J Sign Process Syst (2011) 62:65-76
DOI 10.1007/s11265-008-0298-z

Real-Time Adaptive Background Modeling for Multicore

Embedded Systems

Senyo Apewokin - Brian Valentine - Jee Choi -
Linda Wills - Scott Wills

Received: 13 April 2008 /Revised: 12 September 2008 / Accepted: 9 October 2008 /Published online: 5 November 2008
© 2008 Springer Science + Business Media, LLC. Manufactured in the United States

Abstract Current trends in microprocessor design integrate
several autonomous processing cores onto the same die.
These multicore architectures are particularly well-suited
for computer vision applications, where it is typical to
perform the same set of operations repeatedly over large
datasets. These memory- and computation-intensive appli-
cations can reap tremendous performance and accuracy
benefits from concurrent execution on multi-core process-
ors. However, cost-sensitive embedded platforms place
real-time performance and efficiency demands on techni-
ques to accomplish this task. Furthermore, parallelization
and partitioning techniques that allow the application to
fully leverage the processing capabilities of each computing
core are required for multi-core embedded vision systems.
In this paper, we evaluate background modeling techniques
on a multicore embedded platform, since this process
dominates the execution and storage costs of common
video analysis workloads. We introduce a new adaptive
backgrounding technique, multimodal mean, which balances
accuracy, performance, and efficiency to meet embedded
system requirements. Our evaluation compares several
pixel-level background modeling techniques in terms of
their computation and storage requirements, and functional
accuracy for three representative video sequences, across a
range of processing and parallelization configurations. We
show that the multimodal mean algorithm delivers compa-
rable accuracy of the best alternative (Mixture of Gaussians)
with a 3.4x improvement in execution time and a 50%
reduction in required storage for optimal block processing on
each core. In our analysis of several processing and

S. Apewokin (D<) - B. Valentine - J. Choi - L. Wills - S. Wills
Georgia Institute of Technology,

Atlanta, GA, USA

e-mail: senyo@ece.gatech.edu

parallelization configurations, we show how this algorithm
can be optimized for embedded multicore performance,
resulting in a 25% performance improvement over the
baseline processing method.

Keywords Background modeling - Embedded computer
vision - Multicore

1 Introduction

Background/foreground segmentation is an important but
costly component of many computer vision applications,
particularly in video surveillance and analysis. Several
techniques that utilize robust background modeling algo-
rithms to identify salient foreground objects have been
developed. Typically, the current video frame is compared
against a background model representing elements of the
scene that are stationary or changing in uninteresting ways
(such as rippling water or swaying branches). Foreground is
determined by locating significant differences between the
current frame and the background model.

The availability of low-cost, portable imagers and new
embedded computing platforms makes video surveillance
and analysis possible in new environments. However,
situations in which a portable, embedded video surveillance
system is most useful (e.g., monitoring outdoor and/or busy
scenes) also pose the greatest challenges. Real-world scenes
are characterized by changing illumination and shadows,
multimodal features (such as rippling waves and rustling
leaves), and frequent, multilevel occlusions. To extract
foreground in these dynamic visual environments, adaptive
multimodal background models are frequently used that
maintain historical scene information to improve accuracy.
These methods are problematic in real-time embedded

@ Springer

66

J Sign Process Syst (2011) 62:65-76

environments where limited computation and storage restrict
the amount of historical data that can be processed and stored.

Embedded multicore processors present an ideal plat-
form for real-time performance of computer vision appli-
cations. These workloads require high bandwidth and
computational capacity, therefore executing tasks concur-
rently on multiple computing cores can yield significant
speedup. Due to embedded constraints, however, available
memory storage is limited on each embedded computing
core. As a result, the workload must be partitioned into
blocks for execution and several of these iterations may be
necessary to complete the processing of just one frame.
Simply dividing existing algorithms into parallel threads to
execute on each core may not yield optimum performance
because of the overhead of transferring multiple blocks.

In this paper, we examine several representative pixel-
based background modeling techniques across a range of
processing and partitioning arrangements of a multicore
embedded platform. We focus on background modeling
algorithms because background/foreground segmentation
and background model maintenance typically account for
the majority of execution and storage costs of video
processing workloads [7]. The backgrounding techniques
are evaluated in terms of computational cost, storage, and
extracted foreground accuracy. The techniques range from
simple, computationally inexpensive methods, such as
frame differencing and mean/median temporal filters [8],
to more complex methods, including the multimodal
Mixture of Gaussians (MoG) [14, 15] approach. In this
comparative evaluation, we introduce a new approach,
multimodal mean (MM), for real-time background model-
ing [21]. We show that this technique achieves accuracy
comparable to multimodal MoG techniques but with a 3.4x
improvement in execution time and a 50% reduction in
required storage for optimal block processing on each core.

In our comparative evaluation, we explore how different
processing and partitioning arrangements affect each tech-
nique on a multicore processor. We first measure the memory
storage costs and performance (execution time) for each
algorithm using a simple partitioning scheme. With this
approach the current frame is partitioned into equal data
workloads for processing in the computing cores. In cases
where the entire frame cannot be processed in one pass, several
iterations may be required to process the entire image. We then
explore a tiled partitioning arrangement in which consecutive
images are processed in stacks of smaller image blocks on
each core. The advantage of this approach is that it minimizes
data transfers of the shared background model between main
memory and each processing core. We evaluate different
configurations of this tiled arrangement and their impact on
processing time and storage costs for each algorithm.

Our results demonstrate that our proposed MM algo-
rithm achieves competitive real-time foreground accuracy

@ Springer

under a variety of outdoor and indoor conditions on a
multicore embedded platform under the tiled processing
approach. This configuration achieves a 25% increase in
MM algorithm performance over the single buffered
baseline approach.

For our testbed, we employ the Cell Broadband Engine
(B.E.) on a Sony Playstation 3 running Yellow Dog Linux
5.0. The Cell B.E. is a heterogeneous multicore chip made
of a main processor and eight co-processors connected with
a high-bandwidth bus. The co-processors are designed for
high-performance data-streaming and data-intensive com-
putation and the entire system is well-suited for embedded
image processing applications.

The rest of this paper is organized as follows:

In Section 2, we present the motivation for improving the
background modeling component of computer vision appli-
cations to improve real-time performance. We also discuss
the enormous potential for real-time background modeling
on multicore systems and present a review of current
background modeling techniques. In Section 3, we introduce
a new algorithm, called multimodal mean, and evaluate it
against existing techniques on a multicore system. In
Section 4, we show different partitioning techniques to
optimize the performance of multimodal mean on a
multicore platform. Section 5 concludes the paper.

2 Motivation and Related Work

Current and emerging microprocessor designs integrate
several autonomous processing cores onto the same die
[1]. Industry efforts, such as the Cell Broadband Engine
from Sony, Toshiba, and IBM,[2] Niagara from Sun [3],
and Montecito from Intel [4], as well as university-led
designs, such as MIT’s RAW [5] and the University of
Texas’s Trips [6] are representative multicore architectures.

Multicore architectures provide tremendous potential to
achieve real-time performance of computer vision applica-
tions, where the same sets of operations are typically
applied repeatedly over large datasets. However, on
embedded multicore systems, power, size and other
constraints limit the availability of hardware resources.
Optimizing algorithms to achieve real-time performance on
such systems, while observing embedded constraints,
becomes a challenging but necessary task.

2.1 Computer Vision Workload Analysis

Chen et al. [7] present a comprehensive analysis of computer
vision workloads. They chose video surveillance as a
representative case study of a complex computer vision
application and profile it with the Intel VTune Performance
Analyzer. Their results show that foreground/background

J Sign Process Syst (2011) 62:65-76

67

segmentation is the most expensive module in the workload
and accounts for up to 95% of the execution time. According
to their analysis, their background modeling algorithm
consumes 1 billion micro-instructions for a frame size of
720x576 pixels and takes 0.4 s to execute on a 3.2 GHz Intel
Pentium 4 processor. Further analysis of the module shows
that about 60% of the background/foreground segmentation
time is used for updating and maintaining the background
model. This shows that the choices made for pixel
representations and the associated learning/adaptation
techniques greatly influence both performance and storage
costs of the model.

Since a critical component of computer vision applica-
tions is background modeling, speeding up this component
will greatly improve the real-time performance capabilities
of the overall system in accordance with Amdahl’s law. We
approach this task from two directions:

1. optimizing background modeling algorithms for em-
bedded systems, and

2. optimizing processing and partitioning of background
modeling data for multicore systems.

2.2 Related Background Modeling Work

A variety of techniques exists for background modeling; see
[8—10] for recent comprehensive surveys. Frame differenc-
ing compares pixels in the current video frame with
corresponding pixels in the previous frame. If the difference
between the pixels is above a given threshold, then that
pixel is identified as foreground. While computationally
inexpensive, this method is prone to the foreground
aperture problem [10] and cannot handle dynamic back-
ground elements, such as swaying tree branches.

Sliding window-based (or nonrecursive [8]) techniques
keep a record of the w most recent image frames. The
background is represented as the mean or median of the
frames in the buffer. Foreground is determined either by
determining if the current image pixel deviates by a fixed
threshold away from the background model or, if it is
within some standard deviation of the background. Al-
though less sensitive to the aperture problem, this type of
technique is more memory intensive as it requires w image
frames of storage per processed image.

Recursive techniques [8] utilize only the current frame
and parametric information accumulated from previous
frames to separate background and foreground objects.
These techniques typically employ weighted means or
approximated medians and require significantly less mem-
ory than the sliding window techniques. An approximated
median is computed in [11]. The background is initialized
by declaring the first image frame as the median. When a
new video frame is acquired, the current image pixel values

are compared with those of the approximated median pixel
values. If a pixel value is above the corresponding median
value, then that approximate median pixel value is
incremented by one, otherwise it is decremented by one.
It is assumed that the approximated median frame will
eventually converge to the actual median after a given
number of image frames are analyzed [11]. In [12] and [13]
a weighted mean is used, which takes a percentage of the
background pixel and a percentage of the current pixel to
update the background model. This percentage is governed
by a user-defined learning rate that affects how quickly
objects are assimilated into the background model.

Issues can arise with the described techniques when
there are moving background objects, rapidly changing
lighting conditions, and gradual lighting changes. The
Mixture of Gaussians (MoG) [14, 15] and Wallflower [10]
approaches are designed to better handle these situations by
storing multimodal representations of backgrounds that
contain dynamic scene elements, such as trees swaying in
the wind or rippling waves. The MoG approach maintains
multiple data values for each pixel coordinate. Each data
value is modeled as a Gaussian probability density function
(pdf) with an associated weight indicating how much
background information it contains. With each new image
frame, the current image pixel is compared against the pixel
values for that location. A match is determined based on
whether or not the current pixel falls within 2.5 standard
deviations of any of the pixel distributions in the back-
ground model.

Wallflower [10] uses a three-tiered approach to model
foreground and background. Pixel, region, and frame-level
information are obtained and analyzed. At the pixel-level, a
linear predictor is used to establish a baseline background
model. At the region-level, frame differencing, connected
component analysis and histogram backprojection are used
to create foreground regions. Multiple background models
are stored at the frame-level to handle a sharp environmen-
tal change such as a light being switched on or off.

These techniques have limitations in either foreground
extraction accuracy or real-time performance when applied to
busy or outdoor scenes in resource-constrained embedded
computing systems. Frame differencing and recursive back-
grounding methods do not handle dynamic backgrounds
well. Sliding window methods require significant memory
resources for accurate backgrounding. The MoG approach
requires significant computational resources for sorting and
computations of standard deviations, weights, and pdfs.

3 Multimodal Mean Background Modeling Technique

In this paper, we present a new backgrounding technique,
called multimodal mean (MM), that has the multimodal

@ Springer

68

J Sign Process Syst (2011) 62:65-76

modeling capabilities of MoG but at significantly reduced
storage and computational cost. A related approach by
Appiah and Hunter [16] implements multimodal back-
grounding on a single-chip FPGA using a collection of
temporal lowpass filters instead of Gaussian pdfs. A similar
background weight, match, and updating scheme as the
MoG is maintained, with simplifications to limit the amount
of floating-point calculations. In contrast to these
approaches, we use a linear parameter updating scheme as
opposed to nonlinear updates of weights and pixel values,
and we make use of information about recency of
background pixel matches. Updating the background model
information in this manner allows for efficient storage of a
pixel’s long-term history.

3.1 Algorithm

We propose a new adaptive background modeling tech-
nique, called multimodal mean, which models each back-
ground pixel as a set of average possible pixel values. In
background subtraction, each pixel /, in the current frame is
compared to each of the background pixel means to
determine whether it is within a predefined threshold of
one of them. Each pixel value is represented as a three-
component color representation, such as an RGB or HSI
vector. In the following, /,, represents the x color
component of a pixel in frame 7 (e.g., [, .q denotes the red
component of 7,). The background model for a given pixel
is a set of K mean pixel representations, called cells. Each
cell contains three mean color component values. An image
pixel I, is a background pixel if each of its color
components /,, is within a predefined threshold for that
color component E, of one the background means.

In our embedded implementation, we chose K=4 cells
and use an RGB color representation. Each background cell
B; is represented as three running sums for each color
component S;,, and a count C;, of how many times a
matching pixel value has been observed in ¢ frames. At any
given frame 7, the mean color component value is then
computed as /1;,=S;./Ciy.

More precisely, /; is a background pixel if a cell B; can
be found whose mean for each color component x matches
within E, the corresponding color component of /;:

(QVM ~ Hi1a] < E) A (Ciz1 > Trg),

where Tgg is a small threshold number of times a pixel
value can be seen and still considered to be foreground. (In
our experiments, Trg=3 and E,=30, for xe {R,G,B}.)
When a pixel /, matches a cell B;, the background model
is updated by adding each color component to the
corresponding running sum S;,, and incrementing the

@ Springer

count C;,. As the background gradually changes, for
example, due to lighting variations), the running averages
will adapt as well. In addition, to enable long-term
adaptation of the background model, all cells are periodi-
cally decimated by halving both the sum and the count
every d (the decimation rate) frames. To be precise, when 7,
matches a cell B, the cell is updated as follows:

Sivx = (Si1x +1x) /2

Ci,t = (Ci,t—l + 1)/2b)

where b=1 if t mod d=0, and 6=0, otherwise.

Decimation is used to decay long-lived background
components so that they do not permanently dominate the
model, allowing the background model to adapt to the
appearance of newer stationary objects or newly revealed
parts of the background. It also plays a secondary role in
the embedded implementation in preventing counts from
overflowing their limited storage.

When a pixel I, does not match cells at that pixel
position, it is declared foreground. In addition, a new
background cell is created to allow new scene elements to
be incorporated into the background. If there are already K
background cells, a cell is selected to be replaced based on
the cell’s overall count C;, and a recency count R;, which
measures how often the background cell’s mean matched a
pixel in a recent window of frames. A sliding window is
approximated by maintaining a pair of counts (7, s;,) in
each cell B; The first r;,, starts at 0, is incremented
whenever B; is matched, and is reset every w frames. The
second s;,, simply holds the maximum value of r;,
computed in the previous window:

{
Vip =
Tit—1 +1

{ Fit—1,
Sit =
Sit—1,
Recency R;; =ri; +s;, provides a measure of how
often a pixel matching cell B; was observed within a recent
window. The s;, component allows information to be
carried over across windows so that recency information
is not completely lost at window transitions. When a new
cell is created and added to a background model that
already has K cells, the cell to be replaced is selected from
the subset of cells seen least recently, i.e., cells whose
recency R;, < w/K. From this set, the cell with the
minimum overall count C;, is selected for replacement. If
all cells have a recency count R; >w/K (in the rare event
that all cells are observed equally often over an entire

when t mod w=20

when B; matches /; and f modw # 0

when tmodw =0

otherwise.

J Sign Process Syst (2011) 62:65-76

69

window), then the cell with lowest C;, is replaced. (In our
experiments, we chose w=32.)

3.2 Processing and Storage Costs

Pixel-level image processing algorithms typically involve a
small number of micro-operations performed over a large
number of pixels. This makes them memory-intensive as
well as compute-intensive. For example, a 720640 pixel
image in a standard RGB format requires 1.38 MB to store
the raw image for further processing. Applying a single
unary operation to each pixel in the image contributes
460,800 operations to the entire execution.

Background modeling algorithms, which are a subset of
pixel-level image processing algorithms, are characterized
by high memory requirements, large numbers of micro-
operations and little data reuse. Memory is required to store
the current frame being processed as well as the back-
ground model which typically includes representations for
each pixel in the image. For the same image in the example
above, adding a single byte field to a given pixel
representation in the background model increases the size
by 460 KB or a third the input image size.

For most systems, it will be nearly impossible to perform
the entire background/foreground segmentation of a typical
image without repeated block transfers of image data. A
multicore system allows the processing of different parts of
the image to proceed concurrently. On embedded systems,
however, limited memory decreases the processing block
size and therefore more iterations are required.

Data domain parallelization [17], where the data is
partitioned into independent pieces which are processed by
each core executing the entire algorithm, is most suitable
for background modeling workloads. This is more prefer-
able than dividing the algorithm into separate functions
(function domain parallelization [17]) because the relative-
ly few number of operations performed per-pixel does not
offset the modularization overhead. Also, there will be extra
transfer overhead encountered when moving the partially
updated background models between cores for each
processing step.

It is also noteworthy that the memory access patterns for
this workload are very predictable. It is therefore more
desirable to handle memory transfers to execution cores
directly through the application program rather than
through more generalized underlying hardware such as
caches [18].

3.3 Experiment
We evaluate a set of background modeling techniques using

two representative test sequences executing on an embed-
ded multicore platform. Each technique is compared in

terms of image quality and accuracy (false positives and
false negatives) as well as execution cost (execution time
and storage required). The evaluated techniques include:

+ frame differencing

» approximated median

* weighted mean

* sliding window median

* sliding window mean

* mixture of Gaussians (MoG)
* multimodal mean (MM)

The test suite is comprised of two long outdoor
sequences captured using an inexpensive webcam (see
Table 1). All sequences have a frame size of 720x640. The
test sequences were chosen because they contain scenarios
that present difficult challenges for background modeling
algorithms.

The “Outdoors I” scene involves a busy pedestrian
walkway outlined by trees and was taken on a sunny day.
Under those real-world conditions the background model
must deal with distracting features and uninteresting motion
resulting from waving trees and shadows.

The second outdoor scene “Outdoors 1I” was chosen for
its fluctuating illumination condition which is another key
challenge for background modeling algorithms running in
real-world environments. This video also contains the
continuous presence of foreground objects in the periphery
of the image which could result in a noisy segmentation.
Both videos were recorded at 30 frames per second (fps)
and down sampled to 1 fps for processing.

Table 2 lists the algorithm parameters used in the
experiments. Experiment parameters and thresholds were
held constant for all sequences. The MoG method incorpo-
rated K=4 Gaussians while the MM method utilized K=4
cells. The sliding window implementations use a buffer size
of four for comparable memory requirements.

Our execution platform is a Sony Playstation 3 with the
Cell B.E. multicore processor running Yellow Dog Linux
5.0. The Cell B.E. is a heterogeneous multicore processor
made up of two distinct types of processing cores: the
power processing unit (PPU) and the synergistic processing
unit (SPU). In the Playstation 3, one PPU and six SPUs are
available for application development.

The PPU is the main processor and is a fully compliant
64-bit PowerPC general-purpose processor with 32 128-bit
vector registers, 32-KB L1 instruction and data caches, and

Table 1 Test sequences.

Sequence # frames Sampled frame
Outdoors [700 453
Outdoors 11 700 453

@ Springer

70

J Sign Process Syst (2011) 62:65-76

Table 2 Algorithm parameters.

Table 3 Memory allocation.

Algorithm Parameters

Mean/median (SW)
Weighted mean
Mixture of Gaussians
(MoG)

|[Window|=4

a=0.1 for u=(1—a)>xu,—;+ax,

K=4 modes, initial weight w=0.02,
learning rate «=0.01, weight
threshold 7=0.85.

K=4, E.=30 for xe{R, G, B},
Teg=3, d=400, w=32

Multimodal mean

a 512-KB unified L2 cache. In our experiments, we use this
processor for image decoding and encoding, core synchro-
nization and other book-keeping tasks.

We use the SPUs which are designed for high-perfor-
mance data-streaming and data-intensive computation to
perform the bulk of the background modeling algorithms.
Each SPU is a 128-bit RISC processor with 128 128-bit
registers and 256 KB of local storage. The SPUs are not
cached-based and DMA is the primary method of commu-
nication between the SPUs and main memory. The
maximum size of each DMA transfer is 16 KB. The
Element Interconnect Bus (EIB), which is a very high-
speed, high bandwidth communication network, provides a
critical communication link between the powerful comput-
ing cores and main memory.

Although we perform our evaluation on a single
platform the results can be generalized across other
multicore embedded platforms. On a homogenous multi-
core chip, one of the cores will be dedicated to obtaining
the images either through a driver attached to a camera or
by decoding images retrieved from main memory. We
believe most processing cores should capably handle this
dedicated task so there is no added benefit of having the
PPU on the Cell. Also, the SPUs which are responsible for
much of the core processing have only 256 KB of local
storage. Limited on-chip memory on the image processing
cores is representative of a true embedded system. For
systems with smaller memories the advantages of the
reduced storage features of our algorithm and the benefits
of our processing and partitioning techniques will be more
pronounced.

We implemented the background modeling algorithms in
C and compiled them using gcc for the PPU and gcc-spu
for the SPU. The background model is created and
maintained by the PPU and different parts are transferred
to each SPU along with the corresponding image to
process. This arrangement is necessary because even the
least memory intensive background modeling techniques
(e.g. frame differencing) could not support the entire 720 x
640 image being processed by all the computing cores in
one pass. For the multimodal mean algorithm, the periodic

@ Springer

Algorithm Block size Image size ~ BG model size
(pixels) (KB) (KB)

Frame differencing 38,400 115.2 115.2
Approximated median 38,400 115.2 115.2
Weighted mean 12,800 38.4 153.6
Median (SW) 38,400 115.2 115.2
Mean (SW) 12,800 38.4 153.6
MoG 1,600 4.8 160
Multimodal mean 3,200 9.6 153.6

decimation and recency resets are performed by the PPU
and all other components of the algorithm are performed on
the SPU. For all the other techniques, the entire algorithm is
run on the SPU.

All images from the test sequences are in JPEG format
and these are loaded onto the hard drive before each run.
We use the independent JPEG library [19] to perform the
image encoding and decoding.

3.4 Evaluation and Results

In this discussion, block size is the portion of a given image
that is processed by a single SPU in a single iteration. In
this definition iteration represents one complete cycle of
image loading, processing, and write back. To keep the
processing balanced among cores we limit the chosen block
sizes using the constraint

Image Size mod (Block Size x Number of SPU) = 0,

where Image and Block Sizes are measured in pixels.
For our first evaluation, we chose the configuration that
maximizes block size. We divide the SPU storage into two

Core SPU Processing

» 20
2
s 11
T 10 T]
e g1
o 61 -
g ‘2177 i [S o 4'._.’_F
L o ‘ ‘ ‘ ; ;
© ho] =)) =
g 2 L c = = (g 3
5 T c T g 2 2 s e 5
Ec ES DO ~ EZ
c® ST ©=] S Es
L 22 = 5 o 3
a8 8 : =
< =
Algorithm

Figure 1 Algorithm performance in frames per spu seconds,
excluding data transfer latency.

J Sign Process Syst (2011) 62:65-76

71

Overall Processing Times

Frame Rate (fps)
O = MNwWwhHou o~

#

=] Rl] — — 10} =
o 2 8. = = 3 S

2 © c c© [) € = &
1= = S 0 = = IS
© = =5 oS c c =
Lt(u X D ©] 3§
= s = 5)

a S 5] = =

< =
Algorithm

Figure 2 Algorithm performance in frames per second, including
data transfer latency.

areas; the first holds a block of the current frame and the
other holds the corresponding portion of the background
model. It is noteworthy that these storage areas are of equal
size bytewise for the single mode background models but
vary for the other multi-modal models.

Figure 3 Results of extracting
foreground using different
backgrounding techniques.

Ground Truth

L N 5

Frame Differencing

]]

Table 3 shows the memory allocation on each SPU
using this configuration. The multimodal background
models require storage for four modes per pixel making
them significantly larger than the single mode models.
This minimizes the block size for those techniques. Also,
the MM technique uses only integer storage types as
opposed to MoG which uses floating-point and has half
the block size.

Figures 1 and 2 show the performance results obtained
from running each algorithm on the configuration described
in Table 3. Because the sequence of frames originates from
standard files rather than camera output, I/O requirements
are not included in these figures.

Figure 1 shows the core algorithm performance results
excluding data transfer latency for each algorithm. This
includes processing times from the time the data is
available on each core and the algorithm begins to the time
the algorithm is completed. Using the spu_decrementer
[20], we recorded the time spent executing the core
algorithm on each SPU. Results are given in frames per

Weighted Mean

[T
s i e

SW Median

@ Springer

72

J Sign Process Syst (2011) 62:65-76

spu seconds (fpss). The frame rates displayed are those
for the slowest SPU among the cores although there is
not significant variation in SPU times. From the results
shown in Figure 1, we observe that the techniques with
fewer operations, such as frame differencing and approx-
imated median, generally run faster than the multimodal
ones. MM has comparable performance to other sliding
window techniques and has about nine times better
performance than MoG. This is due to MoG’s increased
complexity and more costly floating-point computations.
These results are consistent with results obtained on an
eBox 2300 Vesa PC, which is an uniprocessor embedded
platform [21].

Figure 2, shows the overall algorithm performance in
frames per second, including data transfer. Overall, our
results show that MM achieves a 3.4x speedup over MoG
and has comparable performance to the other techniques. In
general, we observe that the disparity between the perfor-
mance of single mode techniques and that of the multi-
modal ones, particularly MM, is narrowed. There are two
reasons. First, there is a comparatively higher data transfer
latency associated with the single mode techniques. Table 2
shows that to process each block these techniques transfer
115.2 KB for the image and another 115.2 KB for the
background model. Completing the concurrent transfer of

Figure 4 a Outdoors I errors.
b Outdoors II errors. ¢ Overall
errors.

Outdoors 1 (720x640) - Total Number of Errors

this data to six SPUs in 16 KB chunks results in collisions
and all the data must be available on the SPU to begin core
processing. Alternatively, the MoG technique for example,
transfers only 4.8 KB of image data during each iteration
and this is completed in a single DMA transaction.

Second, the ratio of core algorithm execution time to
data transfer latency time is higher for the single mode
techniques. This results in a disproportionate increase in
overall processing times for the single mode techniques as
compared to the multimodal ones.

Figure 3 shows the image quality for each background-
ing technique. Multimodal methods (MoG and MM)
generally exhibit the lowest number of errors across the
sequences. False positives are significantly lower for the
multimodal methods.

In “Outdoors I”, only the multimodal techniques
incorporate the moving trees into the background. Also,
the sliding window techniques are less adaptive to the
changing foreground and leave a trail behind moving
objects. “Outdoors II” features a large number of fore-
ground elements as well as moving trees and MoG and MM
handle these scenarios relatively better than the other
techniques.

Figure 4a and b quantitatively summarize accuracy for
each technique. False positives indicate foreground identified

Overall - Total Number of Errors

Frame Diff

Approx Med

Weighted Mean

Med (SW)

Mean (SW)

MoG

MM

Frame Diff
Approx Med I;
Weighted Mean I;
Med (SW) |
Mean (SW) I
MoG i

MM

0 10000

20600
of incorrectly marked pixels

0 10000 20000 30000 40000 50000

30000 . .
of incorrectly marked pixels

Outdoors 2 (720x640) - Total Number of Errors

@ False Positives

Frame Diff

e —

Approx Med

Weighted Mean

Med (SW)

Mean (SW)

MoG

MM

m False Negatives

0 5000 10000

15000 20000

of incorrectly marked pixels

@ Springer

J Sign Process Syst (2011) 62:65-76

outside the highlighted (white) regions of the ground truth.
False negatives result from background detected in ground
truth identified foreground. While these counts do not
provide a complete measure of foreground usefulness (e.g.,
often incomplete foreground can be “filled in”), lower
numbers of false positives and negatives are usually
desirable. Generally, MoG and MM demonstrate comparable
accuracy that is superior to the other methods as is shown in
Fig. 4c. In [21], a further evaluation of the accuracy of these
techniques on an eBox 2300 Vesa PC embedded platform
using additional standard sequences is performed.

4 Tile Processing

For our second evaluation, we examine a different process-
ing arrangement. Typically, live video input from the
webcam is buffered as images by the camera driver. Rather
than divide the workload in the current frame using
maximum block size and available memory on the SPUs,
we create a tiled workload from the buffer using much
smaller block sizes called files. Tile sizes are selected
analogous to block sizes according to the constraint:

Image Size mod (Tile Size x Number of SPU) = 0,

where Image and Tile Sizes are measured in pixels.

We consider a buffer of m of these images. An nxk tile
is selected from the same location for each image in the
buffer as shown in Fig. 5a. n is the width of the tile and £ is
its height. This constitutes the workload for the first image
processing core. The next tile location is used for the next
core’s workload and the process is repeated for all the cores
as shown in Fig. 5b.

To tile images as described above, the buffering of the
current pixel stream from the imagers has to be modified
in the camera driver. Figure Sc shows the stream buffered
in receiving order as a continuous array, and depending on
the system and availability, this could be a contiguous
block of memory. Figure 5d shows the stream broken up
into groups of nxk pixels. The first group of nxk pixels in
the first image is stored at the beginning of the storage
array, after which (m—1)xnxk pixel locations are skipped
in the array before storing the next group. This process is
repeated for the entire image stream. The first group of nxk
pixels in image j begins at pixel location ((j—1)xnxk)+1 in
the array which was left blank during the buffering of the
previous j—1 images. This process is repeated for all the
images in the buffer.

Tiling the input images as described above could
increase the buffering memory latency in the driver so we
evaluate the effect of using this technique on our platform.

73
n
A
E \
}k
K\
"y
a. Full Images
Core 1 Workload

Core 2 Workload

Core 3 Workload

b. n x k tiled workloads processed by each core

pixel stream

|

¢. Regular buffering of pixel stream as contiguous block

| o e

d. Buffering pixel stream in groups of n x k pixels

[J Empty Buffer
B Full Buffer

Figure 5 Tiling. a Full images. b nxfk tiled workloads processed by
each core. ¢ Regular buffering of pixel stream as contiguous block. d
Buffering pixel steam in groups of nxk pixels.

We benchmark the tiled buffering method against the
regular buffering method in the jpeg decoder.

The independent jpeg library’s decoder generates pixels
in rows called scanlines each of which is the width of the

@ Springer

74

J Sign Process Syst (2011) 62:65-76

Table 4 Buffering times.

Table 6 Performance.

Buffer size 2 16 32
Tile buffering (s) 0.0869 0.0877 0.0881
Stream buffering (s) 0.0896 0.0892 0.0901

image. We stored each scanline using both techniques
described above and evaluated the total time taken to
decode and buffer each frame. For our evaluation, we
used 720x640 images and took the average from decod-
ing 100 images.

Table 4 shows our results for different buffer sizes and
suggests that the tile buffering does not significantly
increase the image decode times. On average, we record a
0.023% increase in decode time per frame when using tile
buffering. We also do not notice an increasing disparity in
total time as we increase the buffer size.

Our image retrieval times are significantly less than our
background/foreground segmentation processing times for
each frame. Slightly increasing the retrieval time does not
impact the overall performance, since the two processes are
concurrent.

The tile processing configuration minimizes data trans-
fers of the background model between main memory and
each SPU by processing a given number of consecutive
frames against a single shared background model. Because
the tiled workload consists of consecutive frames with the
same portion of the image, a single background model is
required for processing as well as updating.

We evaluate the multimodal mean technique using this
processing configuration for various buffer and tile sizes.
We limit our buffer size to 32 which represents reasonable
buffering latency on a real-time system.

Table 5 shows the storage requirements for each
configuration. All configurations use at most 230 KB of
the SPU storage to allow for run time memory requirements.

Table 5 Image storage requirements.

Buffer size Image size (KB)

Tile=1,600 Tile=2,400 Tile=3,200
BGM= BGM= BGM=
76.8 KB 115.2 KB 153.6 KB

1 4.8 7.2 9.6

2 9.6 14.4 19.2

4 19.2 28.8 384

8 38.4 57.6 76.8

16 76.8 115.2

32 153.6

@ Springer

Buffer Size Frame rate (fps)

Tile=1,600 Tile=2,400 Tile=3,200
BGM= BGM= BGM=
76.8 KB 1152 KB 153.6 KB

1 4.46 4.45 4.46

2 4.48 4.54 4.56

4 4.55 4.66 4.69

8 4.65 4.82 4.95

16 4.8 53

32 5.6

Table 6 shows the performance for each configuration.
The results show a trend of increasing frame rates as the
buffer size is increased due to the fewer number of
background model transfers to each SPU core. A tile size
of 1,600 pixels allows the processing of 32 images in a
single transfer and gives the best performance. This
configuration achieves a 25% increase in performance over
the single buffered baseline approach.

Using the tile buffering technique will cause a
multicore video surveillance system to incur a slight
buffering latency due to the temporal buffering and, as a
consequence, the reaction time of the system could
increase slightly. However, the resulting increase in
processing bandwidth more than compensates for this
one time latency charge which is a small fraction of the
overall processing time. Leveraging the multicore resour-
ces allows the tiling to be done concurrently with
processing. This results in a single temporal buffering
latency charge rather than an accumulated latency charge
for each frame processed in a uniprocessor system.

More importantly, the bottleneck for computer vision
applications on embedded platforms is not the video
buffering. The Playstation Eye USB Camera for the
Playstation/Cell B.E. platforms buffers full-resolution
640x480 images at 60 fps. Using the tiling technique with
buffer size 32 will result in a delayed system reaction time
of 0.5 s which is acceptable for a video surveillance system.
Depending on the application, the resolution can be
decreased or the buffering frame rate increased to achieve
even faster reaction time. For example, buffering 320 x240
images will result in a delay of only 0.125s.

However, the benefits of the tiling technique are evident
with the increased processing bandwidth. For example, an
end-to-end application running at 22 fps will be able to run
at 30 fps using the tiling technique and a buffer of 32
frames. This is a significant performance increase and
yields real-time performance which is crucial to the
deployment of real-world embedded vision systems.

J Sign Process Syst (2011) 62:65-76

75

5 Conclusion

This paper compares several backgrounding techniques for
time sensitive processing on embedded computing plat-
forms. In this context, we evaluate a multimodal mean
technique that combines the multimodal features of the
mixture of Gaussians with simple pixel evaluation compu-
tations involving sums and averages. The multimodal mean
method is able to achieve faster execution and lower
storage requirements than mixture of Gaussians while
providing comparable accuracy and output image quality.
We also showed that by partitioning the workload into
consecutive tiles of smaller blocks we can further improve
the processing times on multicore systems.

Acknowledgements We are grateful for the insightful comments of
the anonymous reviewers.

References

1. Bower, F. A., Sorin, D. J., & Cox, L. P. (2008). The impact of
dynamically heterogeneous multicore processors on thread sched-
uling. IEEE Micro Magazine, 28(3), 17-25. May/Jun.

2. Gschwind, M. (2007). The cell broadband engine: Exploiting
multiple levels of parallelism in a chip multiprocessor. Inter-
national Journal of Parallel Programming, 35(3), 233-262.
June.

3. Kongetira, P., Aingaran, K., & Olukotun, K. (2005). Niagara: A
32-way multithreaded Sparc processor. IEEE Micro Magazine, 25
(2), 21-29. March—-April.

4. McNairy, C., & Bhatia, R. (2005). Montecito: A dual-core, dual-
thread Itanium processor. /[EEE Micro, 25(2), 10-20. March—
April.

5. Taylor, M. B., et al. (2002). The raw microprocessor: A
computational fabric for software circuits and general pur-
pose programs. [EEE Micro Magazine, 22(2), 25-35. March—
April.

6. Sankaralingam, K., et al. “Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture,” in Proc. 30" Annual Int.
Symp. On Computer Architecture, pp. 422—433, June 2003.

7. Chen, T. P, Haussecker, H., Bovyrin, A., Belenov, R., Rodyushkin, K.,
Kuranov, A., Eruhimov, V., “Computer Vision Workload Analysis:
Case Study of Video Surveillance Systems”, Intel Tecnology
Journal 2005.

8. Cheung, S., & Kamath, C. (2004). Robust techniques for
background subtraction in urban traffic video. Video Communi-
cations and Image Processing, 5308, 881-892. SPIE Electronic
Imaging, San Jose, January.

9. Piccardi, M. (2004). Background subtraction techniques: A
review. [EEE International Conference on Systems, Man and
Cybernetics, 4, 3099-3104. October.

10. Toyama, K., Krumm, J., Brummitt, B., Meyers, B. (). Wallflower:
principles and practices of background maintenance,” in Proc.
of ICCV (1), pp. 255-261, 1999; Wallflower benchmarks
available online at research.microsoft.com/~jckrumm/WallFlower/
Testlmages.htm

11. McFarlane, N., & Schofield, C. (1995). Segmentation and tracking
of piglets in images. Machine Vision and Applications, 8(3), 187—
193.

12. Jabri, S., Duric, Z., Wechsler, H., & Rosenfeld, A. (2000).
Detection and location of people in video images using adaptive
fusion of color and edge information. [EEE International
Conference on Pattern Recognition, 4, 627-630 September.

13. Wren, C. R., Azarbayejani, A., Darell, T., & Pentland, A. P.
(1997). Pfinder:real-time tracking of human body. /EEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19(7), 780—
785. July.

14. Stauffer, C. & Grimson, W. E. L. (1999). Adaptive background
mixture models for real-time tracking”, Computer Vision and
Pattern Recognition, pp 246252, June.

15. Stauffer, C., & Grimson, W. E. L. (2000). Learning patterns of
activity using real-time tracking. /EEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8), 747-757. August.

16. Appiah, K., Hunter, A. (2005). A single-chip FPGA implemen-
tation of real-time adaptive background model. /IEEE Internation-
al Conference on Field-Programmable Technology, pp. 95-102,
December.

17. Chen, T., Budnikov, D., Hughes, C., Chen, Y.-K. (2007).
Computer vision workloads on multicore processors: articulated
body tracking”, ICME 2007, Beijing, China, July.

18. Zinner, C. & Kubinger, W. (2006). “ROS-DMA: A DMA double
buffering method for embedded image processing with resource
optimized slicing,” in Proc. 12" IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 361-372,
April.

19. T.G. Lane. Using the 1JG JPEG Library. Independent JPEG
Group, 6b edition, March 1998.

20. Cell Broadband Engine Programming Tutorial http://www-01.
ibm.com/chips/techlib/techlib.nsf

21. S. Apewokin, B. Valentine, S. Wills, L. Wills, A. Gentile,
“Multimodal Mean Adaptive Backgrounding for Embedded
Real-Time Video Surveillance,” Embedded Computer Vision
Workshop (ECVW07),, June 2007.

Senyo Apewokin is a Ph.D. candidate in the School of Electrical and
Computer Engineering at Georgia Institute of Technology. His
research interests lie in embedded computer vision, parallel program-
ming architectures, algorithms and frameworks, and multimedia
systems. He received his B.S. from Louisiana State University

@ Springer

http://research.microsoft.com/~jckrumm/WallFlower/TestImages.htm
http://research.microsoft.com/~jckrumm/WallFlower/TestImages.htm
http://www-01.ibm.com/chips/techlib/techlib.nsf
http://www-01.ibm.com/chips/techlib/techlib.nsf

76

J Sign Process Syst (2011) 62:65-76

(2001) and his M.S. from Georgia Tech (2003). In the summer of
2006, he worked as a microprocessor design engineer with Texas
Instruments Inc.

Brian Valentine is currently a Ph.D. student in the School of
Electrical and Computer Engineering at the Georgia Institute of
Technology. He received his B.S. in electrical engineering (2003) and
Master of Engineering (2005) degrees at Morgan State University in
Baltimore, MD. He has completed multiple internships at Texas
Instruments Inc., working on digital signal processor (DSP) program-
ming optimization and application benchmarking. His research
interests include algorithms for embedded computer vision, image
processing, and embedded code optimization.

Jee W. Choi was born in Seoul, Republic of Korea in 1979. He
received his B.S. and M.S. degrees in computer engineering from
Georgia Institute of Technology, Atlanta, Georgia, U.S.A in 2000 and
2004 respectively. Currently, he is working towards the Ph.D degree
in Electrical and Computer Engineering at Georgia Institute of
Technology. His major research interests include embedded video
surveillance and numerical computation on multicore architectures.

@ Springer

Linda Wills is an Associate Professor of Electrical and Computer
Engineering at the Georgia Institute of Technology, where she was the
first recipient of the Demetrius T. Paris, Jr. Professorship. She received
her S.B. (1985), S.M. (1986), and Ph.D. (1992) degrees from the
Massachusetts Institute of Technology. Dr. Wills served as general
chair of the IEEE International Workshop on Rapid System Prototyp-
ing (RSP2003) and as program chair of RSP2001. She has also served
as general chair and as program chair of the Working Conference on
Reverse Engineering. She is a member of the ACM and a senior
member of the IEEE and IEEE Computer Society. Her primary
research interests are in embedded computer vision and surveillance
systems, software understanding and retargeting for embedded
systems, parallelizing multimedia applications, and innovative com-
puting systems education.

Scott Wills is a Professor of Electrical and Computer Engineering at
Georgia Tech. His research focuses on embedded vision systems,
parallel architectures and applications, and supercomputer intercon-
nection networks. He has published 140+ peer-reviewed conference
and journal papers in these areas. He earned his B.S. in Physics (1983)
from Georgia Tech, and his S.M. (1985), E.E. (1987), and Sc.D.
(1990) in Electrical Engineering & Computer Science from MIT. Prior
to joining Tech in 1991, Dr. Wills worked at Motorola (Plantation,
Florida), Harris (Melborne, Florida), and Symbolics (Cambridge,
Massachusetts).

	Real-Time Adaptive Background Modeling for Multicore Embedded Systems
	Abstract
	Introduction
	Motivation and Related Work
	Computer Vision Workload Analysis
	Related Background Modeling Work

	Multimodal Mean Background Modeling Technique
	Algorithm
	Processing and Storage Costs
	Experiment
	Evaluation and Results

	Tile Processing
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

