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Abstract—We present a detailed analysis of the sparse
matricized tensor times Khatri-Rao product (MTTKRP) kernel
that is the key bottleneck in various sparse tensor computations.
By using the well-known roofline model and carefully instru-
menting the state-of-the-art MTTKRP code with the pressure
point analysis technique, we show that the performance of
MTTKRP is highly sensitive to data traffic like other sparse
computations. We also identify key performance bottlenecks
that diverge from our prior knowledge of sparse MTTKRP on
modern processors.

We propose to use blocking optimization techniques to
address the bottlenecks identified within the MTTKRP com-
putation. By using a combination of two blocking techniques,
we achieve more than 3.5× and 2.0× speedup over the state-
of-the-art MTTKRP implementation in the SPLATT library
on four real-world data sets and two synthetically generated
data sets, respectively. We also employ a new data partitioning
technique for the distributed MTTKRP implementation, which
provides an additional dimension of scalability. As a result,
our implementation exhibits good strong scaling and a 1.6×
speedup on 64 nodes for two real-world data sets, when
compared to the SPLATT library.

Keywords-tensor, decomposition, canonical polyadic, MPI,
distributed, high-performance computing, MTTKRP

I. INTRODUCTION

We conduct a low-level performance analysis and blocking

optimization of the sparse matricized tensor times Khatri-

Rao product (MTTKRP) - a key computational bottleneck

in various sparse tensor computations. Sparse tensor com-

putations - in particular, tensor decompositions such as the

canonical polyadic decomposition (CPD) - are becoming

increasingly popular in the HPC community for analyzing

large quantities of data with multi-dimensional relationships.

Therefore, having an efficient and scalable implementation

of sparse MTTKRP is highly desirable for a wide variety

of applications. Signal processing, computer vision, network

intrusion detection, and machine learning [1], [2] are just a

few of the many fields that employ tensor computations.

Our study shows that sparse MTTKRP operations are

memory bound even for extremely high ranks; therefore,

optimization strategies should focus on minimizing data

movement from slow memory. This is in contrast to what

many other researches have been focusing on, which is min-

imizing the total number of floating point operations [3]–[5].

While cache tiling has been attempted in one prior work [4],

it showed little to no benefit (< 20% improvement). In this

paper, we employ blocking optimization techniques to address

∗During the period of this research, Xing Liu was affiliated with IBM T.
J. Watson Research Center.

performance bottlenecks of sparse MTTKRP, identified from

a careful performance analysis. While reducing computation

may also indirectly reduce data movement, our work explicitly

targets opportunities for reducing data movement through

various blocking techniques.
Even though blocking techniques have been well stud-

ied in other sparse computation methods such as sparse

matrix-vector multiplication [6] (SpMV) and sparse matrix-

matrix multiplication [7] (SpGEMM), a systematic study on

applying blocking techniques to tensors has not yet been

conducted. Also, due to the inherent complexity of high-order

computation, experience from prior work in other fields can

not easily be applied to tensors. This was demonstrated in

the work by Smith et al. [4], where re-ordering nonzeros

through hypergraph partitioning yielded little improvement in

performance. We do, however, leverage their work to conduct

a more systematic analysis of the interaction between various

properties of a tensor and how they influence memory access.
Findings and contributions: This paper makes three

key contributions to the understanding and performance of

sparse MTTKRP.

1) Analysis: Using the roofline model and the pressure

point analysis (PPA) technique, we systematically ana-

lyze and identify key bottlenecks in the state-of-the-

art MTTKRP kernel from the SPLATT library [4].

We show that there are two key bottlenecks in the

SPLATT MTTKRP kernel - pressure on the load units

in the micro-architcture, and main memory access to the

factor matrices (Section IV). We also highlight notable

performance trends in our results and correlate them to

properties of the tensor. (Section VI)

2) Optimization: After identifying targets for optimization,

we selectively apply a series of blocking techniques to

the baseline SPLATT implementation to improve its

performance, including a novel blocking method that

is specific to tensor computation. We achieve up to

2.0× speedup over baseline SPLATT MTTKRP for

two synthetically generated data sets with a Poisson

distribution, and an even higher 3.5× speedup for four

real-world data sets on a single IBM POWER8 processor.

(Section V, VI)

3) Distributed implementation: We combine our block-

ing optimized MTTKRP kernel with a unique processor

partitioning mechanism to create a distributed MTTKRP

implementation that outperforms MTTKRP from dis-

tributed SPLATT [8], which is also known to have

the fastest distributed MTTKRP implementation [9],
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by as much as 1.6× on 64 nodes. Our partitioning

scheme improves strong scaling by distributing the factor

matrices along the rank among subsets of processors,

which completely eliminates communication between

these subsets. However, this does require that the entire

tensor be replicated across these processor subsets,

creating a memory-communication trade-off.

To the best of our knowledge, our work is the first to

systematically study the performance bottlenecks of sparse

MTTKRP and explore the use of various blocking techniques

to improve its performance on both shared memory and

distributed systems. Beyond the analysis and the performance

improvements, our work demonstrates the importance of

exploiting structure within real-world data, and paves the

way for new avenues of research in performance modeling

and auto-tuning sparse tensor decomposition.

II. RELATED WORK

Due to the rise of big data analytics, tensors have become

popular in the HPC community. A significant amount of

recent work has focused on optimizing tensor computations in

sequential, shared memory parallel, and distributed settings.

The MATLAB Tensor Toolbox [10] is a widely-used tensor

package, which provides a sequential implementaion for

both dense and sparse tensors. Tensorlab provides another

sequential MATLAB implementation, which can be used to

rapidly prototype various tensor decomposition methods with

structured factors.

The work by Li et al. [11] focuses on shared memory

optimizations for dense tensors, in which they propose in-

place computation for the tensor-times-matrix multiply that

dramatically reduces data movement. The most recent work

on sparse tensor computations are SPLATT [4] and its higher

order generalization – CSF, by Smith et al. [12]. They are

also among the fastest tensor implementations and are used

in this paper as the performance baseline. SPLATT was

also optimized for the Intel Xeon Phi Knights Landing

architecture which features both DDR4 and MCRDAM

(high-bandwidth) memory [13]. SPLATT allocates its factor

matrices in MCDRAM and the tensor data itself in the larger

DDR4 memory.

In the category of distributed parallel implemtations,

Cyclops Tensor Framework [14] uses OpenMP+MPI par-

allelism and focuses on communication reduction for tensor

contraction. GigaTensor [3] is a tensor implementation that

uses the MapReduce framework, and it restructures MTTKRP

as a series of Hadamard products. Many work on distributed

tensor algorithms focus on data distribution. DFacTo [5] and

SALS [15] use coarse-grained distribution, in which only

one tensor mode is partitioned across MPI processes and

each process own a set of contiguous slices of the tensor. In

contrast, the work by Smith et al. [8] uses the medium-grained

decomposition, in which all tensor modes are partitioned.

HyperTensor [16] uses the fine-grained decomposition to

partition nonzeros individually. More recently, HyperTensor

was extended to include memoization, which trades off

storage overhead in order to reduce the cost of individual

MTTKRP operations [17].

III. TENSOR OVERVIEW

We begin by providing a brief overview of MTTKRP and

related tensor notations. For a more in-depth discussion of

tensors and tensor computations, including their applications,

we direct the readers to several extensive surveys [1], [2].

A. Notations

Tensors are the higher-order generalization of matrices. An

N dimensional tensor ia also referred to as having N modes
(a mode-N tensor) or an order N. The following notations

are used in this paper:

1) Scalars are denoted by lower case letters (e.g., a).

2) Vectors are mode-1 tensors and are denoted by bold

lower case letters (e.g., a). The ith element of a vector

a is denoted by ai.

3) Matrices are mode-2 tensors and are denoted by bold

capital letters (e.g., A). If A is a I× J matrix, it can

also be denoted as A ∈ R
I×J , and its element (i, j) is

denoted as ai, j.

4) Higher-order tensors are denoted by Euler script letters

(e.g., X ). A mode-N tensor whose dimensions are I1×
I2×·· ·× IN can be denoted as X ∈ R

I1×I2×···×IN , and

its element (i1, i2, . . . , iN) is denoted as xi1,i2,...,iN .

5) Fibers are the higher-order analogue of matrix rows

and columns. A mode-n fiber is defined by fixing every

mode except the nth mode.

B. MTTKRP

MTTKRP is a common kernel in many tensor applications

and the most expensive part of tensor decompositions [4]. It

consists of two basic tensor operations: the tensor matriciza-
tion and the Khatri-Rao product.

1) Tensor matricization is the process of flattening or

unfolding a tensor into a matrix. This operation is best

understood as the rearrangement of fibers as columns of

a matrix. That is, in the mode-n matricization of a tensor

X , denoted by X(n), the mode-n fibers of X are laid

out as columns of X(n). For a tensor X ∈ R
I1×I2×···×IN ,

X(n) is a matrix of size In× În, where În = ∏i�=n Ii.

2) Khatrio-Rao product is the “matching column-wise”

Kronecker product between two matrices. That is, given

two matrices B ∈ R
J×R and C ∈ R

K×R, their Khatri-

Rao product K, denoted by K = B � C, where K is a

(J ·K)×R matrix, is defined as

B�C = [b1⊗ c1 b2⊗ c2 . . .bR⊗ cR]

Although we cover this operation for understanding

purposes, it is not usually formed explicitly in sparse

MTTKRP implementations, as we will see in the next

section.

In the context of tensor decompositions, for a mode-3

tensor X ∈ R
I×J×K , the mode-1 MTTKRP can be expressed

as A = X(1) (B�C). Here, A ∈ R
I×R, B ∈ R

J×R, C ∈
R

K×R are called the mode-1, mode-2 and mode-3 factor

matrices, respectively. The parameter R is the rank of the

tensor decomposition, which determines the accuracy and

computational complexity of the decomposition. Typically,

the mode-1 MTTKRP operation, along with the mode-2 and

mode-3 MTTKRP, are performed 10-1000s of times in one
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tensor decomposition calculation. Since the three MTTKRP

operations are identical, we will only discuss the mode-1

MTTKRP operation in this paper.

C. Sparse MTTKRP

In MTTKRP, the Khatrio-Rao product B�C is a dense

(J ·K)×R matrix. Computing and storing B�C for any

moderate sized tensor is prohibitively expensive. An efficient

MTTKRP algorithm usually does not form B�C explicitly,

and how it is calculated depends on the sparse data structures

used to store the tensor, which we will describe below.

Sparse tensors are stored in a manner similar to sparse

matrices. The two most commonly used data structures are

the coordinate (COO) format [18], where each nonzero

value is stored with its coordinates, and the 3D analogue

to the compressed sparse row (CSR) format, the SPLATT

format [4]. The higher-order extension to SPLATT is the

compressed sparse fiber (CSF) [12] format. However, in this

paper, we focus our optimization efforts on the SPLATT

format and 3D data, as it simplifies profiling and analysis,

but our methodology and result can trivially be extended to

higher-order data.

1) COO Format: Figure 1a shows a 3×3×3 tensor in the

COO format, where each nonzero (stored in val) is coupled

with its (i, j,k) coordinates (stored in i index, j index and

k index). The main advantage of this format is that the

coordinates of any nonzero element can be accessed easily.

As an example, we now describe the mode-1 MTTKRP

kernel for a sparse tensor X ∈ R
I×J×K in the COO format

and for rank R. For each nonzero t with coordinates (i, j,k)
and value v, we compute the Khatri-Rao product on the fly
by fetching the jth and kth rows of B and C, and computing

the Hadamard product between the two length-R vectors. We

then scale the vector by v. This computes the nonzero t’s
contribution to the ith row of A, and this is repeated until

all nnz nonzeros have been processed.

2) SPLATT Format: Figure 1b presents the SPLATT

format for the same tensor shown in Figure 1a. SPLATT

stores nonzeros in groups of fibers (mode-2 fibers). For each

row i, the i pointer structure points to the first and the

last non-empty fiber in its row, tracked by the k index and

k pointer structures. k index stores the mode-3 index of the

fiber (only one k index value is needed for all nonzeros in a

fiber), and k pointer points to the first and the last nonzero

in its fiber. The structures val and j index tracks the nonzero

values and the mode-2 index of each nonzero, respectively.

For a mode-3 tensor with nnz nonzeros, the amount of

memory required to store tensors in the COO format is

32 ·nnz bytes (using 64-bit for index and double precision

for value). For the SPLATT format, if the same tensor has

F non-empty fibers, then the amount of memory required to

store it is 16+8 · I +16 ·F +16 ·nnz bytes.

Using the SPLATT format provides two key advantages

over using the COO format. First is the reduction in the data

structure size, and second is the reduction in computation

and data movement that comes as a result of the CSR-like

nature of the storage format. Algorithm 1 shows the SPLATT

implementation taken straight from the source code 1 (it has

1http://cs.umn.edu/∼splatt/

been slightly edited and uses variable names from Figure 1b

to make it more readable).

Algorithm 1 SPLATT MTTKRP algorithm for a sparse

tensor X ∈ R
I×J×Kand rank R

1: A← 0
2: for i← 0 to I do
3: for j← i pointer [i] to i pointer [i+1] do
4: s← 0
5: for k← k pointer [ j] to k pointer [ j+1] do
6: for r← 0 to R do
7: s [r]+ = val [k] ·B [ j index [k]] [r]
8: for r← 0 to R do
9: A [i] [r]+ = s [r] ·C [k index [ j]] [r]

10: return A

As seen in Algorithm 1, instead of multiplying each

nonzero value by rows from both B and C before adding

to A, the SPLATT MTTKRP algorithm first multiplies

each nonzero value to a row from B (line 6–7), and then

accumulates this intermediate result for all nonzeros in the

fiber before finally multiplying (via Hadamard product) it to

the row from C (line 9–10). Therefore, more nonzeros there

are in the fiber, more computation and data movement that

can be saved.

While it is clear how many floating point operations can

be saved over COO using SPLATT, the amount of data

movement from memory that can be saved is unclear, due

to the complex nature of the interaction between the code

and the underlying hardware architecture (e.g., cache size

and hierarchy, replacement policy, etc.)

To the best of our knowledge, SPLATT is the fastest

available shared memory implementation of MTTKRP [?],

[12] and is widely used in shared and distributed MTTKRP

implementations [19]. Therefore, we focus our study on the

SPLATT MTTKRP algorithm.

IV. IDENTIFYING BOTTLENECKS IN MTTKRP

In this section, we identify potential bottlenecks in the

SPLATT MTTKRP kernel using the well-known roofline

model [20] and the pressure point analysis (PPA) method [21].

A. Roofline model analysis

We start by analyzing the baseline SPLATT kernel de-

scribed in Algorithm 1 using the roofline model. The roofline

model is a visually-intuitive and throughput-oriented method

for representing a system’s performance characteristics [20].

It plots a system’s performance for various arithmetic inten-
sities (floating–point operations per byte of DRAM traffic) of

algorithms. This visualization and mapping of performance

to algorithm helps to quantify the primary factors that are

limiting the performance of a given application.

Equations 1-3 approximate the amount of data required

from memory (Q), the number of floating point operations

(W ), and the arithmetic intensity (I) of SPLATT MTTKRP,

in which nnz is the number of nonzeros, F is the number of

non-empty fibers, R is the rank, and α is the overall cache

hit rate (which depends on both the sparsity pattern of the

tensor and the underlying hardware), and all data types (for

both values and indices) are assumed to be 64-bits long.
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Figure 1: Sparse tensor formats for a 3×3×3 tensor
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Figure 2: Arithmetic intensity of SPLATT MTTKRP for different
cache hit rates and rank sizes

In terms of data structures (Figure 1b), the first term in

Equation 1 (2 ·nnz) accounts for access to val and j index,

the second term (2 ·F) accounts for access to k index and

k pointer, the third term ((1−α) ·R ·nnz) accounts for access

to the mode-2 factor, and the fourth term ((1−α) ·R ·F)

accounts for access to the mode-3 factor. We ignore access

to i pointer since its size is negligible in comparison to

the rest, and we also ignore access to the mode-1 factor

(destination factor), since its re-use distance is short and

therefore likely to be always in the cache.

Q = 2nnz+2F +

(1−α) ·R ·nnz+(1−α) ·R ·F (1)

W = 2R(nnz+F) (2)

I =
W

Q ·8bytes
=

R
8+4R(1−α)

(3)

From Equation 3 we can derive that the arithmetic intensity

of SPLATT MTTKRP ranges from R/(8+4R) when α = 0

to R/8 when α = 1. Since we do not know exactly what

the cache hit rate would be without knowing the data and

the system architecture, we show how arithmetic intensity

changes with respect to rank R for the entire range of possible

cache hit rates in Figure 2 . Even for a very high cache hit

rate of 95%, the arithmetic intensity ranges from 1.43 at rank

16 to at most 4.90 at rank 2048. Given that state-of-the-art

CPUs and GPUs today have system balance ranging from 6

to 12, SPLATT MTTKRP will likely be memory bound in

most cases. Only when the data fits completely in the cache

and the rank is high enough (> 64), can SPLATT MTTKRP

become compute bound.

Moreover, the equation suggests that the largest portion

of that data will come from the mode-2 factor matrix (i.e.,

(1−α) ·R ·nnz from Equation 1), as nnz is typically much

larger than F . The fact that one particular factor matrix is

the primary contributor to memory traffic is a little surprising

and diverges from our intuitions, since a factor matrix is

much smaller than the the tensor.

B. Pressure point analysis

In order to validate our conclusion that SPLATT MTTKRP

is memory bound and to isolate specific sections of the code

that create bottlenecks, we perform a variation of the pressure

point analysis (PPA) [21] on the SPLATT MTTKRP kernel.

The idea behind PPA is to create artificial “pressure points”

in the code (e.g., insert/delete instructions to affect utilization,

altering memory access addresses to change the cache hit rate,

or renaming registers to change dependencies) to gain a better

understanding of which resources in the micro-architecture

are causing performance to change, and where in the code
this is happening.

Table I shows five pressure points of interest in the

SPLATT MTTKRP kernel running on a 30K×30K×30K
sparse tensor with 135 million nonzeros and for a rank of 128.

The tensor is synthetically generated with Poisson distribution,

and the execution time was measured on a IBM POWER8

server. We limited the execution to a single core to negate

non-uniform memory access (NUMA) effects, while using

two hardware threads to maximize performance.

The type 5 pressure point moves the per-fiber floating-

point operations (line 8-9 in Algorithm 1) to the per-nonzero

inner-loop (line 5 in Algorithm 1) to “emulate” the COO

kernel. This increases floating point operations but has

minimal impact on the execution time (1.54%), suggesting

that computation is not a bottleneck for SPLATT MTTKRP.

Table I: Pressure points for SPLATT MTTKRP.

Type Exec. Time Description

1 1.63 Access to B removed
2 1.81 All accesses to B is limited to L1
3 2.11 Eliminating load instructions
4 2.43 Access to C removed
5 2.64 Moving flops to the inner-loop
6 2.60 Unchanged
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The type 1 pressure point that completely eliminates access

to mode-2 factor matrix B decreases execution time by the

largest amount (37.13%), whereas eliminating access to the

mode-3 factor matrix C (type 4) shows only a small decrease

(6.64%). This suggests that accessing the mode-2 factor

matrix is much more expensive than accessing the mode-3

factor matrix and is actually the most expensive component

of SPLATT MTTKRP. In addition, instead of eliminating

access completely, if we change the pattern of access to B so

that every access is limited to the first row of the matrix (and

therefore accessed exclusively from the L1 cache), then we

reduce the execution time by 30.32% (type 2). This indicates

that caching the factor matrix B should improve performance

significantly.
Lastly, eliminating the load instructions (type 3) to the

accumulator (line 7 and 9 from Algorithm 1) reduces the

execution time by 18.77%. Since the accumulator is small

in size (8R bytes per thread) and frequently accessed, it

likely resides in the L1 cache. Therefore, we can reasonably

assume that this improvement comes not from eliminating

access to the main memory, but from reducing the pressure

on the load units in the pipeline.

From our analysis, we can draw three key conclusions.

1) SPLATT MTTKRP is memory bandwidth limited unless

all the factor matrices are small enough to completely

fit into the cache and the rank R is large enough (> 64).

Therefore we should focus on reducing memory traffic,

rather than reducing flops.

2) Accessing the mode-2 factor matrix B is the most

expensive component – more expensive than access-

ing/streaming the tensor. We should attempt to maximize

cache re-use for this factor matrix.

3) There exists a load unit pressure in the SPLATT

MTTKRP kernel, whose cost is comparable to accessing

the mode-2 factor matrix. It mainly comes from the

innermost loop where the MTTKRP kernel accesses

the mode-2 factor matrix and the accumulator array. To

improve the performance of SPLATT MTTKRP, we

should also attempt to address this bottleneck.

V. BLOCKING TECHNIQUES

In Section IV, we discovered that the load unit pressure

due to accessing the accumulator array and reading the mode-

2 factor matrix from memory are the two major bottlenecks

in SPLATT MTTKRP. In this section, we propose to use

a combination of two blocking techniques to address these

two bottlenecks.
While blocking is commonly used to improve the perfor-

mance of various sparse matrix kernels, e.g., sparse matrix-

vector multiply, how to apply it to tensor computation is

not obvious and relatively more difficult, mainly due to the

inherently complex nature of high order sparse computations.

Existing research has used re-ordering techniques to improve

the data locality of MTTKRP, which requires expensive

graph partitioning and extensive reorganization of the original

data structure, but observed only a small improvement

in performance [4]. In contrast, the blocking optimization

techniques presented in this section require very little data

rearrangement and overhead.

A. Multi-dimensional blocking

The most obvious way to employ blocking techniques

for tensors is to block the data along modes - similarly to

how data is blocked in sparse matrix-vector multiply - in an

attempt to fit rows of factor matrices into the cache. This

is intuitive since a row of the factor matrix represents the

granularity of computation - ı.e., each nonzero scales a row of

the factor matrices. Figure 3a shows an example of blocking

for a mode-3 tensor, where the tensor has been blocked into

2×3×2 blocks. In order to process the sub-tensor X1, you

would require contributions from the sub-matrices A1, B1,

and C1. If the sub-matrices are small enough, then the rows

would be accessed mostly from the cache, rather than being

streamed from the slow memory every time it is needed.

We call this blocking mechanism multi-dimensional blocking
(MB).

The downside of multi-dimensional blocking is that the

number of redundant accesses to the factor matrices are

increased overall. That is, if the tensor has been blocked into

NA, NB, and NC blocks along mode-1, mode-2, and mode-3,

respectively, then the number of times each factor matrix has

to be accessed is as follows:

1) A (mode-1): NB ·NC times

2) B (mode-2): NA ·NC times

3) C (mode-3): NA ·NB times

The goal of multi-dimensional blocking is to increase

the cache hit rate enough so that the penalty of redundant

access to the slow memory can be amortized by accessing

as much of the data as possible from the cache. Therefore,

it is also entirely possible to end up with lower performance

by loading more data from the slow memory if non-optimal

blocking sizes are used. Finding the optimal blocking size

for every mode is prohibitively expensive for very high order

tensors. We will discuss how to select the optimal blocking

sizes in Section V-C.

Additionally, to implement multi-dimensional blocking,

we need to reorganize the tensor data so that the nonzeros

in each block are stored continuously. However, this cost is

negligible compared to the reordering methods, such as the

graph partitioning used in [4], and can be amortized by the

10-1000s of iterations of the CPD algorithm.

B. Rank blocking

We propose a new type of blocking that is specific to

tensor decomposition - rank blocking (RankB). Rank blocking

divides factor matrices along the rank (or columns) into

NRankB strips with a size of I×BSRankB, where BSRankB =
R/NRankB. Contribution to the ith strip of the mode-3 factor

matrix C can be computed independently of other strips and

only requires accessing the ith strip of A and B. Algorithm 2

illustrates the MTTKRP implementation using rank blocking.

Since granularity of computation for MTTKRP is by row,

blocking along the rows may seem more intuitive. However,

since we have determined that sparse MTTKRP is memory

bound, it is more important to consider the granularity of

memory access. Blocking along the rank of a factor matrix

will allow more rows to fit in cache, thereby increasing the

chance of finding a particular row in cache.
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Figure 3: Blocking of a tensor

Algorithm 2 MTTKRP algorithm with rank blocking for a

sparse tensor X ∈ R
I×J×K(rank = R and NRegB = 16).

1: A← 0
2: rr← 0
3: ip← i pointer
4: kp← k pointer
5: ki← k index
6: ji← j index
7: while rr < R do
8: for i← 0 to I do
9: for j← ip [i] to ip [i+1] do

10: for r← rr to rr+BSRankB do
11: reg0← 0
12: . . .
13: reg15← 0
14: for k← kp [ j] to kp [ j+1] do
15: reg0 += val [k] ·B [ j index [k]] [r+0]
16: . . .
17: reg15 += val [k] ·B [ ji [k]] [r+15]

18: A [i] [r+0] += reg0 ·C [ki [ j]] [r+0]
19: . . .
20: A [i] [r+15] += reg15 ·C [ki [ j]] [r+15]
21: r += 16
22: rr += BSRankB
23: return A

Rank blocking can be easily applied in addition to multi-

dimensional blocking to further improve performance. Rank

blocking can also give performance improvements when

multi-dimensional blocking is ineffective. For example, when

the rank is large and each rows is accessed only a few times,

the cache hit rate may not increase significantly through multi-

dimensional blocking alone. Figure 3b shows an example that

combines multi-dimensional blocking with rank blocking.

Applying rank blocking allows us to use the register

blocking technique to reduce the load unit pressure caused by

accessing the accumulator array. Algorithm 2 also shows how

to apply the register blocking technique with rank blocking. In

Algorithm 1, lines 6–7 multiply each nonzero in a fiber with a

row from matrix B and accumulates the result, which requires

loading the entire accumulator array once per nonzero. We

can divide the accumulator array into NRegB blocks, and

process the fiber in NRegB steps. At each step, the nonzeros

in the fiber are multiplied with the entries from only one block

of the accumulator array. If each block of the accumulator

array is small enough to fit into registers, it can completely

eliminate the use of the accumulator array, which reduces

the number of load instructions.

Note that while the nonzeros in each fiber are accessed

redundantly NRegB times, they are found in the cache with

high probability, due to their extremely short re-use distance.

The size of register blocking is limited by the number of

available hardware registers and should be chosen as a

multiple of the cache line size.

Lastly, rank blocking can be used in a distributed setting

to improve scalability. The medium-grained decomposition

used by SPLATT [8] suffers from load imbalance and

high communication overhead issues on a large number

nodes (see Section VI-D for details on the medium-grained

decomposition). By first partitioning the processor along

the rank, and then partitioning each subset of processors

using the medium-grained decomposition, the number of

nonzeros assigned to each processor will be larger than

the medium-grained decomposition, without increasing the

communication complexity, since operations on different

blocks along the rank are completely independent. For

example, in Figure 3b, the processors can been divided into

a 2×3×2×NRank grid, where NRank = 2. Therefore, there

will be two copies of the tensor X among the processors,

one copy for each 2×3×2 set, and each set will work on

separate, non-overlapping blocks along the rank.

While not necessary, a small rearrangement of the factor

matrix can allow rank blocking to work more efficiently. The

tall and narrow strips of the factor matrix are stacked on top

of each other to make, for example, an (I ·NRank)×BSRank
matrix. This is done to ensure a more sequential access to

the memory, which, in turn, allows the hardware prefetcher

to work more efficiently, as well as to reduce the number of

expensive page misses.

C. Selecting the blocking sizes

We propose to use a simple heuristic to select the blocking

sizes for multi-dimensional blocking and rank blocking.

Our heuristic is inspired by the performance analysis in

Section IV. For rank blocking, we go through block sizes

in 128 bytes increments - equivalent to the cache line

size on our experimental system - until the performance

stops improving. For multi-dimensional blocking, we start

with the longest mode, and increase the number of blocks
along that mode until the performance stops improving,

and then traverse the other modes in descending order of

mode lengths. In some cases, not blocking at all along a
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Table II: Synthetic and real world data sets used for our experiments

Name Dimensions NNZ Sparsity

Poisson1 256×256×256 1.5M 8.8e-2
Poisson2 2K×16K×2K 121M 1.9e-3
Poisson3 30K×30K×30K 135M 5.0e-6
NELL2 12K×9K×29K 77M 2.4e-5
Net f lix 480K×18K×80 80M 1.2e-4
Reddit 1.2M×23K×1.3M 924M 2.8e-8
Amazon 4.8M×1.8M×1.8M 1.7B 2.5e-8

particular mode gives better performance. When multiple

modes have similar lengths, we block them in the order

of access volume - i.e., mode-2, mode-3, and then mode-1.

As discussed in Section IV-B, accessing the mode-2 factor

matrix is the most expensive, while accessing the mode-1

factor matrix is the least expensive. The cost of this heuristic

is O(log 2In), where In is the length of the mode, and is

relatively inexpensive compared to the 10-1000s of iterations

required for decomposition.

VI. EXPERIMENTAL RESULT AND ANALYSIS

We present our experimental result and analysis for various

real and synthetic data sets.

A. Test platform and data sets

1) Test platform: We evaluate our implementations on a

distributed system of IBM POWER8 processor. Each node

of the system is equipped with two POWER8 processors,

and each processor consists of 10 8-way SMT cores, with

64KB and 512KB of L1 and L2 cache per core. Each core

runs at a maximum of 3.49 GHz, and is capable of issuing

two independent 128-bit SIMD FMA instructions per cycle.

The memory bandwidth of each node is approximately 75

GB/s for read and 35 GB/s for write per socket.

2) Data sets: The synthetic and real world data sets that

we use for evaluation are presented in Table II. Poisson1-

Poisson3 are synthetically generated data with Poisson

distribution. We use data with Poisson distribution (or

“count” data), as such data is found in a wide range of real

applications, ranging from network traffic monitoring [22] to

social networks [23]. Tensor decomposition of Poisson data

was explored in prior work by Hansen et al. [24] and Chi

et al. [25], and we use the same method presented in those

papers to generate our Poisson data.

Netflix [26], NELL2 [27], Amazon [28], and Reddit [29]

are real world data sets that are commonly used in tensor

decomposition research for evaluation purposes [4], [15],

[16].

3) Execution environment: We use SPLATT v1.1.1 as the

baseline for all our comparisons. In order to do a fair compar-

ison, we added our implementation directly to the SPLATT

source code. Unless otherwise noted, every single-processor

evaluation was done using 10 cores (one socket), with two

threads per core. Speedups are measured by comparing the

execution times for the mode-1 MTTKRP, average over 20

runs. For evaluating the distributed implementation, we use

both sockets by assigning one MPI rank per socket, for a

total of two MPI ranks per node.
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Figure 4: Performance vs. RankB blocking size. Larger RankB
block size indicates fewer blocks.

B. Impact of blocking sizes on performance

Figure 4 shows how the performance changes with respect

to the number of blocks along the rank for Poisson2 and

Poisson3 for a rank of 512. For Poisson2, rank blocking

always yields better performance; however, there is distinct

“sweet spot” when 16 blocks are used. The result of Poisson3

shows that the performance can be worse if the block sizes are

chosen poorly. Poisson3 achieves the best performance with

4 rank blocks. The performance drops to below that of the

baseline SPLATT implementation and becomes progressively

worse with larger number of blocks.

Figure 5 shows how the performance changes with respect

to the number of blocks along the modes. For Poisson2

(shown in Figure 5a), due to the extremely long mode-2

lengths, blocking along this mode alone yields good perfor-

mance, but the actual number of blocks has little impact (first

five left columns in red). Additionally blocking along mode-

1 (e.g., 1×4×1 vs. 2×4×1) or mode-3 generally degrades

performance, and blocking along mode-3 is generally better

than blocking along mode-1 (e.g., 8×1×1 vs. 1×1×8),

which is expected, since mode-3 is accessed much more

frequently. In extreme cases (the two right-most columns),

the performance could be worse. For Poisson3, as shown in

Figure 5b, every blocking size yielded better performance

than the baseline SPLATT implementation. Again, blocking

along mode-3 is generally better than blocking along mode-1,

and the best performance is observed when the block sizes

are 1×10×5.

The results demonstrate that our heuristic (Section V-C)

can find blocking sizes for both the MB and RankB blocking

methods that lead at the very least to local execution time

minima.

C. Single processor results

Figure 6 compares the performance of our MB, RankB, and

MB+RankB (combining MB and RankB) implementations

against the baseline SPLATT code on a single POWER8 pro-

cessor. The blocking sizes for MB, RankB, and MB+RankB

were selected using the heuristic described in Section V-C. All

the speedup numbers are normalized to the performance of

SPLATT. We make the following observations from Figure 6.

First, for the three smaller sized tensors – Poisson2,

Poisson3, and NELL-2 – we see a general trend that
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Figure 5: Performance vs. MB blocking size: the left most block
sizes give the best performance.

our blocking implementations achieve higher speedup over

SPLATT with increasing rank size. This is because when

both dimension sizes and rank sizes are small, the baseline

SPLATT code can achieve good cache re-use without explicit

blocking. However, as the rank size increases, fewer factor

matrix rows fit in cache, and consequently, SPLATT performs

increasingly worse, while our blocking implementations can

still achieve good performance.

Secondly, for Net f lix, Reddit, and Amazon, the speedup

of our blocking implementations over SPLATT is lower at

higher ranks. This is because all these three tensors have

very large dimension sizes. MTTKRP on them with a large

rank requires using very large numbers of blocks for both

MB and RankB, and the overhead of blocking outweighs

the benefits. As a result, blocking techniques can not work

effectively for those tensors with very large ranks, and we

see the speedup peak at lower ranks.

Thirdly, our blocking implementations achieve higher

speedup on the real data sets than on the synthetic data sets.

For the two synthetic data sets, speedup ranges from 1.07×
to 2.02×, whereas for the four real data sets, speedup ranges

from 1.00× to 3.54×. This higher speedup can only be due

to the real data sets having nice dense sub-structures, while

the synthetic data sets have more random sparse patterns.

Using blocking techniques, we can effectively take advantage

of dense sub-structures in the real data and achieve better

performance.

Lastly, we observe that RankB alone is typically not

as effective as MB. However, it is more effective when

combining RankB with MB. We also observe that speedup

peaks at a rank of 32 for Reddit, and a rank of 128 for

Amazon, despite the fact that Amazon has larger dimension

sizes. This may be due to Amazon having slightly higher

density and larger nonzero clustering that can better benefit

from the blocking techniques even when rank is large.

D. Distributed system results

Table III shows the performance of our distributed par-

allel MTTKRP implementation and compares against the

distributed SPLATT implementation for NELL2 and Net f lix.

Our distributed implementation uses two different mecha-

nisms to distribute data. The first mechanism, indicated by

the column labeled 3D in the table, uses the same medium-

grained decomposition [8] method as SPLATT to distribute

the data. SPLATT first assumes that there are p = q× r× s
processors available, and attempts to partition each mode into

q, r, and s blocks that achieves some level of load balancing.

The process is as follows:

1) Randomly permute the mode order to eliminate potential

load imbalance from the data collection process

2) Partition the first permuted mode into q blocks. The

block boundaries are determined greedily by adding

slices to a block until it has at least nnz
q nonzeros.

3) Repeat this process for the second and third mode.

The second mechanism, indicated by the column labeled

4D in the table, adds an extra dimension to processor grid

by partitioning along the rank. We first determine an optimal

partition count t along the rank, and then apply the 3D
partitioning to the tensor by dividing it into p

t = q′ × r′ × s′
partitions. Since the processors are partitioned into p = q′ ×
r′ × s′ × t grid, we call it the 4D partitioning. Note that each

q′ × r′ × s′ partition contains the tensor in its entirety (i.e.,

there are t copies of the tensor among the processors). Also,

this method requires an extra AllGather operation compared

to the medium-grained decomposition method. However, the

overhead is negligible (and included in our execution time).

As seen in Table III, our blocking implementation, whether

it uses the 3D or the 4D partitioning, always outperforms

the baseline SPLATT implementations for all data sets.

This is mainly attributed to the blocking methods applied

locally on the partition of each processor. On 64 nodes, we

achieve 1.4× and 1.6× for the NELL-2 and Net f lix data

sets, respectively (taking the lowest execution time between

3D and 4D partitioning mechanisms). The 4D partitioning

outperforms performance the 3D. This is expected since the

4D partitioning allows each processor to retain more nonzeros

(instead of nnz
p , each processor has t∗nnz

p ). As a result, it

has less communication overheads and better scalability,

compared to the 3D partitioning.

VII. CONCLUSION AND FUTURE WORK

In this paper, we detected and isolated various bottlenecks

in the SPLATT MTTKRP kernel to show that the primary

bottlenecks are load instruction pressure and accessing the

mode-2 factor matrix, rather than the much larger tensor itself.

In particular, the load instruction pressure was previously

unknown, and was the likely cause for prior cache blocking

attempts yielding little performance improvements [4].
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Figure 6: Speedup from blocking optimizations

Table III: Distributed execution time comparison

Nodes
NELL2 Netflix

SPLATT 3D grid 3D time 4D grid 4D time SPLATT 3D grid 3D time 4D grid 4D time

1 1.028 1x1x2 0.718 1x1x1x2 0.826 3.025 2x1x1 1.554 1x1x1x2 1.447
2 0.540 1x1x4 0.367 1x1x1x4 0.423 1.158 4x1x1 0.727 1x1x1x4 0.720
4 0.286 2x1x4 0.208 1x1x1x8 0.217 0.519 8x1x1 0.403 1x1x1x8 0.401
8 0.138 2x2x4 0.107 1x1x1x16 0.124 0.256 16x1x1 0.194 1x1x1x16 0.190

16 0.087 2x2x8 0.058 1x1x2x16 0.065 0.113 32x1x1 0.103 2x1x1x16 0.100
32 0.056 4x2x8 0.043 1x1x4x16 0.034 0.083 32x2x1 0.056 4x1x1x16 0.055
64 0.030 4x4x8 0.028 2x1x4x16 0.022 0.048 64x2x1 0.037 8x1x1x16 0.030

We applied a number of different blocking optimization

techniques to achieve a significant speedup over state-of-the-

art SPLATT library. In particular, our new rank blocking

technique provided us with the means of blocking data

to increase reuse in the cache regardless of the nonzero

pattern in the tensor, and further improved reuse when

combined with multi-dimensional blocking. In addition,

applying rank blocking to our distributed implementation

improved scalability of our code by allowing each processor

to retain more nonzeros (i.e., work) without increasing the

communication complexity.

However, we need to address the issue of finding the

optimal blocking sizes for our various blocking techniques

more effectively. Due to the inherently complex nature of high
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order sparse computation, finding the optimal sizes would

require a more accurate model for data movement, as well as

an efficient heuristic to search through the parameter space.

That is, a well designed autotuning framework would allow

the work presented here to be practical to real applications.
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