (e.g., CP
Alternating Least Squares, or CP-ALS), CP-APR [14] assumes
a Poisson distribution which better describes the target count
data.

Due to the curse of dimensionality, data become more
dispersed as the number of modes increases. Hence, high-
dimensional data sets typically suffer from highly irregular
shapes and data distributions as well as unstructured and extreme
sparsity, which make them challenging to represent efficiently.
For instance, Fig. 1 illustrates the spatial distribution of nonzero
elements in a set of sparse tensors. It shows that the number of
nonzero elements in a subspace, or a multi-dimensional block,
can vary greatly (note the use of logarithmic scale). Furthermore,
as the sparsity of tensors increases (e.g., NELL-1, AMAZON, and
REDDIT tensors), the likelihood of finding dense structures in
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Fig. 1. A box plot of the data (nonzero elements) distribution across the multi-dimensional blocks (subspaces) of the hierarchical coordinate storage [15]. The
multi-dimensional subspace size is 128N , where N is the number of dimensions (modes), as per prior work [16]. The sparse tensors are sorted in an increasing
order of their number of nonzero elements. Sparsity is extremely high for many tensors (e.g., NELL-1, AMAZON, and REDDIT) and vary greatly across tensors.

the multi-dimensional space significantly decreases, leading to
extremely small numbers of nonzero elements per block. There-
fore, efficient execution of TD algorithms on modern parallel
processors is challenging because of their low arithmetic in-
tensity [17], random memory access, workload imbalance [18],
[19], and data dependencies [17], [19]. Moreover, TD algorithms
require computations along every mode, and realizing accept-
able performance across all modes is difficult without using
multiple mode-specific tensor copies.

Prior work on the CP-ALS algorithm improved the parallel
performance of the matricized tensor times Khatri-Rao product
(MTTKRP) kernel [15], [17], [18], [20], [21], which is the
main performance bottleneck of the overall algorithm [20]. The
few performance studies conducted on the CP-APR algorithm
focused primarily on performance portability [22] and streaming
analysis [23], rather than parallel performance optimization. To
the best of our knowledge, this paper presents the first in-depth
analysis of the key performance bottlenecks of CP-APR, and
significantly improves the parallel performance of both CP-ALS
and CP-APR over prior state-of-the-art approaches by using a
linearized mode-agnostic sparse tensor representation.

Additionally, the previous approaches relied on extending
legacy sparse linear algebra formats and algorithms to ten-
sor (multilinear) algebra problems [11], [15], [20], [21], [24],
[25], [26], [27], [28], [29]. These techniques can be classified
based on their compression of the nonzero elements into raw
or compressed formats [30], [31]. Raw formats use simple
list-based representations to keep the nonzero elements along
with their multi-dimensional coordinates [32]. Hence, they are
mode-agnostic and typically require one tensor copy to ex-
ecute tensor operations along different modes. As a result,
the list-based coordinate (COO) format remains the de facto
data structure for storing sparse tensors [32] in many tensor
libraries (e.g., Tensor Toolbox [11], Tensorflow [33], and Tensor-
lab [34]). However, due to their unprocessed nature, list-based
formats suffer from significant parallel and synchronization
overheads [21].

Compressed tensor formats [15], [20], [27], [35] use tree- or
block-based structures to organize the nonzero elements, which
may decrease the memory footprint of sparse tensors. However,
since these approaches rely on finding clusters of nonzero el-
ements in non-overlapping regions of the multi-dimensional

space to achieve compression, their efficacy depends on the
spatial data distribution, which can be highly irregular and
extremely sparse as demonstrated in Fig. 1. Therefore, instead
of reducing memory storage, compressed formats can introduce
substantial memory overhead and degrade the parallel perfor-
mance of TD algorithms [30].

The most popular compressed format for TD algorithms is
compressed sparse fiber (CSF) [20], which extends the classical
compressed sparse row (CSR) format to higher-order tensors us-
ing tree-like structures. However, CSF-based formats are mode-
specific, where the arrangement of nonzero elements depends
not only on the mode considered as the root of the index tree but
also on the other modes at each subsequent tree level; therefore,
they are typically efficient for only that specific mode order.
This leads to a trade-off between performance and memory, as
storing multiple tensor copies, each arranged for a specific mode,
yields the best performance at the cost of extra memory [35]. For
large-scale tensors, keeping multiple copies may be infeasible,
especially for hardware accelerators with limited memory ca-
pacity (e.g., GPUs). Although current GPUs (e.g., H100) can
have up to 80 GB of device memory [36], encoding large-scale
tensors (e.g., AMAZON, PATENTS and REDDIT tensors) using CSF
requires hundreds of gigabytes of memory. In contrast, keep-
ing only one tensor copy, arranged for an arbitrarily chosen
mode order, yields the smallest memory footprint at the cost
of sub-optimal performance [25]. Alternatively, memoization
schemes [37], [38] utilize CSF-based formats to reduce com-
putations by keeping and reusing intermediate results across
tensor modes, which require substantial storage that largely
exceeds the memory consumption of tensor representations [38].
While block-based formats [15], [27] can be mode-agnostic,
their storage requirements and parallel performance still depend
on the spatial data distributions as well as the parameters of
the blocking/tilling schemes [27], [30], which are difficult to
determine dynamically.

To overcome these limitations, we present the Adaptive Lin-
earized Tensor Order (ALTO) format. ALTO is a mode-agnostic
representation that maps a set of N -dimensional coordinates
onto a single linearized index such that neighboring nonzero
elements in the multi-dimensional space are close to each other
in memory. This leads to a more cache friendly and memory-
scalable tensor storage; that is, ALTO utilizes the inherent data
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locality of sparse tensors and its storage scales with mode
lengths, rather than the number of modes. Additionally, ALTO
enables a unified implementation of tensor algorithms that re-
quires a single tensor copy to compute along all modes.

In contrast to prior compressed [15], [20] and linearized [39]
TD approaches, we propose a set of parallel algorithms that
leverage the ALTO format to address the performance bottle-
necks that have traditionally limited the scalability of sparse
tensor computations. Our ALTO-based algorithms generate per-
fectly balanced tensor partitions in terms of the number of
nonzero elements; however, these partitions may divide the
multi-dimensional space of a tensor into overlapping regions
(but each nonzero element belongs to a single partition). Thus,
we devise data-aware adaptation heuristics that greatly improve
parallel performance by locating the overlapping space between
tensor partitions and selecting the best tensor traversal and
conflict resolution method according to the inherent data locality
of sparse tensors. Moreover, these heuristics choose between
recomputing or reusing intermediate results, depending on the
properties of the target tensor computations, to maximize the
performance while reducing the overall memory footprint. As
a result, our ALTO-based TD algorithms deliver substantial
performance gains over prior state-of-the-art approaches, while
allowing the processing of large-scale tensors. In summary, we
make the following contributions:
� We present ALTO, a novel sparse tensor format for high-

performance tensor algorithms. Unlike prior compressed
formats, ALTO uses a single (mode-agnostic) tensor rep-
resentation that improves data locality, eliminates work-
load imbalance, and reduces memory usage, regardless
of the data distribution in the multi-dimensional space
(Section III).

� We propose efficient ALTO-based parallel algorithms for
the CP-ALS and CP-APR methods as well as input-aware
adaptation heuristics to balance data reuse and mem-
ory footprint while greatly reducing synchronization cost
(Section IV).

� We conduct an in-depth performance analysis of the main
TD kernels and compare against prior state-of-the-art
across two generations of the latest Intel Xeon Scalable
processors. The results show that on an Intel Sapphire
Rapids server, ALTO-based TD algorithms achieve 25.3×
and 5.1× geometric mean speedup over the best mode-
agnostic and mode-specific formats, respectively. Com-
pared to the best memoization method that trades lower
computation for higher memory usage, ALTO attains 8.4×
geometric mean speedup. Furthermore, ALTO requires a
fraction (14% to 25% ) of the storage used by the state-
of-the-art mode-specific and memoization approaches
(Section V).

II. BACKGROUND

This section summarizes popular tensor decomposition meth-
ods, sparse tensor formats, and related notations. The survey by
Kolda and Bader [10] provides a more detailed discussion of
tensor algorithms and their applications.

A. Tensor Notations

Tensors areN -dimensional arrays, where each element has an
N -tuple index i = (i1, i2, . . . , iN ). Each index coordinate in
locates a tensor element along the nth dimension or mode, with
n ∈ {1, 2, . . . , N} and in ∈ {1, 2, . . . , In}. Low-dimensional
tensors include vectors, where N = 1, and matrices, where
N = 2. In general, a denseN -dimensional (or a mode-N ) tensor
has

∏N
n=1 In indexed elements. A tensor is said to be sparse if

the majority of its elements are zero. The following notations
are used in this paper:

1) Scalars are denoted by italicized lowercase letters (e.g. a).
2) Vectors are denoted by bold lowercase letters (e.g. a).
3) Matrices are denoted by bold capital letters (e.g. A).
4) Higher-order tensors are denoted by Euler script letters

(e.g. X ).
5) Fibers are analogous to matrix rows and columns. A mode-

n fiber of a tensor X is any vector formed by fixing all
indices of X , except the nth index. For example, a matrix
column is a mode-1 fiber as it is defined by fixing the
second index to a particular value.

6) To indicate every element along a particular mode or
dimension, we will use the : symbol. For example, A(1,:)
denotes the first row of the matrix A.

7) Tensor matricization is the process by which a tensor is
unfolded into a matrix. The mode-n matricization of a
tensor is denoted as X(n), and is obtained by laying out
the mode-n fibers of X as the columns of X(n).

8) Khatri-Rao product (KRP) [40] is the column-wise Kro-
necker product between two matrices, and is denoted by
the symbol �. Given matrices A(1) ∈ RI1×R and A(2) ∈
RI2×R, their Khatri-Rao product K, denoted K = A(1)

�A(2), where K is a (I1 · I2)×R matrix, is defined as:

A(1) �A(2) =
[
a
(1)
1 ⊗ a

(2)
1 a

(1)
2 ⊗ a

(2)
2 . . . a

(1)
R ⊗ a

(2)
R

]
,

where ⊗ denotes the Kronecker product.
9) Element-wise product and division are denoted by the

symbols ∗ and �, respectively.

B. Tensor Decomposition

Tensor decomposition can be considered as a generalization
of singular value matrix decomposition and principal component
analysis, and it is used to reveal latent information embedded in
large multi-dimensional data sets. This work targets algorithms
that compute the CPD tensor decomposition model, namely, the
Canonical Polyadic Alternating Least Squares (CP-ALS) algo-
rithm for normally distributed data and the Canonical Polyadic
Alternating Poisson Regression (CP-APR) algorithm for non-
negative count data.

CPD is a popular tensor decomposition model, where a mode-
N tensor X is approximated by the sum of R rank-one tensors.
A rank-one tensor is formed by N vectors, each corresponding
to a particular mode. The vectors along the same mode can
be arranged as the columns of a factor matrix, resulting in N
different factor matrices so that the decomposition of X is the
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Fig. 2. CPD of a mode-3 tensor X . There are R rank-one tensors that are

formed by the outer-product between three vectors a(1)
r , a(2)

r , and a
(3)
r , where

r ∈ {1, 2, . . . , R}. The vectors along the same mode are often grouped together

as the columns of a factor matrix. For example, the vectors a(1)1 , a(1)
2 , ..., a(1)

R

are the columns of the mode-1 factor matrix A(1).

Algorithm 1: CP-ALS Algorithm.

Input: Tensor X ∈ RI1×···×IN , initial guess factor matrices
A(1), . . . ,A(N).

Output: λ, A(1), . . . ,A(N)

1: repeat
2: for n = 1, · · · , N do
3: G(1) ←A(1)T A(1)

4: · · ·
5: G(n−1) ←A(n−1)T A(n−1)

6: G(n+1) ←A(n+1)T A(n+1)

7: · · ·
8: G(N) ←A(N)T A(N)

9: V←G(1) ∗ · · · ∗G(n−1) G(n+1) ∗ · · · ∗G(N)

10: K←
A(1) � · · · �A(n−1) �A(n+1) � · · · �A(N)

11: M←X(n) K � MTTKRP
12: A(n) ←M V† � Pseudoinverse
13: λ← column normalize A(n) and store norms as λ

14: end for
15: until fit ceases to improve or maximum iterations

reached

outer product of these matrices. An example CPD of a mode-3
tensor is shown in Fig. 2.

1) CP-ALS: Algorithm 1 illustrates the CP-ALS algorithm
for iteratively computing the factor matrices of the CPD model.
In each CP-ALS iteration, every factor matrix is updated via
the alternating least squares (ALS) method whereby every other
factor matrix but the one being updated is fixed to yield the best
approximation of X . Line 11 shows the matricized tensor times
Khatri-Rao product (MTTKRP) operation [20], which involves
tensor matricization and Khatri-Rao product. For a mode-3
tensor X , the mode-1 MTTKRP operation can be expressed as
X(1)(A

(2) �A(3)). MTTKRP is typically the most expensive
tensor kernel of CP-ALS, and it is performed along all modes in
every CP-ALS iteration. Since MTTKRP operations are similar
across all modes, for brevity, we only discuss mode-1 MTTKRP
in this paper.

2) CP-APR: While CP-ALS can decompose sparse count
data, CP-APR better describes the random variations in the data
by representing it using a Poisson distribution [14], which con-
siders a discrete number of events and assumes zero probability
for observing fewer than zero events. As a result, CP-APR is
more expensive to compute compared to CP-ALS [14]. There are

Algorithm 2: CP-APR MU Algorithm.

Input:Tensor X ∈ RI1×···×IN , initial guess factor matrices
A(1), . . . ,A(N), and algorithmic parameters:

• kmax, maximum number of outer iterations
• lmax, maximum number of inner iterations
• τ , convergence tolerance on KKT conditions
• κ, inadmissible zero avoidance adjustment
• κtol, tolerance for potential inadmissible zero
• ε, minimum divisor to prevent divide-by-zero

Output:A(1), . . . ,A(N)

1: for k = 1, . . . , kmax do
2: isConverged← true
3: for n = 1, . . . , N do

4: S(i, r)←
⎧⎨
⎩
κ, if k > 1,A(n)(i, r) < κtol,

and Φ(n)(i, r) > 1,
0, otherwise

5: B← (A(n) + S)Λ
6: Π← (

⊙
∀m 	=n A

(m))T � Khatri-Rao product
(KRP)

7: for l = 1, . . . , lmax do
8: Φ(n) ← (X(n) � (max(BΠ, ε)))ΠT

9: if |min(B,E−Φ(n))| < τ then
� Convergence check

10: break
11: end if
12: isConverged← false
13: B← B ∗Φ(n)

14: end for
15: λ← eTB, A(n) ← BΛ−1

16: end for
17: if isConverged = true then
18: break
19: end if
20: end for

three common methods for computing CP-APR: (i) Multiplica-
tive update (MU), (ii) Projected damped Newton for row-based
sub-problems (PDN-R), and (iii) Projected quasi-Newton for
row-based sub-problems (PQN-R).

PDN-R and PQN-R employ second-order information to in-
dependently solve row sub-problems, whereas MU uses a form
of scaled steepest-descent with bound constraints over all rows
during each iteration [41]. Although MU needs more iterations to
converge than PDN-R and PQN-R, it remains the most popular
method due to its lower iteration cost and higher parallelism
and data reuse, which makes it amenable for efficient execution
on modern parallel architectures. As such, we focus our efforts
exclusively on optimizing the MU method in this study. For a
detailed discussion of the three CP-APR algorithms, we refer
our readers to [41] and [14].

Algorithm 2 shows CP-APR with the MU method. Using two
nested loops, CP-APR computes the decomposition of a tensor
by successively updating each factor matrix while holding the
other factor matrices fixed. Lines 6 and 8 show the Π (Khatri-
Rao product) and Φ (model update) kernels, respectively, which
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Fig. 3. Different sparse tensor representations of a 4× 8× 2 tensors with six nonzero elements.

make up majority of the CP-APR execution time. Note that Π is
calculated once per outer loop for each mode, andΦ is calculated
once per inner loop. Since the inner loop is executed at most
lmax times per mode per outer loop, the cost of calculating Π
can more easily be amortized as the number of inner iterations
goes up.

C. Sparse Tensor Storage Formats

We present an overview of raw and compressed sparse ten-
sor storage using three popular formats: coordinate (COO),
hierarchical coordinate (HiCOO), and compressed sparse fiber
(CSF). Fig. 3 shows a comparison of the different formats for a
4× 8× 2 tensor with six nonzero elements.

1) Coordinate (COO): COO is the canonical and simplest
sparse format, as it lists the nonzero elements and their N -
dimensional coordinates, without any compression. This mode-
agnostic form allows tensor algorithms to use one tensor copy
across modes. Fig. 3(a) shows an example tensor in the COO
format.

Decomposing a sparse tensor stored in the COO format typi-
cally involves iterating over each nonzero element and updating
the corresponding factor matrix row. For example, during mode-
1 computation, a nonzero element with coordinates (i1, i2, i3)
updates row i1 of the mode-1 factor matrix after reading rows i2
and i3 from mode-2 and mode-3 factor matrices, respectively.
Since multiple threads can simultaneously update the same row
of a factor matrix, these updates must be done atomically, which
can be expensive on parallel processors with a large number of
threads.

2) Hierarchical Coordinate (HiCOO): HiCOO [15], [27]
is a block-based sparse tensor format that employs multi-
dimensional tiling for data compression. Like COO, HiCOO is
mode-agnostic but its compression efficacy depends completely
on the properties of the target tensor, such as its shape, density,
and data distribution, and determining the optimal parameters
for compression (e.g., the tile size) is non-trivial. In some cases,
rearranging the nonzero elements to create dense tiles is neces-
sary to achieve any compression [27]. In addition, scheduling
the resulting HiCOO blocks can suffer from limited parallelism,
due to conflicting updates across blocks, as well as workload
imbalance if some blocks have significantly more nonzero el-
ements than others. Fig. 3(b) shows the example sparse tensor
encoded in the HiCOO format. The memory required to keep
the hierarchical indices (i.e., bi1 , ei1 , etc.) can be lower than

storing the actual indices (i.e., i1, i2, and i3) only if each tile has
a sufficient number of nonzero elements.

3) Compressed Sparse Fiber (CSF): CSF stores a tensor as
a collection of sub-trees, where each sub-tree represents a group
of all nonzero elements that update the same factor matrix row.
Given a CSF representation with a mode ordering of 1-2-3,
where 1 is the root mode and 3 is the leaf mode, the root
nodes represent the rows that will be updated, and the leaf nodes
represent the nonzero elements that contribute to that update.
Thus, iterating over the nonzero elements involves a bottom-up
traversal of each sub-tree, such that at each non-leaf node, the
partial results from its children are merged and pushed up, and
this propagates until results from every node in the tree are
merged at the root. Fig. 3(c) illustrates the CSF sub-trees created
from the example sparse tensor.

One advantage of CSF is that updates to factor matrices
can be done asynchronously by assigning one thread to each
sub-tree. However, CSF requires N tensor copies to maintain
synchronization-free updates across every mode, which can
be impractical for large tensors and/or devices with limited
memory capacity (e.g., GPUs). Alternatively, the sub-trees can
be traversed both bottom-up and top-down, merging partial
results at the tree level corresponding to the destination mode.
While this approach allows a single tensor copy (with the root
mode chosen arbitrarily) to be used across all modes, it requires
synchronization to avoid update conflicts and entirely different
tree traversal algorithms [25]. Additionally, regardless of the
strategy used, CSF suffers from workload imbalance, as some
sub-trees can have significantly more nonzero elements than the
others.

III. ALTO FORMAT

To tackle the highly irregular shapes and distributions of
real-world sparse data, ourALTO format maps the coordinates of
a nonzero element in the N -dimensional space that represents
a tensor to a mode-agnostic index in a compact linear space.
Specifically, ALTO uses a data-aware recursive encoding to
partition every mode of the original Cartesian space into multiple
regions such that each distinct mode has a variable number
of regions to adapt to the unequal cardinalities of different
modes and to minimize the storage requirements. This adaptive
linearization and recursive partitioning of the multi-dimensional
space ensures that neighboring points in space are close to each
other on the resulting compact line, thereby maintaining the
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Fig. 4. An example of the ALTO sparse encoding and representation for the
three-dimensional tensor in Fig. 3(a).

inherent data locality of tensor algorithms. Moreover, the ALTO
format is not only locality-friendly, but also parallelism-friendly
as it allows partitioning of the multi-dimensional space into
perfectly balanced (in terms of workload) subspaces. Further, it
intelligently arranges the modes in the derived subspaces based
on their cardinality (dimension length) to further reduce the
overhead of resolving the update conflicts that typically occur
in parallel sparse tensor computations.

What follows is a detailed description and discussion of the
ALTO format generation (Section III-A) using a walk-through
example. Additionally, we present the ALTO-based sequential
algorithm for the MTTKRP operation (Section III-B).

A. ALTO Tensor Generation

Formally, an ALTO tensor X = {x1, x2, . . . , xM} is an
ordered set of nonzero elements, where each element xi =
〈vi, pi〉 is represented by a value vi and a position pi. The
position pi corresponds to a compact mode-agnostic encoding
of the indexing metadata, which is used to quickly generate
the tuple (i1, i2, . . . , iN ) that locates a nonzero element in the
multi-dimensional Cartesian space.

The generation of an ALTOtensor is carried out in two stages:
linearization and ordering. First, ALTO constructs the indexing
metadata using a compressed encoding scheme, based on the
cardinalities of tensor modes, to map each nonzero element to
a position on a compact line. Second, it arranges the nonzero
elements in linearized storage according to their line positions,
i.e., the values of theirALTO index. Typically, the ordering stage
dominates the format generation time. However, compared to
the other compressed sparse tensor formats [15], [20], [25],
[27], [28], [29], ALTO requires a minimal generation time
because ordering the linearized tensors incurs a fraction of the
cost required to sort multi-dimensional index sets (due to the
reduction in comparison operations, as detailed in Section V).

Fig. 4 shows the ALTO format for the sparse tensor from
Fig. 3(a). The multi-dimensional indices (i1, i2, and i3) are
color coded and the rth bit of their binary representation is
denoted bin,r. Specifically, ALTO keeps the value of a nonzero
element along with a linearized index, where each bit of this
index is selected to partition the multi-dimensional space into
two hyperplanes. For example, theALTO encoding in Fig. 4 uses
a compact line of length 64 (i.e., a 6-bit linearized index) to rep-
resent the target tensor of size 4× 8× 2. This index consists of
three groups of bits with variable sizes (resolutions) to efficiently
handle high-order data of arbitrary dimensionality. Within each
bit group, ALTO arranges the modes in an increasing order of
their length (i.e., the shortest mode first), which is equivalent to
partitioning the multi-dimensional space along the longest mode
first. Such an encoding aims to generate a balanced linearization
of irregular Cartesian spaces, where the position resolution of a
nonzero element increases with every consecutive bit, starting
from the most significant bit. Therefore, the line segments
encode subspaces with mode intervals of equivalent lengths,
e.g., the line segments [0− 31], [0− 15], and [0− 7] encode
subspaces of 4× 4× 2, 4× 2× 2, and 2× 2× 2 dimensions,
respectively.

Due to this adaptive encoding, ALTO represents the resulting
linearized index using the minimum number of bits, and it
improves data locality across all modes of a given sparse tensor.
Hence, a mode-N tensor, whose dimensions are I1 × I2 × · · · ×
IN , can be efficiently represented using a single ALTO format
with indexing metadata of size:

SALTO = M ×
(

N∑
n=1

log2 In

)
bits, (1)

where M is the number of nonzero elements.
As a result, compared to the de facto COO format, ALTO

reduces the storage requirement regardless of the tensor’s char-
acteristics. That is, the metadata compression ratio of the ALTO
format relative to COO is always ≥ 1. On a hardware architec-
ture with a word-level memory addressing mode, this compres-
sion ratio is given by:

SCOO

SALTO
=

∑N
n=1

⌈
log2 In
Wb

⌉
⌈∑N

n=1 log2 In
Wb

⌉ , (2)

whereWb is the word size in bits. For example, on an architecture
with byte-level addressing (i.e., Wb = 8 bits), the sparse tensor
in Fig. 4 needs three bytes to store the mode indices (coordinates)
for each nonzero element in the COO format, whereas only a
single byte is required to store the linearized index in the ALTO
format: the metadata compression ratio of ALTO compared to
COO is three.

Moreover, theALTO format not only reduces the memory traf-
fic of sparse tensor computations, but also decreases the number
of memory transactions required to access the indexing metadata
of a sparse tensor, as reading the linearized index requires fewer
accesses compared to reading several multi-dimensional indices.
In addition, this natural coalescing of the multi-dimensional
indices into a single linearized index increases the memory
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Fig. 5. For the example in Fig. 4, ALTO generates a non-fractal, yet more
compact encoding compared to traditional space-filling curves, such as the Z-
Morton order.

transaction size to make more efficient use of the main memory
bandwidth.

It is important to note that ALTO uses a non-fractal1 encoding
scheme, unlike the traditional space-filling curves (SFCs) [42].
In contrast, SFCs (e.g., Z-Morton order [43]) are based on
continuous self-similar (or fractal) functions that target dense
data, which can be extremely inefficient when used to encode
the irregularly shaped multi-dimensional spaces that emerge in
higher-order sparse tensor algorithms as they require indexing
metadata of size:

SSFC = M ×
(
N × N

max
n=1

(log2 In)
)

bits. (3)

Therefore, in sparse tensor computations, SFCs have been
only used to reorder the nonzero elements to improve their data
locality rather than compressing the indexing metadata [15].
Fig. 5 shows the compact encoding generated by ALTO com-
pared to the fractal encoding scheme of the Z-Morton curve.
In this example, ALTO reduces the length of the encoding line
by a factor of eight, which not only decreases the overall size
of the indexing metadata, but also reduces the linearization/de-
linearization time required to map the multi-dimensional space
to/from the encoding line.

To allow fast indexing of linearized tensors during sparse
tensor computations, the ALTO encoding is implemented us-
ing a set of simple N bit masks, where N is the number of
modes, on top of common data processing primitives. Fig. 6
shows the linearization and de-linearization mechanisms, which
are used during the ALTO format generation and the sparse
tensor computations, respectively. The linearization process is
implemented as a bit-level gather, while the de-linearization is
performed as a bit-level scatter. Thus, although the compressed
representation of the proposed ALTO format comes at the cost
of a de-linearization (decompression) overhead, such a compu-
tational overhead is minimal and can be effectively overlapped
with the memory accesses of the memory-intensive sparse tensor
operations, as shown in Section V.

B. ALTO-Based Tensor Operations

Since high-dimensional data analytics is becoming increas-
ingly popular in rapidly evolving areas [1], [3], [6], [8], a
fundamental goal of the proposed ALTO format is to deliver
superior performance without compromising the productivity
of end users to allow fast development of tensor algorithms. To

1A fractal pattern is a hierarchically self-similar pattern that looks the same
at increasingly smaller scales.

Fig. 6. The ALTO-based bit encoding and decoding mechanisms for the
example in Fig. 4.

Algorithm 3: Mode-1 Sequential MTTKRP-ALTO Algo-
rithm.

Input: A third-order ALTO sparse tensor X ∈ RI1×I2×I3
with M nonzero elements, dense factor matrices
A(1),A(2),A(3)

Output: Updated dense factor matrix Ã ∈ RI1×R

1: for x = 1, . . . ,M do
2: i = EXTRACT (pos(x),MASK) �

De-linearization.
3: Ã(i1, :) + = val(x)×A(2)(i2, :)×A(3)(i3, :)
4: end for
5: return Ã

this end, Algorithm 3 illustrates the popular MTTKRP tensor
operation using the ALTO format.

First, unlike mode-specific (e.g., CSF-based) formats, ALTO
enables end users to perform tensor operations using a uni-
fied code implementation that works on a single tensor copy
regardless of the different mode orientations of such operations.
Second, by decoupling the representation of a sparse tensor from
the distribution of its nonzero elements, ALTO does not require
manual tuning to select the optimal format parameters for this
tensor, in contrast to prior approaches such as HiCOO and CSF.
Instead, the ALTO format is automatically generated based on
the shape and dimensions of the target sparse tensor (as explained
in Section III-A).

IV. PARALLEL LINEARIZED TENSOR ALGORITHMS

We devise a set of ALTO-based parallel algorithms for accel-
erating sparse tensor computations and demonstrate how they
are employed in popular TD operations.

A. Workload Partitioning and Scheduling

Prior compressed sparse tensor formats partition the tensor
space into non-overlapping regions and cluster the data into
coarse-grained structures, such as blocks, slices, and/or fibers.
Due to the irregular shapes and distributions of higher-order data,
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Fig. 7. ALTO partitioning of the example in Fig. 4, which generates balanced
partitions in terms of workload (nonzero elements) for efficient parallel execu-
tion.

such coarse-grained approaches can suffer from severe work-
load imbalance and limited parallel performance/scalability. In
contrast, by employing theALTO format, linearized tensor algo-
rithms work at the finest granularity level (i.e., a single nonzero
element), which allows perfect load-balancing and scalable par-
allel execution. While a non-overlapping partitioning can be
obtained from the ALTO encoding scheme by using a subset
of the index bits, the workload balance of such a partitioning
still depends on the sparsity patterns of the tensor.

To decouple the performance of sparse tensor computa-
tions from the distribution of nonzero elements, we divide the
multi-dimensional space into potentially overlapping regions
and allow workload distribution at the granularity of nonzero
elements, which result in perfectly balanced partitions in terms
of workload. Fig. 7 depicts an example of ALTO’s workload
decomposition when applied to the sparse tensor in Fig. 4.ALTO
divides the line segment containing the nonzero elements of
the target tensor into two smaller line segments: [2− 20] and
[25− 51], which have different lengths (i.e., 18 and 26) but the
same number of nonzero elements, thus perfectly splitting the
workload.

Once the linearized sparse tensor is divided into multiple
line segments, ALTO identifies the basis mode intervals (co-
ordinate ranges) of the multi-dimensional subspaces that cor-
respond to these segments. For example, the line segments
[2− 20] and [25− 51] correspond to three-dimensional sub-
spaces bounded by the mode intervals {[0− 3], [0− 3], [0− 1]}
and {[1− 3], [2− 6], [0− 1]}, respectively. While the derived
multi-dimensional subspaces of the line segments may overlap,
as highlighted in yellow in Fig. 7, each nonzero element is
assigned to exactly one line segment. That is, ALTO imposes
a partitioning on a given linearized tensor that generates a
disjoint set of non-overlapping and balanced line segments,
but it does not guarantee that such a partitioning will divide

Algorithm 4: Parallel Mode-1 MTTKRP-ALTO Algo-

rithm. ALTO Automatically Uses Either or

Tensor Traversal, Based on the Reuse of
Output Fibers, to Efficiently Resolve Update Conflicts.

the multi-dimensional space of the tensor into non-overlapping
subspaces. In contrast, the prior compressed formats split the
multi-dimensional space into non-overlapping (yet highly im-
balanced) regions, namely, tensor slices and fibers in CSF-based
formats and multi-dimensional blocks in block-based formats
(e.g., HiCOO).

Formally, a set of L line segments partitions an ALTO ten-
sor X , which encodes N -dimensional sparse data, such that
X = X1 ∪ X2 · · · ∪ XL andXi ∩ Xj = φ∀i and j, where i 	= j.
Each line segment X l is an ordered set of nonzero elements that
are bounded in an N -dimensional space by a set of N closed
mode intervals Tl = {[T s

l,1, T
e
l,1], [T

s
l,2, T

e
l,2], · · · [T s

l,N , T e
l,N ]},

where each mode intervalTl,n is delineated by a startT s
l,n and an

end T e
l,n. The intersection of two mode interval sets represents

the subspace overlap between their corresponding line segments
(partitions), as highlighted in yellow in Fig. 7. This overlap
information is used to more efficiently resolve conflicts between
partitions, as described in Section IV-B.

B. Adaptive Conflict Resolution

Because processing the nonzero elements of a tensor in par-
allel (e.g., line 1 in Algorithm 3) can result in write conflicts
across threads (e.g., line 3 in Algorithm 3), we devise an adaptive
parallel algorithm to handle these conflicts by exploiting the
inherent data reuse of target tensors. Our adaptive algorithm
chooses between 1) recursively traversing the tensor to maxi-
mize the reuse of both the input and output fibers, at the cost
of global parallel reduction, or 2) traversing the tensor elements
in output-oriented ordering, and only synchronizing at partition
boundaries.
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Fig. 8. Recursive vs. output-oriented traversal of the example tensor in Fig. 4,
where mode-1 is the target/output mode. The coordinates of each nonzero (mode
indices) are extracted from its line position (linearized index) as detailed in Fig. 6.

Algorithm 4 describes the proposed parallel execution scheme
using a representative MTTKRP operation that works on a
sparse tensor stored in the ALTO format. After ALTO imposes
a partitioning on a sparse tensor, as detailed in Section IV-A,
each partition can be assigned to a different thread. To resolve
the update/write conflicts that may happen during parallel sparse
tensor computations, ALTO uses an adaptive conflict resolution
approach that automatically selects the appropriate tensor traver-
sal and synchronization technique (highlighted by the different
gray backgrounds) based on the reuse of the target fibers. This
metric represents the average number of nonzero elements per
fiber (i.e., the generalization of a matrix row or column) and it is
computed in constant time by simply dividing the total number
of nonzero elements by the number of fibers along the target
mode.

When a sparse tensor operation exhibits high fiber reuse,
ALTO recursively traverses the tensor (by accessing the nonzero
elements in an increasing order of their linearized index or line
position as illustrated in Fig. 8) and it uses a limited amount
of temporary (local) storage to capture the local updates of
different partitions (line 6). Next, ALTO merges the conflicting
global updates (lines 14–18) using an efficient pull-based par-
allel reduction, where the final results are computed by pulling
the partial results from the ALTO partitions. When computing
the factor matrix of the target mode (e.g., mode-1), such a
recursive tensor traversal 1) increases the likelihood that both
input (mode-2/3) and output (mode-1) fibers remain in fast
memories, and 2) reduces the size of temporary storage (partial
copy of mode-1 factor matrix) needed for each partition, which
in turn decreases the overhead of the pull-based reduction.
ALTO considers the fiber reuse large enough to use local

staging memory for conflict resolution, if the average number of
nonzero elements per fiber is more than the maximum cost of us-
ing this two-stage (buffered) accumulation process, which con-
sists of initialization (omitted for brevity), local accumulation
(line 6 in Algorithm 4), and global accumulation (lines 14–18).
In the worst (no reuse) case, the buffered accumulation cost is
four memory operations (two read and two write operations). As
explained in Section IV-A, each line segment X l is bounded in
an N -dimensional space by a set of N closed mode intervals
Tl, which is computed during the partitioning of an ALTO
tensor; thus, the size of the temporary storage accessed during
the accumulation of X l’s updates along a mode n is directly
determined by the mode interval [T s

l,n, T
e
l,n] (see lines 6 and 15).

Algorithm 5: Parallel Mode-1 Φ-ALTO Kernel. ALTO Per-

forms Either or Tensor Traver-
sal, Based on Fiber Reuse, to Efficiently Resolve Update
Conflicts. In Addition, it Determines Whether to Reuse or
Recompute Intermediate Results.

When the target tensor computations suffer from limited
fiber reuse, ALTO uses output-oriented tensor traversal, where
the nonzero elements are accessed in an increasing order of
their target/output mode (e.g. mode-1 as depicted in Fig. 8).
That way, the data reuse of output fibers is fully captured and
synchronization across threads can be avoided. Specifically,
ALTO needs to resolve the conflicting updates across its line
segments (partitions) using direct atomic operations (line 8)
only if the output fiber is at the boundary between different
partitions/threads. This output-oriented traversal resembles the
CSF-based tree traversal (see Fig. 3(c)); however, in contrast to
CSF, ALTO uses a fine-grained compact index (line position) to
encode nonzero coordinates instead of a coarse-grained index
tree, which requires a single tensor copy (instead of one copy
per mode) and allows perfect load balancing during parallel
execution. In addition, our output-oriented tensor traversal is
only used when fiber reuse is limited; otherwise, the recursive
traversal method is employed because of its superior data locality
and parallel performance, thanks to reusing both input and output
fibers as well as amortizing the overhead of synchronization
operations (pull-based reduction).

C. Adaptive Memory Management

In many tensor decomposition algorithms, such as CP-APR,
the intermediate results of tensor kernels are typically stored
and then reused during the iterative optimization loop (as shown
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in Algorithm 2). However, storing these important calculations
can substantially increase memory traffic and require prohibitive
amount of memory, especially for large tensors and high decom-
position ranks. Hence, in contrast to the traditional algorithm that
pre-computes and reuses the intermediate values (ALTO-PRE),
we introduce an ALTO-based algorithm variant that recomputes
these values on-the-fly (ALTO-OTF). Moreover, we propose
a heuristic to dynamically decide whether to reuse or recom-
pute the intermediate results of tensor kernels based on the
characteristics of the target data sets and tensor computations.
It is important to note that such pre-computation is different
from prior memoization approaches [37], [38], which use a
non-trivial decision making process to reduce computations by
reformulating tensor operations and reusing intermediate results
across modes. In contrast, ALTO-PRE uses easily calculable
metrics to decide whether or not to reuse intermediate results
within a mode, and it performs the same tensor operations as
ALTO-OTF.

To demonstrate our adaptive memory management technique,
Algorithm 5 shows how the model update (Φ) kernel in CP-APR
(Line 8 from Algorithm 2) is parallelized using the ALTO
format. The Π matrix from Line 6 in Algorithm 2 calculates a
dense matrix for a given mode n that is the Khatri-Rao product
(KRP) between all factor matrices excluding the mode-n factor
matrix. However, not every row of Π is required for a sparse
tensor but only rows that correspond to nonzero elements are
necessary and actually calculated, leading to a Π ∈ RM×R

matrix, where M andR are the number of nonzero elements and
the decomposition rank, respectively. In Algorithm 5, if we select
to use pre-computed Π, the kernel reads in the Π matrix row
corresponding to the nonzero element x from memory (Line 7);
otherwise, it computes the required KRP from the factor matrices
(Line 9) using the delineariezd coordinates. Pre-computing the
Π matrix is simple; in line 6 of Algorithm 2 each nonzero
element can calculate its Khatri-Rao product in parallel, using
the equation from Line 9 in Algorithm 5.

Next, for each nonzero, the corresponding KRP row is used
to update the Φ matrix, and the conflicting updates are re-
solved using our adaptive conflict resolution as detailed in
Section IV-B. Specifically, if there is high fiber reuse, recur-
sive tensor traversal is conducted and the update is made to
the temporary scratchpad memory Temp (Line 11), which is
later reduced (Lines 19 to 23) to decrease memory contention;
otherwise, output-oriented traversal is used to avoid synchro-
nization and atomic operations are utilized to update the Φ
matrix (Line 13) only at the boundaries between different ALTO
partitions/threads.
ALTO employs a simple heuristic for determining which

algorithm variant (ALTO-PRE or ALTO-OTF) to use based on
the fast memory size of hardware architectures as well as the
fiber reuse and size of factor matrices of sparse tensors. Similar
to our conflict resolution heuristic (illustrated in Section IV-B),
we use low fiber reuse to infer that on-the-fly computation of
KRP is expensive, due to the cost of fetching data from memory.
Hence, ALTO decides to use pre-computation (ALTO-PRE)
when sparse tensors suffer from low fiber reuse and the size of
their factor matrices is substantially larger than the fast memory

size. Otherwise, the on-the-fly algorithm variant (ALTO-OTF)
is used because of its superior data locality and lower memory
consumption.

V. EVALUATION

We evaluate ALTO-based tensor algorithms against the state-
of-the-art sparse tensor libraries and representations in terms
of parallel performance, tensor storage, and format generation
cost. We conduct a thorough study of key tensor decomposition
operations (Section II-B) and demonstrate the performance char-
acteristics across the third and fourth generation of Intel Xeon
Scalable processors, codenamed Ice Lake (ICX) and Sapphire
Rapids (SPR), respectively.

A. Experimental Setup

1) Platform: The experiments were conducted on an In-
tel Xeon Platinum 8360Y CPU with Ice Lake (ICX) micro-
architecture, and an Intel Xeon Platinum 8470 CPU with Sap-
phire Rapids (SPR) micro-architecture. The ICX system has 256
GiB main memory and it consists of two sockets, each with
a 54 MiB L3 cache and 36 physical cores running at a fixed
frequency of 2.4 GHz for accurate measurements. The SPR
system also comprises two sockets with 52 physical cores each,
and its frequency was fixed to 2.4 GHz. All cores within a socket
share a 105 MiB L3 cache and the overall main memory in the
SPR server is 1 TB. The experiments use all hardware threads
(72 and 104, respectively) on the target platforms. Both servers
run AlmaLinux 8.8 Linux distribution and they are configured
to enable “Transparent Huge Pages” and to support two and four
NUMA domains per socket on ICX and SPR, respectively.

The code is built using Intel C/C++ compiler (v2021.6.0)
with the optimization flags-O3-qopt-zmm-usage=high-
xHost to fully utilize vector units. For performance counter
measurements and thread pinning, we use the LIKWID tool
suite v5.3 [44].

2) Datasets: The experiments consider a gamut of real-world
tensor data sets with various characteristics. These tensors are
often used in related works and they are publicly available in the
FROSTT [9] and HaTen2 [45] repositories. Table I shows the
detailed features of the target tensors, ordered by size, in terms of
dimensions, number of nonzero elements (#NNZs), and density.
Additionally, the tensors are classified based on the average reuse
of their fibers into high, medium, or limited reuse. We consider a
given mode to have high reuse, if its fibers are reused more than
eight times on average; when the fibers are reused between five to
eight times, they have medium reuse; otherwise, the fibers suffer
from limited reuse. Since TD operations access fibers along all
modes, a tensor with at least one mode of limited/medium reuse
is considered to have an overall limited/medium fiber reuse. In
the evaluation, we use all tensors and non-negative count tensors
for CP-ALS and CP-APR experiments, respectively.

3) Configurations: We evaluate the proposedALTO format,2

compared to the mode-agnostic COO and HiCOO formats [15],
[22] as well as the mode-specific CSF formats [20], [25], [38].

2Available at: https://github.com/IntelLabs/ALTO
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TABLE I
CHARACTERISTICS OF THE TARGET SPARSE TENSOR DATA SETS

Specifically, we use the latest code of the state-of-the-art sparse
tensor libraries for CPUs, namely, ParTI,3 SPLATT,4 and STeF5

for normally distributed data and SparTen6 for non-negative
count data. On the ICX and SPR systems, we evaluate the
target data sets that can fit in memory for all tensor libraries.
We report the best-achieved performance across the different
configurations of the COO format; that is, with or without thread
privatization (which keeps local copies of the output factor
matrix). For the HiCOO format, its performance and storage are
highly sensitive to the block and superblock (SB) sizes, which
benefit from tuning. Since the current HiCOO implementation
does not auto-tune these parameters, we use a block size of 128
(27) and two superblock sizes of 210 (“HiCOO-SB10”) and 214

(“HiCOO-SB14”) according to prior work [16]. We evaluate two
variants of the mode-specific formats: CSF and CSF with tensor
tilling (“CSF-tile”), both of which use N representations for
an order-N sparse tensor to achieve the best performance. For
STeF, we use its data movement model to decide which results to
memoize and reuse between modes based on the cache size. We
report the best performance of STeF across the different cache
configurations, which was achieved when setting the cache size
to the size of L3 cache on the target ICX and SPR CPUs.

Similar to previous studies [17], [20], [25], the experiments
use double-precision arithmetic and 64-bit (native word) inte-
gers. To compute the CP-APR model for non-negative count
data, we use 32-bit integers to represent the input tensor values.
While the target data sets require a linearized index of size
between 32 and 80 bits, we configuredALTO to select the size of
its linearized index to be multiples of the native word size (i.e.,
64 and 128 bits) for simplicity. We use a decomposition rank

3Available at: https://github.com/hpcgarage/ParTI
4Available at: https://github.com/ShadenSmith/splatt
5Available at: https://github.com/HPCRL/STeF
6Available at: https://github.com/sandialabs/sparten

Fig. 9. The performance of MTTKRP using ALTO in comparison with an
oracle selecting the best state-of-the-art variant for each implementation category
for all tensors used in this paper.

R = 16 for all experiments and set the maximum number of
inner iterations (lmax) in CP-APR to 10, as per prior work [14].

B. CP-ALS Performance

We compare our ALTO-based CP-ALS algorithm to a vari-
ety of CP-ALS implementations in the state-of-the-art libraries
SPLATT, ParTI, and STeF for each tensor dataset. The im-
plementations can be grouped into three categories: 1) mode-
agnostic or general formats (COO, HiCOO-SB10, and HiCOO-
SB14), which use one tensor copy, 2) mode-specific formats
(CSF and CSF-tile), which keep multiple tensor copies (one per
mode) for best performance, and 3) memoization techniques
(STeF), which retain intermediate results across modes along
with the tensor representation to reduce computations.

Figs. 9 and 10 show that ALTO outperforms the best mode-
agnostic and mode-specific formats as well as memoization
schemes in terms of the speedup of tensor operations (MT-
TKRP on all modes). In addition, the results indicate that
ALTO can effectively reduce synchronization and utilize the
larger caches on SPR (relative to ICX) to further improve the
performance compared to the state-of-the-art libraries. Specifi-
cally, ALTO achieves 15.7× and 25.3× geometric mean (GE-
OMEAN) speedup on the ICX and SPR CPUs, respectively,
compared to the best mode-agnostic formats. Although the
mode-specific (CSF-based) formats require substantial storage
to keep multiple tensor copies, ALTO still delivers 3.4× and
5.1× geometric mean speedup on the ICX and SPR servers,
respectively. While memoization methods reduce computations,
it comes at the cost of increasing memory traffic and consuming
substantial amount of extra memory, which significantly limit
their scalability. As a result, ALTO realizes 4.9× and 8.4×
geometric mean speedup over STeF on the ICX and SPR CPUs,
respectively, while effectively handling all large-scale tensors
that cause out-of-memory errors with STeF. Furthermore,ALTO
shows scalable performance for the sparse tensors with high data
reuse. Compared to its sequential version, ALTO achieves up to
60× and 80× speedup on the 72-core ICX and 104-core SPR
CPUs, respectively. For the other tensors (with limited/medium
data reuse), ALTO is bounded by memory bandwidth, and as
a result it has an average speedup of around 20× and 30× on
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Fig. 10. The overall parallel speedup of MTTKRP (all modes) using the different sparse tensor implementations compared to COO. The sparse tensors are sorted
in increasing order of their size (number of nonzero elements).

ICX and SPR, respectively. Conversely, the performance of the
previous approaches is highly variable across data sets as it
depends on the shape of sparse tensors as well as the spatial
distribution of their nonzero elements rather than their inherent
data reuse [30]. Specifically, the tree-based (CSF, CSF-tile, and
STeF) and block-based (HiCOO-SB10/SB14) methods depend
on grouping the nonzero elements into tensor slices and blocks
for effective compression. As illustrated in Fig. 1, finding bal-
anced clusters of nonzero elements in sparse tensors is highly
unlikely. Thus, the prior tree- and block-based techniques suffer
from workload imbalance and inefficient compression, which in
turn lead to limited parallel performance when scaling to a large
number of cores.

C. CP-APR Performance

We compare our ALTO-based CP-APR algorithm to the
state-of-the-art SparTen library for non-negative count tensors.
SparTen uses a variant of the COO format that keeps indexing as
well as scheduling arrays for every tensor mode, which requires
more than double the storage of COO [26]. In addition, SparTen
computes CP-APR using the traditional method that stores and
then reuses intermediate results rather than recomputing them.
Hence, for large sparse tensors, such as REDDIT, SparTen fails to
compute the CP-APR model on the ICX platform, even with 256

GiB of memory. In contrast, ALTO supports both recomputing
(ALTO-OTF) or storing and then reusing (ALTO-PRE) inter-
mediate results, which enables our CP-APR implementation to
handle large-scale tensors.

Fig. 11 shows the parallel performance of ALTO-based CP-
APR compared to SparTen on the ICX and SPR CPUs. As the
vast majority of time (more than 99 % ) is spent in the model up-
date (Φ) kernel (see Algorithm 5), the performance is evaluated
based on the computation time of this tensor kernel. Note that
ALTO-PRE and ALTO-OTF in Fig. 11 represent the speedup
achieved when the respective algorithms are used for all input
tensors, and ALTO represents the speedup achieved when our
adaptive memory management heuristic (Section IV-C) is used
to choose between the two algorithms to maximize performance.
Like CP-ALS, ALTO-based CP-APR realizes more scalable
performance for tensors with high fiber reuse, and it further
improves the performance on SPR relative to ICX by reducing
synchronization and leveraging the larger fast memories on
SPR. Therefore, ALTO delivers substantial performance gains
compared to the SparTen library, achieving 9.2× and 22.5×
speedup on the ICX and SPR CPUs, respectively. Furthermore,
as the tensor size and data reuse increase, our on-the-fly (ALTO-
OTF) algorithmic variant not only outperforms the traditional
pre-computing approach (ALTO-PRE) but also realizes better
scalability, even when the intermediate results can fit in memory.
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Fig. 11. The achieved parallel speedup of the model update in CP-APR. The speedup is reported compared to the state-of-the-art SparTen library. ALTO chooses
between ALTO-PRE and ALTO-OTF using our adaptive memory management heuristic (Section IV-C) to maximize performance. The sparse tensors are sorted
in increasing order of their size (number of nonzero elements).

D. Performance Characterization

Unlike prior compressed tensor formats, the parallel perfor-
mance of ALTO depends on the inherent data reuse of sparse
tensors rather than the spatial distribution of their nonzero ele-
ments. To better understand the performance characteristics of
ALTO, we created a Roofline model [46] for the SPR platform
and collected performance counters across a set of representative
parallel runs. For the Roofline model, an upper performance
limit P is given by P = min(Ppeak, Bpeak ×OI), where Ppeak

is the peak performance, Bpeak is the peak memory bandwidth,
and OI is the operational intensity (i.e., the ratio of floating-
point operations per byte). Moreover, we enhance our Roofline
model to consider the cache bandwidth. The L2/L3 cache and
main memory bandwidth are measured using likwid-bench
from the Likwid tool suite. Since L1 bandwidth measurements
are error-prone, we use the theoretical L1 bandwidth of two
cache lines per cycle per core. The peak performance, Ppeak,
is calculated based on the ability of the cores to execute two
fused multiply-add (FMA) instructions on eight-element double
precision vector registers (due to the availability of AVX-512)
per cycle.

Since prior work detailed the performance analysis of the
CP-ALS algorithm and its MTTKRP kernel [30], we focus
on characterizing the performance of CP-APR in this study.
Fig. 12 shows the performance of the parallel Φ-ALTO ker-
nel (Algorithm 5) for several representative tensors. To quan-
tify the operational intensity, we calculated the required data
movement from/to main memory as lavgmN(3R+RN + 1) for
on-the-fly computation (ALTO-OTF) and lavgmN(3R+ 1) for
pre-computation (ALTO-PRE), where lavg is the average number

Fig. 12. The parallel performance of the model update (Φ) in the CP-APR
algorithm using ALTO on a 104-core SPR system. Orange diamonds indicate
on-the-fly computation (ALTO-OTF), while green diamonds represent pre-
computation (ALTO-PRE).

of inner iterations, m is the number of nonzero elements, N is
the number of modes, and R is the decomposition rank. We
obtain the number of FLOPs required for the model update (Φ)
by measuring hardware performance counters using likwid-
perfctr from the Likwid tool suite. The results indicate that
although such memory-intensive computations suffer from low
operational intensity, ALTO can still exceed the peak main
memory bandwidth by exploiting the inherent data reuse and
by efficiently resolving update conflicts in caches.
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Fig. 13. The tensor storage across the different formats relative to COO. The tensors are sorted in an increasing order of their size.

Specifically, the Roofline plot shows the performance of
ALTO-OTF and ALTO-PRE for two tensors with high data
reuse (ENRON and REDDIT) and two tensor with limited data
reuse (LANL and DARPA). For ENRON, we observe that ALTO
provides data access in a manner that allows the computation
to be handled mainly from L1 and L2 cache. However, as a
medium-sized tensor with high data reuse, it does not benefit
from pre-computation and shows superior performance for the
on-the-fly algorithm. The REDDIT tensor, despite having good
fiber reuse, is highly sparse and it is the largest tensor in our
set of experiments (with 4.6 billion nonzero elements). This
increases the memory pressure and effectively leads to more data
accesses from slower memory, which reduces the performance
gap between ALTO-OTF and ALTO-PRE relative to the ENRON

tensor.
While LBNL is extremely sparse and has limited data reuse,

it is also the smallest of all tensors in the experiments. This
allows ALTO to handle most of the data from the caches and to
benefit from on-the-fly computation; however, the performance
of LBNL is lower than denser tensors such as ENRON. Finally,
the DARPA tensor, even though being similar in size to ENRON,
has very limited fiber reuse (along mode-3). This leads to a
significantly lower performance compared to any of the other
tensors, yet the hybrid (recursive and output-oriented) tensor
traversal of ALTO still captures some data reuse from caches
and allows both ALTO-PRE and ALTO-OTF to realize supe-
rior performance, exceeding the main memory bandwidth. For
DARPA we can observe a slightly better performance when using
pre-computation. Hence, the performance analysis indicates that
ALTO-PRE is especially relevant for large tensors that addition-
ally show hyper-sparsity and limited data reuse.

E. Memory Storage

Fig. 13 details the relative storage of the different sparse tensor
formats compared to COO. Due to its efficient linearization, as
detailed in Section III-A, ALTO requires less storage than the
CSF, CSF-tile and raw (COO) formats for all investigated ten-
sors. The tree-based, mode-specific formats (CSF and CSF-tile)
consume significantly more storage space than COO because
they require multiple tensor representations for the different

mode orientations. While it can be beneficial for computa-
tion, imposing a tilling over the tensors (as done by CSF-tile)
increases memory storage. The memory consumption of the
block-based formats (HiCOO-SB10/SB14) highly depends not
only on the spatial distribution of the nonzero elements, but also
on the block and superblock sizes. Compared to the COO format,
HiCOO can reduce the memory footprint of tensors when the
resulting blocks are relatively dense, i.e., the number of nonzero
elements per block is high. However, for hyper-sparse tensors
such as DELI, NELL-1, AMAZON, and REDDIT, HiCOO requires
more storage by up to a factor of 2.6. While the tensor format of
STeF (“STeF (tensor)” in Fig. 13) only requires storage on-par
or even smaller than ALTO, the additional memory needed
for memoization leads to a higher memory footprint (“STeF”)
compared to ALTO in all cases.

F. Format Generation Cost

Fig. 14 details the generation cost of the different sparse
tensor representations from a sparse tensor in the COO format
on the SPR platform. Instead of processing nonzero elements in
a multi-dimensional form as HiCOO and CSF, ALTO works
on a linearized representation that needs substantially lower
number of comparison operations to sort nonzero elements.
Furthermore, the HiCOO formats require additional clustering
of elements based on their multi-dimensional coordinates, as
well as scheduling of the blocks and superblocks for avoiding
conflicts, while STeF requires additional sorting of the nonzero
elements along a specific mode order for best performance.
Thus, ALTO achieves substantial geometric mean speedup for
format generation compared to HiCOO-SB10 (50×), HiCOO-
SB14 (75×), CSF-tile (10×), CSF (6×), and STeF (44×).

VI. RELATED WORK

Our mode-agnostic ALTO format was motivated by the lin-
earized coordinate (LCO) format [39], which also flattens sparse
tensors but in a mode-specific way, i.e., along a given mode
orientation. Hence, LCO requires either multiple tensor copies
or permuting tensors for efficient computation. Additionally, the
authors limit their focus to sequential algorithms, and it is not
clear how LCO can be used to efficiently execute parallel sparse
tensor computations.
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Fig. 14. The format construction cost on SPR in seconds. The sparse tensors are sorted in an increasing order of their size.

Researchers proposed variants [21], [26] of the COO format
to reduce the synchronization overhead using mode-specific
scheduling arrays. The state-of-the-art SparTen library [22]
uses a COO variant [26] to accelerate the decomposition of
non-negative count tensors across different hardware architec-
tures. However, these COO variants adversely affect the input
data locality and lead to random access of the nonzero ele-
ments [26], especially for sparse tensors with high data reuse.
Moreover, keeping fine-grained scheduling information for all
tensor modes can more than double the memory consumption,
compared to the COO format [26].

The popular SPLATT library [20] leverages the CSF for-
mat [20], [25] to decompose sparse tensors on multi-core CPUs.
However, this mode-specific compressed format requires multi-
ple tensor copies for best performance. In addition, CSF packs
the nonzero elements into coarse-grained tensor slices and fibers,
which limits its scalability on massively parallel architectures.
To improve the performance on GPUs, recent CSF-based for-
mats [28], [29] expose more balanced and fine-grained paral-
lelism but at the expense of substantial synchronization over-
heads and expensive preprocessing and format generation costs.

Alternatively, the ParTI library uses the mode-agnostic, block-
based HiCOO format [15] to decompose sparse tensors using
only one tensor copy. Yet, HiCOO is highly sensitive to the char-
acteristics of sparse tensors as well as the block size. Due to the
irregular (skewed) data distributions in sparse tensors, the num-
ber of nonzero elements per block varies widely across HiCOO
blocks, even after expensive mode-specific tensor permutations
which in practice further increase workload imbalance [27]. As
a result, when tensors are highly sparse, HiCOO can consume
more storage than the COO format [15]. Moreover, using small
data types for indexing nonzero elements within a block can end
up under-utilizing the compute units and memory bandwidth in
modern parallel architectures [47], [48], which are optimized
for wide memory transactions [49].

STeF [38] leverages the mode-specific CSF format to ac-
celerate all-modes MTTKRP by memoization of partial MT-
TKRP results. Nevertheless, the additional space required for
memoization can be more than double the memory storage of
the sparse tensor and factor matrices, which limits STeF appli-
cability to small- and medium-scale tensors [38]. SpTFS [16]
utilizes machine learning [50], [51] to predict the best of COO,

HiCOO, and CSF formats to compute MTTKRP for a given
sparse tensor. FLYCOO [52], [53] extends the COO format to
memory-constrained platforms (such as FPGAs) by processing
a tensor into small equal-sized shards. However, FLYCOO re-
quires dynamic mode-specific tensor remapping/reordering and
it needs more storage than COO to keep sharding information
for every mode.

VII. CONCLUSION

To overcome the limitations of existing sparse tensor formats,
this work introduced ALTO, a compact mode-agnostic format
to efficiently encode higher-order tensors of irregular shapes
and data distributions. Thanks to their adaptive tensor traversal
and superior workload balance and data reuse, our ALTO-based
parallel algorithms for decomposing normally distributed data
(CP-ALS) and non-negative count data (CP-APR) delivered
an order-of-magnitude speedup over the best mode-agnostic
formats while requiring ∼ 50% of COO storage. Moreover,
ALTO achieved 5.1× and 8.4× geometric mean speedup over
the best mode-specific and memoization methods, respectively,
while needing between 14% to 25% of their overall storage.
Our future work will investigate distributed-memory platforms
and other common sparse tensor algorithms, besides tensor
decomposition.
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