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ABSTRACT 

 

As computer vision algorithms move to embedded platforms 

within distributed smart camera systems, greater attention 

must be placed on the efficient use of storage and 

computational resources.  Significant savings can be made in 

background modeling by identifying large areas that are 

homogenous in color and sparse in activity. This paper 

presents a pixel-based background model that identifies such 

areas, called BigBackground, from a single image frame for 

fast processing and efficient memory usage. We use a small 

15 color palette to identify and represent BigBackground 

colors. Results on a variety of outdoor and standard test 

sequences show that our algorithm performs in real-time on 

an embedded processing platform (the eBox-2300) with 

reliable background/foreground segmentation accuracy. 

 

Index Terms— Embedded Processors, Color 

Clustering, Background Modeling, Multimodal 

 

1. INTRODUCTION 

 

The complexities of observed scenes such as airport/train 

terminals, traffic intersections, and public events make it 

impractical to rely solely on human operators for scene 

monitoring. The availability of low-cost embedded 

computing platforms and continuing advances in computer 

vision algorithms have made it practical for designers to 

consider automated solutions. Many surveillance-based 

computer vision applications rely on background modeling 

algorithms to segment foreground from background. This 

information is used in higher-level tasks such as people 

tracking, unattended object detection, or anomalous activity 

recognition. Moreover, in some video surveillance systems, 

background modeling and foreground detection are the most 

computationally expensive modules in the system [3]. Since 

resources on portable-embedded platforms are limited in 

terms of processor speed, power consumption, and memory 

capacity, efficient implementations are critical. 

Several pixel-based background models continuously 

maintain color statistics for each pixel [4,17,18,19]. This 

means that for all frames, every pixel is treated similarly, 

requiring similar processing overhead and number of 

memory accesses. However, long-term stable background 

data can be represented more compactly and processed 

faster than new ephemeral foreground data since it remains 

relatively unchanged. 

We present an efficient hybrid background modeling 

algorithm intended for resource-constrained applications. 

The algorithm applies to each image pixel, one of two 

different background modeling techniques, BigBackground 

(BB) or Multimodal Mean (MMean), depending on whether 

the pixel is classified as stable versus varying, respectively.  

Pixels in large, rigid background objects, such as walls of 

buildings, tree trunks, or sidewalks, will be treated as stable 

pixels and modeled using a modeling technique called 

BigBackground.  Varying pixels are pixels on multimodal 

dynamic background elements, such as fluttering leaves, or 

pixels through which moving foreground objects often pass.  

These are modeled using an adaptive multimodal technique, 

called Multimodal Mean [2]. MMean records and maintains, 

for each pixel, a set of average color values for a small 

number of background modes the pixel encounters.  This set 

of modes can grow or shrink to allow adaptation of changing 

pixel values and handling of dynamic background elements, 

such as rippling waves. 

Identifying stable pixels is done using a simple, yet novel 

technique, based on color clustering within a single initial 

image, with no prior information of the scene.  A storage-

efficient color palette is created to represent the 

BigBackground colors in the large, stable background 

regions, which account for 47% – 73% of pixels in our test 

sequences. When using the two techniques, the classification 

of pixels as stable versus varying is not permanent.  Pixels 

may migrate from one class to another if they frequently fail 

to match the background model applied to them. 

These two backgrounding methods in our hybrid 

algorithm provide an effective balance between the 

computational complexities needed for accuracy in adapting 

new scene elements, with the efficiency achieved by quickly 

processing large rigid background objects. Our algorithm 

works well in real-world indoor and outdoor sequences, with 

substantial speedup, when compared to using only MMean, 

in sparsely populated scenes.  

We implemented the hybrid algorithm on an eBox-2300 

portable embedded computing platform, shown in Figure 1 



 

[6]. The dimensions of the eBox are 115×115×35 mm with a 

weight of 505g. It contains a Vortex86 SoC-200MHz fanless 

CPU, with 128MB of onboard SDRAM. It supports up to 

2GB of flash memory and is designed for low power 

consumption (15 Watts). The eBox’s size, weight, and 

power consumption make it an attractive platform for 

deployment in a variety of indoor/outdoor conditions. It can 

be easily and inconspicuously mounted on walls, monitors, 

poles, etc., and be attached to a USB camera for data 

collection and processing. Its wireless port can be used to 

connect to other devices or send processed data to a remote, 

off-site server. However, the limited memory, storage 

capabilities, and processor speed of the eBox makes 

efficient algorithm implementations critical. Our algorithm 

has been able to achieve real-time performance in real-world 

test sequences by taking such factors into account in the 

algorithm design.  

 This paper is organized as follows.  Section 2 contains a 

discussion of commonly used background modeling 

algorithms and color clustering algorithms. In section 3 we 

describe the motivation for BigBackground modeling and its 

initialization. Section 4 discusses background/foreground 

segmentation. Section 5 contains descriptions of 

experiments and discussion of results.  Section 6 concludes 

the discussion. 

 

2. RELATED WORK 

 

Several methods for background/foreground segmentation 

exist, varying in computational complexity and detection 

accuracy. Simple techniques include frame differencing and 

temporal median filters. More complex techniques utilize 

Gaussian distribution functions or motion analysis. Recent 

surveys of these can be found in [4,17]. Also, background 

models can be annotated with temporal information [1,15] to 

detect new stationary objects or candidate background 

pixels. 

The storage requirements of multimodal background 

models are large because they retain multiple color values 

per pixel location, as well as additional values such as 

weights, variance, means, or observation counts for record 

keeping. This can require over three times the storage 

needed to store a single uncompressed image frame, and 

numerous memory accesses to process data. For example, 

the storage requirements of the Mixture of Gaussians 

(MOG) technique [18] are approximately k × 20 bytes per 

pixel where five 32-bit floating point numbers represent 

stored weight, variance, and running RGB means. k 

represents the number of  Gaussians per pixel. If four modes 

are used, this would make the MOG storage requirements 

for a 160×120 frame 1.5 MB. This storage requirement, as 

well as memory accesses, increases proportionally to the 

number of background modes per pixel location. Since the 

background is a slowly changing feature within a scene, 

processing time and memory accesses can be reduced by 

creating a representation space for commonly seen pixels 

and keeping their maintenance costs minimal. This can be 

done by clustering colors belonging to large background 

regions into a separate representation space, for quick 

identification and processing. 

Data clustering is an unsupervised classification of 

patterns into groups.  It is often used in computer vision to 

perform color clustering and image segmentation [11]. 

These include histograms, k-means clustering, octrees, mean 

shift segmentation, and normalized cuts.  

Creating a histogram from the color space is one of the 

simplest ways of clustering pixel data.  The color space can 

be divided into equally spaced bins with counts incremented 

depending on the bin to which a pixel belongs.  This is fast, 

as only a single scan through the image is required, and it 

can be memory efficient, depending on the number of bins 

used.  This technique is also referred to as the popularity 

method [9]. 

K-means clustering is another clustering algorithm that 

can be used to cluster colors [13].  In this algorithm, k 

number of centroids are defined a priori. Each pixel in the 

image is matched with its nearest centroid, creating k 

clusters.  Then, barycenters of each cluster are computed, 

creating a new set of centroids.  Each pixel is then re-

associated to the new set of centroids until the centroids no 

longer move.  At this stage, a locally-optimal set of color 

values are said to be found [14]. 

Octree [8] is a clustering technique that categorizes a 

color space into groups of branches and leaves. The octree 

has eight levels that represent the eight bit positions of an 

RGB color value. Indexing into the octree is performed by 

grouping bit positions of the pixel’s RGB color components 

into three-bit words. The top level contains eight child 

branches each of which could contain a leaf or eight 

additional child branches. To cluster image colors using 

octrees, the image is scanned in raster order with each pixel 

being inserted into its appropriate leaf in the octree. A leaf 

represents all the pixel values that fall within the bit index 

ranges ascribed by the octree. The lowest level of the octree, 

indexed by the LSBs of the RGB pixel value, contains the 

most detailed grouping of colors. Using the octree for color 

clustering is advantageous because it can be created quickly 

and requires a small amount of memory to create and store. 

Mean shift segmentation [7] and normalized cuts in 

graph-theoretic segmentation [12] are often used for image 

segmentation [5].  In the mean shift segmentation algorithm, 

a number of initial search window locations are first chosen 

uniformly in the color space.  The centroids of the data 

 
Figure 1: eBox 2300 embedded PC 



points within each window are computed and the windows 

are then shifted such that their centers match the computed 

centroids.  This centroid computation and window shifting is 

repeated until the windows no longer move.  Overlapping 

windows are usually merged. 

Normalized cuts in graph theoretic segmentation is more 

complex, as it involves creating a weighted undirected graph 

from the pixel data points. The edges that are formed 

between every pair of pixel points are a function of 

similarity between the pair. In clustering, the set of points 

are partitioned into disjoint sets such that a normalized sum 

of the weights of all the edges connecting a pair of partitions 

is minimized. 

Initially, we experimented with a number of different 

clustering algorithms, including k-means, octree, and 

histogram population. A critical difference in our goals 

compared with traditional clustering methods is that we are 

interested in identifying and modeling stable regions of 

pixels, which typically do not completely cover the image.  

Traditional segmentation methods aim to cluster data so that 

the entire image is segmented and each segment is mapped 

to a visually optimal cluster color. Our use of color data 

clustering is focused on determining the most commonly 

occurring colors in the image.  Interestingly, our 

experiments with the various clustering methods found that 

they tend to identify a similar set of commonly occurring 

colors in a given image. Since the most common colors 

could be found reliably, independent of the method used, we 

chose histogram population on which to base the 

BigBackground clustering method because of its simplicity, 

fast processing time, and low computational overhead. 
 

3. BIGBACKGROUND 

 

Large objects in a scene are likely permanent, rigid 

background. Examples of this include roads, sidewalks, 

buildings, and walls. Depending on the camera’s field of 

view, these background objects can cover a large percentage 

of the image frame. Due to the size of these objects, and 

their relatively homogenous color distributions, it is possible 

to identify them by finding the most commonly occurring 

colors in the image. BigBackground colors are stored in a 

palette and used, in combination with spatial information, to 

identify stable pixels from a single image frame. 

Pixels matching the most common colors in the image 

are treated as likely belonging to BigBackground objects. 

Based on an initial image frame, a spatial index map is 

created to record the location of identified stable pixels and 

their associated BigBackground color (as an index into the 

palette). The initialization of the BigBackground model 

occurs in two steps.  The first step scans the initial image to 

identify the 15 most commonly occurring colors. We found 

that 15 is sufficient to capture the biggest objects and  

achieve high coverage of stable regions across the image. 

The second step takes the initial image and tags pixels  

 
as stable in the index map if they match one of the colors in 

the palette. Pixels not identified as stable in the initial frame 

are treated as varying and are processed using the adaptive 

MMean background modeling algorithm [2]. 

 

3.1. BigBackground Palette Generation 

 

Colors associated with BigBackground pixels are stored in a 

small color palette found using histogram population. The 

histogram bin is sorted by popularity and the k-most 

populated color bins and their center values are chosen as 

the BigBackground colors. The simplicity of initializing and 

creating a histogram for an image makes this technique very 

efficient and well-suited for BigBackground processing. 

 

3.2. BigBackground Initialization 

 

The BigBackground color palette is initialized based solely 

on a single image frame. Using the palette colors, a 

BigBackground image map is created, identifying all the 

pixels in the initialization image that match within a 

threshold, one of the BigBackground colors. The 

background image map is of size 2Bytes × (rows × cols). 

For a 160×120 image, 37.5 KB is needed to store the 

background image map.  

Each element in the image map corresponds to an image 

pixel and is structured as shown in Figure 2. The Palette 

Index field contains an index into the BigBackground color 

palette. Varying pixels, those that are non-BigBackground, 

are assigned the number zero for the Palette Index field. The 

Unmatched Count field indicates how many times a 

BigBackground Color was not matched for a given pixel 

location in a frame. The purposes of these fields are 

explained in greater detail in Section 4. 

Figure 3 shows several different scenes and their 

corresponding BigBackground segmentations. The 

percentage of BigBackground coverage for the initialization 

frame is also shown. These scenes have a variety of features 

that present unique challenges to the BigBackground model. 

20070403-09 contains fluttering tree leaves which will 

reduce overall BigBackground coverage. The sequence 

named Courtyard is captured from a high vantage point, with 

moving clouds and daytime lighting changes. The 

CPETS_S7_T6_B sequence has a significant amount of 

pedestrian traffic. For these scenes, the BigBackground 

covers from 47% to 73% of the image on average over their 

entire durations. Efficiently processing and storing the data 

in the high coverage “stable” BigBackground areas will 
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Figure 2: BigBackground Image Map Structure 



yield significant improvements in execution time and 

memory accesses. 

 

4. BACKGROUND/FOREGROUND SEGMENTATION 

 

Based solely on the BigBackground image map, pixel 

locations are identified as being either stable or varying.  

Stable pixels are processed by the BigBackground modeling 

algorithm, while varying pixels are processed using the 

adaptive MMean algorithm. Palette indices in the 

background image that map from 1-15 indicate that the pixel 

is stable and its location has a BigBackground color 

(specified by the palette index) that should be processed 

using the BigBackground technique. A palette index of 0 

indicates that the pixel is varying and does not have a 

BigBackground color, so the MMean algorithm is used to 

process the pixel.  

 

4.1. Adaptive Multimodal Mean Modeling 

 

The MMean algorithm, described in detail in [2], does the 

following. For each pixel location in the image, its current 

value is compared against a set of background “cells,” 

representing observed background modes, for that location. 

Each cell contains a running sum of observed RGB 

component values, a birth date indicating when the pixel 

first was observed, and an observation count. This is 

illustrated in Figure 4. The fields Rsum, Gsum, Bsum, are the 

sum of the individual R, G, B component values that have 

matched the cell. Rcount1 and Rcount2 are counters used by 

the MMean cell replacement policy to determine which 

pixels will be replaced if a new pixel in the current frame is 

found. The Birth Date field records the frame in which the 

cell was created and the Count field increments by one each 

time a new pixel matches the cell. 

A pixel is determined to match one of the MMean cells if  

its color component x is within a predefined threshold of Ej 

of one of the cells according to Equation 1: 

 

  |I(j,x) - µ(j,x)| ≤ Ej                                    (1)   

 

where I(j,x) is the current image pixel value for color 

component j at location x. µ(j,x) is the mean value of color 

component j at location x, computed by dividing the running 

sum of the component by Count. If a match is found, the 

cell’s observation count value is incremented by one and the 

current pixel’s RGB component values are added to the 

cell’s individual RGB component sums. If a match is not 

found, a new MMean cell is created with the least observed 

cell being deleted if it falls below a stated cell observation 

threshold Cth. A pixel is declared foreground if its 

observation count is less than the foreground threshold Fth.  

Figure 3: BigBackground Initialization 
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Cell counts are periodically decimated, according to a 

predetermined decimation rate DECRATE, to get rid of 

unseen cells.   

 

4.2. BigBackground Modeling 

 

BigBackground modeling is performed on stable pixels. The 

BigBackground color for a stable pixel location is obtained 

from the color palette and compared against the current pixel 

using Equation 1. If the current pixel matches the 

BigBackground color, then it is known that no change has 

occurred and no further processing is done. This allows the 

algorithm to quickly skip over stable pixels and focus 

resources on the areas of the image that feature frequent 

changes. If the current pixel does not match the 

BigBackground color, then we know that it has potentially 

been occluded and the pixel is declared as foreground, with 

the corresponding Unmatched Count field in the image map 

incremented by one.  

 

4.3. Changing a Pixel’s Stability Classification 

 

Situations will arise where pixels classified as varying 

should be migrated to the stable class, and vice versa.  For 

example, a pixel on a moving object may be originally 

classified as stable because it happened to have a color 

similar to a large, stable background structure, such as a 

brick wall.  Once the moving object passes by, unless the 

brick wall is behind the object, the pixel will change to one 

or more different color values and should be treated as a 

varying pixel modeled by the adaptive technique.  

Conversely, an object that moves into a scene and becomes 

stationary might cause a varying pixel to become stable.  

A pixel that is classified as varying should be reclassified 

as a stable pixel if it satisfies the following conditions: 

 

1.    Count ≥ MMWindow  

2.    MMWindow ≤ Age ≤  (MMWindow + MRange) 

3.    The cell RGB mean “closely” matches one of the  

       BigBackground palette colors BBcolors according to    

       Equation  2  

 

|BBcolor(j) - µ(j,x)| ≤ (Ej /3)                       (2)   

 

where MMWindow is the amount of time a pixel must be seen 

before it is considered to be long-term background. The 

conditions state that a pixel must be old enough (Condition 

1), seen frequently enough within a certain age range 

(Condition 2), and be very close in color value to an existing 

BigBackground color (Condition 3). Condition 3 contains a 

tighter threshold window than the match criteria used in 

Equation 1. This assures us that pixels which are 

numerically within the bounds of the threshold, but 

perceptually different in color, are not declared as stable in 

the image map.  

A pixel that is classified as stable may be reclassified as 

varying if Equation 3 is true:  

 

         UnmatchedCount  ≥ BThr×BBWindow                        (3) 

 

where BBWindow is a small time-block in which stable pixels 

are examined for occlusions. BThr is the percentage of the 

window that must have unmatched entries for the pixel to be 

migrated to the varying class. Every BBWindow frames the 

UnmatchedCount is reset to zero. If a stable pixel satisfies 

Equation 3, then it signifies that the pixel location has 

become occluded. The pixel is migrated to the varying class 

for further examination. This is illustrated in Figure 5. 

 

4.4. BigBackground Illumination Change Adaptation 

 

Illumination changes occur commonly in outdoor scenes due 

to external factors such as shadows, passing clouds, or 

simple changes in the time of day. The BigBackground color 

palette helps adapt to these changes to ensure that the large 

background regions are processed quickly. This is 

accomplished by tracking the percentage of BigBackground 

pixels detected in each frame and looking for large, 

sustained deviations in BigBackground coverage. A running 

counter, called COVcount, maintains a recent history of the 

number of times the BigBackground coverage has fallen a 

significant amount below its initial coverage. The 

BigBackground coverage percentage for the current frame is 

compared to the coverage of the initialization frame. 

COVcount is incremented by one if there is a negative 

differentiation, BBdev, from the BigBackground coverage 

percentage that was computed in the initialization frame. In 

the opposite case, where there is no significant drop in the 

 Figure 4: MMean Cell Structure 
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BigBackground coverage, COVcount is decremented by one, 

until COVcount hits zero. If there are several consecutive 

frames in which the BigBackground coverage falls, the 

COVcount will steadily increase. If the BigBackground 

coverage percentage remains steady over time, then COVcount 

will remain close to or at zero. When COVcount is high 

enough, then a lighting change has occurred and the entire 

BigBackground map is recomputed to adjust for the new 

environmental conditions. 

Figure 6 shows a plot of the percentage of 

BigBackground pixels detected over the entire duration of 

sequence Courtyard, based solely on the BigBackground 

colors detected in the first frame. There is a substantial 

lighting change that occurs within the first twenty frames 

that causes a sharp drop in BigBackground coverage. From 

frames 100-150 and 350-450, the intensity from the sun 

changes dramatically, causing sharp variations between low 

and bright lighting, and the visibility of shadows cast.  The 

dips in the crossed line of the plot indicate where 

illumination changes are occurring. Once the color palette 

has been adjusted to compensate for illumination, the 

BigBackground coverage reflects the current lighting 

conditions.   

 

5. EXPERIMENTS AND RESULTS  
 

We have tested our hybrid algorithm on a variety of image 

sequences. All sequences were resized in resolution to 

160x120. The CPETS_S7_T6_B and AVSS AB Easy are 

standard test sequences used in abandoned baggage 

detection [16,10]. The CPETS_S7_T6_B and AVSS AB 

Easy were downsampled in frame-rate to 1fps, for 

processing on the eBox. Sequences 20070403-09, 

20070409-20, and 20070416-09 were captured by graduate 

students enrolled in an embedded video surveillance course 

at the Georgia Institute of Technology [20]. Table 1 includes 

the details for each scene: number of frames processed and 

ground truth frame number, with all sequences having a 

starting frame number of zero. The following parameters 

were used in our experiments, with 4 cells per set used in 

MMean: 

 

      Ej= 30, 15 BigBackground Colors,  MMWindow = 25 

      BBWindow= 10, BThr = 0.7, MRange = 10, BBdev = 5% 

 

Figure 7 shows the output frames of our algorithm and the 

ground truth frames in the selected test sequences. Figure 8 

shows the false positive/negative errors for each scene. 

Table 2 lists the average percentage of pixels that 

matched BigBackground, as well as the performance of the 

hybrid BB+MMean algorithm with that of the standalone 

MMean.  Depending on scene activity and environmental 

conditions (e.g. lighting, weather), the percentage of 

BigBackground coverage over the scene duration ranged 

from 47% to 73%. 

A detailed analysis in [2] of the performance of MMean 

in comparison to popular backgrounding techniques, such as 

MOG, revealed a 6x improvement in MMean’s execution 

time over MOG on the eBox-2300 platform.   

 

Table 2: Performance Comparison (eBox-2300) 

 
Processing Frame 

Rates (fps) 

Sequence  

(160x120) 

Average BB 

Coverage 

MMean BB+MMean 

20070403-09 47% 34 43 
Courtyard 50% 29 42 

CPETS_S7_T6_B 60% 35 53 
AVSS AB Easy 63% 33 52 
20070409-20 71% 36 66 
20070416-09 73% 36 69 
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The hybrid BB+MMean algorithm achieves an average 

processing speedup of 58% over using just the MMean.  

As shown in Figure 7, our algorithm performs 

particularly well in scenes where the color distributions are 

homogenous and lighting conditions are stable. Our fastest 

performing sequences, 20070409-20 and 20070416-09, have 

these features. Outdoor scenes containing varying lighting 

conditions and dynamic backgrounds, such as the 20070403-

09 and Courtyard sequences, are more challenging. The 

20070403-09 sequence contained large trees with fluttering 

leaves, which caused many of the pixels to be multimodal 

and therefore processed with the slower, adaptive, MMean 

technique. In the Courtyard scene, moving clouds and 

daytime lighting changes required several recomputations of 

the BigBackground map. In all the scenes tested, 15 colors 

were adequate in capturing large, stable, BigBackground 

objects such as tree trunks, roads, walls, and the sky.  

 

6. CONCLUSION 

 

This paper presents a hybrid technique to reduce the 

processing time devoted to segmenting foreground/back-

ground objects by quickly identifying large stable back-

ground regions, and efficiently processing them. A color 

palette of 15 colors is used to identify colors belonging to 

the BigBackground objects, while an image map is created 

to store their spatial locations. Our hybrid algorithm showed 

an average 58% speedup in processing time over the 

MMean, while maintaining reasonable accuracy in 

segmentation. It performs in real-time on an embedded 

platform with limited processing resources. Since 

background modeling comprises the most computationally 

intensive component in many computer vision applications, 

our technique can be used as an important component in 

more complex scene analysis.  
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Figure 7: Segmentation Images 
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Figure 8:  Error Measurements 

MMean (160x120)  

0 500 1000 1500 2000

CPETS_S7_T6_B

20070416-09

AVSS AB Easy

Courtyard

20070403-09

20070409-20

Number of Error Pixels

False Positives

False Negatives

BB+MMean (160x120)

0 500 1000 1500 2000

CPETS_S7_T6_B

20070416-09

AVSS AB Easy

Courtyard

20070403-09

20070409-20

Number of Error Pixels

False Positives

False Negatives


