
978-1-4244-2665-2/08/$25.00 ©2008 IEEE

BYPASSING BIGBACKGROUND: AN EFFICIENT HYBRID BACKGROUND MODELING

ALGORITHM FOR EMBEDDED VIDEO SURVEILLANCE

Brian Valentine, Jee Choi, Senyo Apewokin, Linda Wills, Scott Wills

School of Electrical and Computer Engineering, Georgia Institute of Technology

Atlanta, GA U.S.A.

ABSTRACT

As computer vision algorithms move to embedded platforms

within distributed smart camera systems, greater attention

must be placed on the efficient use of storage and

computational resources. Significant savings can be made in

background modeling by identifying large areas that are

homogenous in color and sparse in activity. This paper

presents a pixel-based background model that identifies such

areas, called BigBackground, from a single image frame for

fast processing and efficient memory usage. We use a small

15 color palette to identify and represent BigBackground

colors. Results on a variety of outdoor and standard test

sequences show that our algorithm performs in real-time on

an embedded processing platform (the eBox-2300) with

reliable background/foreground segmentation accuracy.

Index Terms— Embedded Processors, Color

Clustering, Background Modeling, Multimodal

1. INTRODUCTION

The complexities of observed scenes such as airport/train

terminals, traffic intersections, and public events make it

impractical to rely solely on human operators for scene

monitoring. The availability of low-cost embedded

computing platforms and continuing advances in computer

vision algorithms have made it practical for designers to

consider automated solutions. Many surveillance-based

computer vision applications rely on background modeling

algorithms to segment foreground from background. This

information is used in higher-level tasks such as people

tracking, unattended object detection, or anomalous activity

recognition. Moreover, in some video surveillance systems,

background modeling and foreground detection are the most

computationally expensive modules in the system [3]. Since

resources on portable-embedded platforms are limited in

terms of processor speed, power consumption, and memory

capacity, efficient implementations are critical.

Several pixel-based background models continuously

maintain color statistics for each pixel [4,17,18,19]. This

means that for all frames, every pixel is treated similarly,

requiring similar processing overhead and number of

memory accesses. However, long-term stable background

data can be represented more compactly and processed

faster than new ephemeral foreground data since it remains

relatively unchanged.

We present an efficient hybrid background modeling

algorithm intended for resource-constrained applications.

The algorithm applies to each image pixel, one of two

different background modeling techniques, BigBackground

(BB) or Multimodal Mean (MMean), depending on whether

the pixel is classified as stable versus varying, respectively.

Pixels in large, rigid background objects, such as walls of

buildings, tree trunks, or sidewalks, will be treated as stable

pixels and modeled using a modeling technique called

BigBackground. Varying pixels are pixels on multimodal

dynamic background elements, such as fluttering leaves, or

pixels through which moving foreground objects often pass.

These are modeled using an adaptive multimodal technique,

called Multimodal Mean [2]. MMean records and maintains,

for each pixel, a set of average color values for a small

number of background modes the pixel encounters. This set

of modes can grow or shrink to allow adaptation of changing

pixel values and handling of dynamic background elements,

such as rippling waves.

Identifying stable pixels is done using a simple, yet novel

technique, based on color clustering within a single initial

image, with no prior information of the scene. A storage-

efficient color palette is created to represent the

BigBackground colors in the large, stable background

regions, which account for 47% – 73% of pixels in our test

sequences. When using the two techniques, the classification

of pixels as stable versus varying is not permanent. Pixels

may migrate from one class to another if they frequently fail

to match the background model applied to them.

These two backgrounding methods in our hybrid

algorithm provide an effective balance between the

computational complexities needed for accuracy in adapting

new scene elements, with the efficiency achieved by quickly

processing large rigid background objects. Our algorithm

works well in real-world indoor and outdoor sequences, with

substantial speedup, when compared to using only MMean,

in sparsely populated scenes.

We implemented the hybrid algorithm on an eBox-2300

portable embedded computing platform, shown in Figure 1

[6]. The dimensions of the eBox are 115×115×35 mm with a

weight of 505g. It contains a Vortex86 SoC-200MHz fanless

CPU, with 128MB of onboard SDRAM. It supports up to

2GB of flash memory and is designed for low power

consumption (15 Watts). The eBox’s size, weight, and

power consumption make it an attractive platform for

deployment in a variety of indoor/outdoor conditions. It can

be easily and inconspicuously mounted on walls, monitors,

poles, etc., and be attached to a USB camera for data

collection and processing. Its wireless port can be used to

connect to other devices or send processed data to a remote,

off-site server. However, the limited memory, storage

capabilities, and processor speed of the eBox makes

efficient algorithm implementations critical. Our algorithm

has been able to achieve real-time performance in real-world

test sequences by taking such factors into account in the

algorithm design.

 This paper is organized as follows. Section 2 contains a

discussion of commonly used background modeling

algorithms and color clustering algorithms. In section 3 we

describe the motivation for BigBackground modeling and its

initialization. Section 4 discusses background/foreground

segmentation. Section 5 contains descriptions of

experiments and discussion of results. Section 6 concludes

the discussion.

2. RELATED WORK

Several methods for background/foreground segmentation

exist, varying in computational complexity and detection

accuracy. Simple techniques include frame differencing and

temporal median filters. More complex techniques utilize

Gaussian distribution functions or motion analysis. Recent

surveys of these can be found in [4,17]. Also, background

models can be annotated with temporal information [1,15] to

detect new stationary objects or candidate background

pixels.

The storage requirements of multimodal background

models are large because they retain multiple color values

per pixel location, as well as additional values such as

weights, variance, means, or observation counts for record

keeping. This can require over three times the storage

needed to store a single uncompressed image frame, and

numerous memory accesses to process data. For example,

the storage requirements of the Mixture of Gaussians

(MOG) technique [18] are approximately k × 20 bytes per

pixel where five 32-bit floating point numbers represent

stored weight, variance, and running RGB means. k

represents the number of Gaussians per pixel. If four modes

are used, this would make the MOG storage requirements

for a 160×120 frame 1.5 MB. This storage requirement, as

well as memory accesses, increases proportionally to the

number of background modes per pixel location. Since the

background is a slowly changing feature within a scene,

processing time and memory accesses can be reduced by

creating a representation space for commonly seen pixels

and keeping their maintenance costs minimal. This can be

done by clustering colors belonging to large background

regions into a separate representation space, for quick

identification and processing.

Data clustering is an unsupervised classification of

patterns into groups. It is often used in computer vision to

perform color clustering and image segmentation [11].

These include histograms, k-means clustering, octrees, mean

shift segmentation, and normalized cuts.

Creating a histogram from the color space is one of the

simplest ways of clustering pixel data. The color space can

be divided into equally spaced bins with counts incremented

depending on the bin to which a pixel belongs. This is fast,

as only a single scan through the image is required, and it

can be memory efficient, depending on the number of bins

used. This technique is also referred to as the popularity

method [9].

K-means clustering is another clustering algorithm that

can be used to cluster colors [13]. In this algorithm, k

number of centroids are defined a priori. Each pixel in the

image is matched with its nearest centroid, creating k

clusters. Then, barycenters of each cluster are computed,

creating a new set of centroids. Each pixel is then re-

associated to the new set of centroids until the centroids no

longer move. At this stage, a locally-optimal set of color

values are said to be found [14].

Octree [8] is a clustering technique that categorizes a

color space into groups of branches and leaves. The octree

has eight levels that represent the eight bit positions of an

RGB color value. Indexing into the octree is performed by

grouping bit positions of the pixel’s RGB color components

into three-bit words. The top level contains eight child

branches each of which could contain a leaf or eight

additional child branches. To cluster image colors using

octrees, the image is scanned in raster order with each pixel

being inserted into its appropriate leaf in the octree. A leaf

represents all the pixel values that fall within the bit index

ranges ascribed by the octree. The lowest level of the octree,

indexed by the LSBs of the RGB pixel value, contains the

most detailed grouping of colors. Using the octree for color

clustering is advantageous because it can be created quickly

and requires a small amount of memory to create and store.

Mean shift segmentation [7] and normalized cuts in

graph-theoretic segmentation [12] are often used for image

segmentation [5]. In the mean shift segmentation algorithm,

a number of initial search window locations are first chosen

uniformly in the color space. The centroids of the data

Figure 1: eBox 2300 embedded PC

points within each window are computed and the windows

are then shifted such that their centers match the computed

centroids. This centroid computation and window shifting is

repeated until the windows no longer move. Overlapping

windows are usually merged.

Normalized cuts in graph theoretic segmentation is more

complex, as it involves creating a weighted undirected graph

from the pixel data points. The edges that are formed

between every pair of pixel points are a function of

similarity between the pair. In clustering, the set of points

are partitioned into disjoint sets such that a normalized sum

of the weights of all the edges connecting a pair of partitions

is minimized.

Initially, we experimented with a number of different

clustering algorithms, including k-means, octree, and

histogram population. A critical difference in our goals

compared with traditional clustering methods is that we are

interested in identifying and modeling stable regions of

pixels, which typically do not completely cover the image.

Traditional segmentation methods aim to cluster data so that

the entire image is segmented and each segment is mapped

to a visually optimal cluster color. Our use of color data

clustering is focused on determining the most commonly

occurring colors in the image. Interestingly, our

experiments with the various clustering methods found that

they tend to identify a similar set of commonly occurring

colors in a given image. Since the most common colors

could be found reliably, independent of the method used, we

chose histogram population on which to base the

BigBackground clustering method because of its simplicity,

fast processing time, and low computational overhead.

3. BIGBACKGROUND

Large objects in a scene are likely permanent, rigid

background. Examples of this include roads, sidewalks,

buildings, and walls. Depending on the camera’s field of

view, these background objects can cover a large percentage

of the image frame. Due to the size of these objects, and

their relatively homogenous color distributions, it is possible

to identify them by finding the most commonly occurring

colors in the image. BigBackground colors are stored in a

palette and used, in combination with spatial information, to

identify stable pixels from a single image frame.

Pixels matching the most common colors in the image

are treated as likely belonging to BigBackground objects.

Based on an initial image frame, a spatial index map is

created to record the location of identified stable pixels and

their associated BigBackground color (as an index into the

palette). The initialization of the BigBackground model

occurs in two steps. The first step scans the initial image to

identify the 15 most commonly occurring colors. We found

that 15 is sufficient to capture the biggest objects and

achieve high coverage of stable regions across the image.

The second step takes the initial image and tags pixels

as stable in the index map if they match one of the colors in

the palette. Pixels not identified as stable in the initial frame

are treated as varying and are processed using the adaptive

MMean background modeling algorithm [2].

3.1. BigBackground Palette Generation

Colors associated with BigBackground pixels are stored in a

small color palette found using histogram population. The

histogram bin is sorted by popularity and the k-most

populated color bins and their center values are chosen as

the BigBackground colors. The simplicity of initializing and

creating a histogram for an image makes this technique very

efficient and well-suited for BigBackground processing.

3.2. BigBackground Initialization

The BigBackground color palette is initialized based solely

on a single image frame. Using the palette colors, a

BigBackground image map is created, identifying all the

pixels in the initialization image that match within a

threshold, one of the BigBackground colors. The

background image map is of size 2Bytes × (rows × cols).

For a 160×120 image, 37.5 KB is needed to store the

background image map.

Each element in the image map corresponds to an image

pixel and is structured as shown in Figure 2. The Palette

Index field contains an index into the BigBackground color

palette. Varying pixels, those that are non-BigBackground,

are assigned the number zero for the Palette Index field. The

Unmatched Count field indicates how many times a

BigBackground Color was not matched for a given pixel

location in a frame. The purposes of these fields are

explained in greater detail in Section 4.

Figure 3 shows several different scenes and their

corresponding BigBackground segmentations. The

percentage of BigBackground coverage for the initialization

frame is also shown. These scenes have a variety of features

that present unique challenges to the BigBackground model.

20070403-09 contains fluttering tree leaves which will

reduce overall BigBackground coverage. The sequence

named Courtyard is captured from a high vantage point, with

moving clouds and daytime lighting changes. The

CPETS_S7_T6_B sequence has a significant amount of

pedestrian traffic. For these scenes, the BigBackground

covers from 47% to 73% of the image on average over their

entire durations. Efficiently processing and storing the data

in the high coverage “stable” BigBackground areas will

Unmatched

Count

Palette

Index

Unmatched

Count

Palette

Index

Figure 2: BigBackground Image Map Structure

yield significant improvements in execution time and

memory accesses.

4. BACKGROUND/FOREGROUND SEGMENTATION

Based solely on the BigBackground image map, pixel

locations are identified as being either stable or varying.

Stable pixels are processed by the BigBackground modeling

algorithm, while varying pixels are processed using the

adaptive MMean algorithm. Palette indices in the

background image that map from 1-15 indicate that the pixel

is stable and its location has a BigBackground color

(specified by the palette index) that should be processed

using the BigBackground technique. A palette index of 0

indicates that the pixel is varying and does not have a

BigBackground color, so the MMean algorithm is used to

process the pixel.

4.1. Adaptive Multimodal Mean Modeling

The MMean algorithm, described in detail in [2], does the

following. For each pixel location in the image, its current

value is compared against a set of background “cells,”

representing observed background modes, for that location.

Each cell contains a running sum of observed RGB

component values, a birth date indicating when the pixel

first was observed, and an observation count. This is

illustrated in Figure 4. The fields Rsum, Gsum, Bsum, are the

sum of the individual R, G, B component values that have

matched the cell. Rcount1 and Rcount2 are counters used by

the MMean cell replacement policy to determine which

pixels will be replaced if a new pixel in the current frame is

found. The Birth Date field records the frame in which the

cell was created and the Count field increments by one each

time a new pixel matches the cell.

A pixel is determined to match one of the MMean cells if

its color component x is within a predefined threshold of Ej

of one of the cells according to Equation 1:

 |I(j,x) - µ(j,x)| ≤ Ej (1)

where I(j,x) is the current image pixel value for color

component j at location x. µ(j,x) is the mean value of color

component j at location x, computed by dividing the running

sum of the component by Count. If a match is found, the

cell’s observation count value is incremented by one and the

current pixel’s RGB component values are added to the

cell’s individual RGB component sums. If a match is not

found, a new MMean cell is created with the least observed

cell being deleted if it falls below a stated cell observation

threshold Cth. A pixel is declared foreground if its

observation count is less than the foreground threshold Fth.

Figure 3: BigBackground Initialization

20070403-09

48%

Courtyard

47%

20070409-20

70%

AVSS AB Easy

62%

CPETS_S7_T6_B

62%

20070416-09

72%

Stable

Varying

Sequence Name

BigBackground Coverage

Cell counts are periodically decimated, according to a

predetermined decimation rate DECRATE, to get rid of

unseen cells.

4.2. BigBackground Modeling

BigBackground modeling is performed on stable pixels. The

BigBackground color for a stable pixel location is obtained

from the color palette and compared against the current pixel

using Equation 1. If the current pixel matches the

BigBackground color, then it is known that no change has

occurred and no further processing is done. This allows the

algorithm to quickly skip over stable pixels and focus

resources on the areas of the image that feature frequent

changes. If the current pixel does not match the

BigBackground color, then we know that it has potentially

been occluded and the pixel is declared as foreground, with

the corresponding Unmatched Count field in the image map

incremented by one.

4.3. Changing a Pixel’s Stability Classification

Situations will arise where pixels classified as varying

should be migrated to the stable class, and vice versa. For

example, a pixel on a moving object may be originally

classified as stable because it happened to have a color

similar to a large, stable background structure, such as a

brick wall. Once the moving object passes by, unless the

brick wall is behind the object, the pixel will change to one

or more different color values and should be treated as a

varying pixel modeled by the adaptive technique.

Conversely, an object that moves into a scene and becomes

stationary might cause a varying pixel to become stable.

A pixel that is classified as varying should be reclassified

as a stable pixel if it satisfies the following conditions:

1. Count ≥ MMWindow

2. MMWindow ≤ Age ≤ (MMWindow + MRange)

3. The cell RGB mean “closely” matches one of the

 BigBackground palette colors BBcolors according to

 Equation 2

|BBcolor(j) - µ(j,x)| ≤ (Ej /3) (2)

where MMWindow is the amount of time a pixel must be seen

before it is considered to be long-term background. The

conditions state that a pixel must be old enough (Condition

1), seen frequently enough within a certain age range

(Condition 2), and be very close in color value to an existing

BigBackground color (Condition 3). Condition 3 contains a

tighter threshold window than the match criteria used in

Equation 1. This assures us that pixels which are

numerically within the bounds of the threshold, but

perceptually different in color, are not declared as stable in

the image map.

A pixel that is classified as stable may be reclassified as

varying if Equation 3 is true:

 UnmatchedCount ≥ BThr×BBWindow (3)

where BBWindow is a small time-block in which stable pixels

are examined for occlusions. BThr is the percentage of the

window that must have unmatched entries for the pixel to be

migrated to the varying class. Every BBWindow frames the

UnmatchedCount is reset to zero. If a stable pixel satisfies

Equation 3, then it signifies that the pixel location has

become occluded. The pixel is migrated to the varying class

for further examination. This is illustrated in Figure 5.

4.4. BigBackground Illumination Change Adaptation

Illumination changes occur commonly in outdoor scenes due

to external factors such as shadows, passing clouds, or

simple changes in the time of day. The BigBackground color

palette helps adapt to these changes to ensure that the large

background regions are processed quickly. This is

accomplished by tracking the percentage of BigBackground

pixels detected in each frame and looking for large,

sustained deviations in BigBackground coverage. A running

counter, called COVcount, maintains a recent history of the

number of times the BigBackground coverage has fallen a

significant amount below its initial coverage. The

BigBackground coverage percentage for the current frame is

compared to the coverage of the initialization frame.

COVcount is incremented by one if there is a negative

differentiation, BBdev, from the BigBackground coverage

percentage that was computed in the initialization frame. In

the opposite case, where there is no significant drop in the

 Figure 4: MMean Cell Structure

Rcount2Rcount1CountBirth

Date

BsumGsumRsum Rcount2Rcount1CountBirth

Date

BsumGsumRsum

Figure 5: Switching Pixel Classification

…

BBWindow Frames

Number of

Unmatches to Index Map

>= BThr× BBWindow

“Stable” Pixel

Change to “Varying”

No Change

Yes

No

Match to Index Map

Unmatch to Index Map

BigBackground coverage, COVcount is decremented by one,

until COVcount hits zero. If there are several consecutive

frames in which the BigBackground coverage falls, the

COVcount will steadily increase. If the BigBackground

coverage percentage remains steady over time, then COVcount

will remain close to or at zero. When COVcount is high

enough, then a lighting change has occurred and the entire

BigBackground map is recomputed to adjust for the new

environmental conditions.

Figure 6 shows a plot of the percentage of

BigBackground pixels detected over the entire duration of

sequence Courtyard, based solely on the BigBackground

colors detected in the first frame. There is a substantial

lighting change that occurs within the first twenty frames

that causes a sharp drop in BigBackground coverage. From

frames 100-150 and 350-450, the intensity from the sun

changes dramatically, causing sharp variations between low

and bright lighting, and the visibility of shadows cast. The

dips in the crossed line of the plot indicate where

illumination changes are occurring. Once the color palette

has been adjusted to compensate for illumination, the

BigBackground coverage reflects the current lighting

conditions.

5. EXPERIMENTS AND RESULTS

We have tested our hybrid algorithm on a variety of image

sequences. All sequences were resized in resolution to

160x120. The CPETS_S7_T6_B and AVSS AB Easy are

standard test sequences used in abandoned baggage

detection [16,10]. The CPETS_S7_T6_B and AVSS AB

Easy were downsampled in frame-rate to 1fps, for

processing on the eBox. Sequences 20070403-09,

20070409-20, and 20070416-09 were captured by graduate

students enrolled in an embedded video surveillance course

at the Georgia Institute of Technology [20]. Table 1 includes

the details for each scene: number of frames processed and

ground truth frame number, with all sequences having a

starting frame number of zero. The following parameters

were used in our experiments, with 4 cells per set used in

MMean:

 Ej= 30, 15 BigBackground Colors, MMWindow = 25

 BBWindow= 10, BThr = 0.7, MRange = 10, BBdev = 5%

Figure 7 shows the output frames of our algorithm and the

ground truth frames in the selected test sequences. Figure 8

shows the false positive/negative errors for each scene.

Table 2 lists the average percentage of pixels that

matched BigBackground, as well as the performance of the

hybrid BB+MMean algorithm with that of the standalone

MMean. Depending on scene activity and environmental

conditions (e.g. lighting, weather), the percentage of

BigBackground coverage over the scene duration ranged

from 47% to 73%.

A detailed analysis in [2] of the performance of MMean

in comparison to popular backgrounding techniques, such as

MOG, revealed a 6x improvement in MMean’s execution

time over MOG on the eBox-2300 platform.

Table 2: Performance Comparison (eBox-2300)

Processing Frame

Rates (fps)

Sequence

(160x120)

Average BB

Coverage

MMean BB+MMean

20070403-09 47% 34 43
Courtyard 50% 29 42

CPETS_S7_T6_B 60% 35 53
AVSS AB Easy 63% 33 52
20070409-20 71% 36 66
20070416-09 73% 36 69

BigBackground Coverage with Adaptation for

Lighting Changes (Courtyard)

0

10

20

30

40

50

60

70

80

0

3
7

7
4

1
1
1

1
4
8

1
8
5

2
2
2

2
5
9

2
9
6

3
3
3

3
7
0

4
0
7

4
4
4

4
8
1

Frame

C
o
v
e
ra
g
e
 P
e
rc
e
n
ta
g
e

No Adaptation

Adaptation

Figure 6: BigBackground Adaptation for

Lighting Changes

8560020070416-09

9515320070409-20

55118AVSS AB Easy

52137CPETS_S7_T6_B

427499Courtyard

6374920070403-09

Ground

Truth

Frame

Frames

Processed

Sequence Name

(160x120)

8560020070416-09

9515320070409-20

55118AVSS AB Easy

52137CPETS_S7_T6_B

427499Courtyard

6374920070403-09

Ground

Truth

Frame

Frames

Processed

Sequence Name

(160x120)

Table 1: Test Sequence Information

The hybrid BB+MMean algorithm achieves an average

processing speedup of 58% over using just the MMean.

As shown in Figure 7, our algorithm performs

particularly well in scenes where the color distributions are

homogenous and lighting conditions are stable. Our fastest

performing sequences, 20070409-20 and 20070416-09, have

these features. Outdoor scenes containing varying lighting

conditions and dynamic backgrounds, such as the 20070403-

09 and Courtyard sequences, are more challenging. The

20070403-09 sequence contained large trees with fluttering

leaves, which caused many of the pixels to be multimodal

and therefore processed with the slower, adaptive, MMean

technique. In the Courtyard scene, moving clouds and

daytime lighting changes required several recomputations of

the BigBackground map. In all the scenes tested, 15 colors

were adequate in capturing large, stable, BigBackground

objects such as tree trunks, roads, walls, and the sky.

6. CONCLUSION

This paper presents a hybrid technique to reduce the

processing time devoted to segmenting foreground/back-

ground objects by quickly identifying large stable back-

ground regions, and efficiently processing them. A color

palette of 15 colors is used to identify colors belonging to

the BigBackground objects, while an image map is created

to store their spatial locations. Our hybrid algorithm showed

an average 58% speedup in processing time over the

MMean, while maintaining reasonable accuracy in

segmentation. It performs in real-time on an embedded

platform with limited processing resources. Since

background modeling comprises the most computationally

intensive component in many computer vision applications,

our technique can be used as an important component in

more complex scene analysis.

7. REFERENCES

[1] S. Apewokin, B. Valentine, S. Wills, L. Wills, and A.

Gentile, “Midground object detection in real world video scenes,”

IEEE Conf. on Advanced Video and Signal Based Surveillance

(AVSS07), September 2007.

[2] S. Apewokin, B. Valentine, S. Wills, L. Wills, and A.

Gentile, “Multimodal Mean Adaptive Backgrounding for

Embedded Real-Time Video Surveillance,” Embedded Computer

Vision Workshop (ECVW07), June 2007.

[3] T.P. Chen, H. Haussecker, A. Bovyrin, R. Belenov, K.

Rodyushkin, A. Kuranov, V. Eruhimov, “Computer Vision

Workload Analysis: Case Study of Video Surveillance Systems,”

Intel Technology Journal 2005, 9(2): 109-118, 2005.

[4] Cheung, S. and Kamath, C., “Robust techniques for

background subtraction in urban traffic video,” Video Comm. and

Image Processing, Vol. 5308, pp. 881-892, SPIE Electronic

Imaging, San Jose, Jan. 2004.

[5] D. Comaniciu and P. Meer, “Mean shift: A robust approach

toward feature space analysis,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, (5): 603-619, May 2002.

[6] DMP Electronics Inc., “VESA PC eBox-2300 Users Manual,”

September 2006.

[7] K. Fukunaga, Introduction to Statistical Pattern Recognition,

Academic Press, New York, 1972.

[8] M. Gervautz and W. Purgtathofer, “A simple method for color

quantization: octree quantization,” Graphics Gems, Academic

Press Professional, Inc. pp. 287-293, 1990.

[9] P. Heckbert, “Color image quantization for frame buffer

display,” ACM Comput. Graph., vol. 16, no. 3, pp. 297-307, July

1982.

[10] i-Lids dataset for AVSS 2007, Available online at:

www.elec.qmul.ac.uk/staffinfo/andrea/avss2007_d.html.

[11] A. Jain, M. Murty, and P. Flynn, “Data clustering: a review,”

ACM Computing Surveys, 3(31):264-323, 1999.

[12] S. Jianbo, J. Malik, “Normalized cuts and image

segmentation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8): 888-905, August 2000.

[13] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R.

Silverman, and A.Y. Wu, “An efficient k-Means Clustering

Algorithm: Analysis and Implementation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 24(7): 881-892, July

2002.

[14] J.B. MacQueen, "Some Methods for Classification and

Analysis of Multivariate Observations,” Proceedings of 5-th

Berkeley Symposium on Mathematical Statistics and Probability,

Berkeley, University of California Press, 1:281-297, 1967.

[15] R. Mathew, Z. Yu, and J. Zhang, “Detecting New Stable

Objects in Surveillance Video,” IEEE Workshop on Multimedia

Signal Processing, pp.1-4, Oct. 2005.

[16] PETS 2006 dataset, Sequence Name S7-T6-B: Video 1,

online: http://www.cvg.rdg.ac.uk/PETS2006/data.html.

[17] M. Piccardi, “Background subtraction techniques: a review,”

IEEE International Conference on Systems, Man and Cybernetics,

Vol. 4, pp. 3099-3104, October 2004.

[18] C. Stauffer and W.E.L. Grimson, “Learning Patterns of

Activity Using Real-Time Tracking,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8): 747-757, Aug.

2000.

[19] K. Toyama, J. Krumm, B. Brummitt, and B. Meyers,

“Wallflower: Principles and Practices of Background

Maintenance,” in Proc. of ICCV (1), pp. 255-261, 1999.

[20] S. Wills, L. Wills, “ECE 8893: Embedded Video Surveillance

Systems Projects, Spring 2007,” online:

http://users.ece.gatech.edu:80/~scotty/8893/projects.html

Figure 7: Segmentation Images

BB
+M
M
ea
n

M
M
ea
n

G
ro
un
d
Tr
ut
h

O
rig
in
al
 F
ra
m
e

CPETS_S7_T6_B

20070416-09

AVSS AB Easy

Courtyard

20070403-09

20070409-20

Figure 8: Error Measurements

MMean (160x120)

0 500 1000 1500 2000

CPETS_S7_T6_B

20070416-09

AVSS AB Easy

Courtyard

20070403-09

20070409-20

Number of Error Pixels

False Positives

False Negatives

BB+MMean (160x120)

0 500 1000 1500 2000

CPETS_S7_T6_B

20070416-09

AVSS AB Easy

Courtyard

20070403-09

20070409-20

Number of Error Pixels

False Positives

False Negatives

