
Algorithmic time, energy, and power on candidate
HPC compute building blocks

Jee Choi, Marat Dukhan, Xing Liu, Richard Vuduc
School of Computational Science and Engineering

Georgia Institute of Technology

Atlanta, Georgia, 30332-0765, USA

{jee,mdukhan3,xing.liu,richie}@gatech.edu

Abstract—We conducted a microbenchmarking study of the
time, energy, and power of computation and memory access on
several existing platforms. These platforms represent candidate
compute-node building blocks of future high-performance com-
puting systems. Our analysis uses the “energy roofline” model,
developed in prior work, which we extend in two ways. First,
we improve the model’s accuracy by accounting for power
caps, basic memory hierarchy access costs, and measurement
of random memory access patterns. Secondly, we empirically
evaluate server-, mini-, and mobile-class platforms that span a
range of compute and power characteristics. Our study includes
a dozen such platforms, including x86 (both conventional and
Xeon Phi), ARM, GPU, and hybrid (AMD APU and other SoC)
processors. These data and our model analytically characterize
the range of algorithmic regimes where we might prefer one
building block to others. It suggests critical values of arithmetic
intensity around which some systems may switch from being
more to less time- and energy-efficient than others; it further
suggests how, with respect to intensity, operations should be
throttled to meet a power cap. We hope our methods can help
make debates about the relative merits of these and other systems
more quantitative, analytical, and insightful.

Index Terms—energy; power; algorithms; system balance;
performance modeling

I. INTRODUCTION

We consider the problem of estimating how much time,

energy, and power an abstract algorithm may require on a

given machine. Our approach starts with an abstract cost model

grounded in first principles of algorithm design. The model’s

utility derives from the way it facilitates quick and precise

reasoning about potential time-efficiency, energy-efficiency,

and power-efficiency. This paper applies the model to analyze

candidate compute-node building blocks being considered for

emerging and future HPC systems, which include high-end

server and GPU platforms as well as low-end, low-power

mobile platforms.
Importantly, beyond specific findings and data, we empha-

size the methodological aspects of this paper. In particular,

architects may find our high-level approach to be a useful

additional way to assess systems across computations; our

analysis technique aims to provide more insight than a collec-

tion of blackbox benchmarks provides but without having to

know too much detail about specific computations. Similarly,

we hope algorithm designers may find ways to reason about

algorithmic techniques for managing energy and power, and

tradeoffs (if any) against time.

A. Demonstration

As a quick preview, suppose we wish to know whether

overall time, energy, and power to compute would be better

if the system building block is a high-end desktop GPU or

a low-end low-power mobile GPU. Specifically, consider the

desktop-class NVIDIA GTX Titan against the “Arndale GPU,”

the on-chip GPU component of the Samsung Exynos 5 mobile

processor. The GTX Titan has a peak performance of 5 trillion

floating-point operations per second (5 Tflop/s) in single-

precision and 250 Watts thermal design power (TDP) for

the whole card; the Arndale GPU has a 72 Gflop/s peak

and its standard developer board uses less than 10 Watts.

These specifications suggest GTX Titan is better, based on its

considerably higher flop/s per Watt. Yet, there are also active

efforts to build systems from close equivalents to the latter.1

Which is “correct?”

While a natural response is, “it depends,” our model of-

fers a more precise analysis, which fig. 1 summarizes. It

compares time-efficiency (performance, or operations per unit

time), energy-efficiency (operations per unit energy), and

power (energy per unit time) of the two platforms. The y-

axis measures this performance on a normalized scale. (The

power and energy costs include the entire board, including

memory and on-board peripherals, but excluding any host

system.) The x-axis abstracts away a possible computation

by its operational intensity, or the ratio of computation-to-

communication (flop:Byte ratio). Decreasing values of inten-

sity indicate increasing memory bandwidth boundedness. The

dots are measured values from a synthetic microbenchmark

(§IV); the dashed lines indicate our model’s predictions. The

model and measurements correspond well.

While the GTX Titan is much faster, in energy-efficiency

the Arndale GPU compares well to it over a range of in-

tensities: the two systems match in flops per Joule (flop/J)

for intensities as high as 4 flop:Byte. For reference, a large

sparse matrix-vector multiply is roughly 0.25–0.5 flop:Byte in

single-precision and a large fast Fourier transform (FFT) is 2–

4 flop:Byte [2]. And even at more compute-bound intensities,

the Arndale is within a factor of two of the GTX Titan in

energy-efficiency despite its much lower peak. It therefore

appears to be an attractive candidate.

1E.g., The Mont Blanc Project: http://www.montblanc-project.eu/ [1].

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.54

447

Flop / Time Flop / Energy Power

GTX Titan

Arndale GPU

47 x Arndale GPU
GTX Titan

Arndale GPU

GTX Titan

Arndale GPU

47 x Arndale GPU

2−11

2−10

1/512

1/256

1/128

1/64

1/32

1/16

1/8

1/4

1/2

1

2

1/8 1/4 1/2 1 2 4 8 16 32 64 128256 1/8 1/4 1/2 1 2 4 8 16 32 64 128256 1/8 1/4 1/2 1 2 4 8 16 32 64 128256

Intensity (single−precision flop:Byte)

R
el

at
iv

e
va

lu
e

Fig. 1: Comparison of the time-efficiency (performance), energy-efficiency, and power required by a mobile GPU (from an

“Arndale” Samsung Exynos 5 developer board) versus high-end gaming-grade desktop GPU (NVIDIA GTX Titan), over a

range of synthetic computations with varying computational intensities (flop:Byte). Combining 47 of the mobile GPUs to match

on peak power can lead to a system that outperforms the desktop GPU by up to 1.6× for relatively bandwidth-bound codes

(flop:Byte less than 4), but at the cost of sacrificing peak performance (less than 1⁄2) for compute-bound codes.

From these data, what is the best-case scenario for an

Arndale GPU-based “supercomputer,” assembled from enough

Arndale GPUs to match the GTX Titan in peak power?

Matching on power may require up to 42 Arndale GPUs,

yielding the hypothetical system shown by a dashed brown

line. This system would have less than half of the GTX Titan’s

peak, but would also have an aggregate memory bandwidth

that is up to 1.6× higher for intensities up to about 4 flop:Byte,

which could include, for instance, a large multidimensional

FFT. However, this best-case ignores the significant costs of

an interconnection network, or further potential improvements

to the Arndale GPU system by better integration. As such, the

42 Arndale GPUs are more likely to improve upon GTX Titan

only marginally or not at all across the full range of intensities.

Regardless of one’s interpretation, this type of analysis offers

an analytical way to compare these as building blocks.

B. Summary of contributions and limitations

Overall, we claim two main contributions.

The first is our abstract model. It extends our previously

proposed energy roofline model [3], adding several important

components. These include explicit modeling of a power

cap and modeling of cache energy costs. The power cap is

especially significant, as it implies a way to predict power-

throttling requirements. That is, if we wish to keep average

power below some threshold, the model predicts by how much

flops and memory operations should slow down.

Secondly, we compare the model to measurements on 12

platforms. These include x86 (both conventional and Xeon

Phi), several flavors of ARM, desktop and mobile GPUs, and

accelerated processing units (or APUs, such as those from

AMD APU and other SoCs manufacturers). These experiments

validate the basic form of the model. Furthermore, they

yield empirical estimates of the effective energy required to

perform flops and to move data. Breaking down the energy

costs to these different components allows us to consider

energy-efficiency at different intensity points, allowing more

flexibility and analytical precision than simply dividing, say,

peak performance by TDP. Moreover, these basic estimated

constants may in and of themselves be useful reference values.

The main limitation of our work is that, to permit parsi-

monious analysis, we have kept our model simple, with many

extensions left as future work. To mitigate this limitation, we

have publicly released all of the code and documentation of

our experimental setup as part of publication of this work.2

This code includes finely tuned microbenchmarks in an array

of programming environments, including assembly, SIMD

intrinsics, CUDA, and OpenCL.

II. RELATED WORK

This paper is a natural follow-up to our original work [3],

[4] where we derive and partially validate an earlier model

inspired by the roofline-style analysis [2], [5], [6]. It also

contains a more extensive literature review than the one we

include below; we refer interested readers thereto.

Since that survey, Kestor et al. have developed a mi-

crobenchmarking methodology similar to our own [7]. In

2http://hpcgarage.org/archline

448

particular, they focus on measuring energy costs due to

the memory hierarchy and communication. Our modeling

approach differs, with power caps being its most notable

distinction.

In this paper, we extend our targets to low-power sys-

tems, such as those based on ARM and APUs. We consider

both CPU and GPU architectures and use our model to test

their viability for high performance computing. There are

numerous other studies of low-power systems for HPC that

include ARM, Atom, and Freescale processors, including the

active Mont Blanc project [1] and for numerical and graph

problems [8]–[10]. These studies focus on specific systems

or workloads. By contrast, our paper tries to abstract the

computation away to reason about many possible workloads

simultaneously and analytically.

There is an additional trend to investigate special-purpose

hardware [11]–[13], including approximate computing [14].

These are promising, forward-looking approaches that break

the usual computing paradigms. Our study and its conclusions

are limited to general-purpose off-the-shelf building blocks,

and therefore addresses nearer-term design exploration and

experiments.

We use PowerMon 2 to measure power [15]. However, there

are several other options, including PowerPack, a hardware-

software “kit” for power and energy profiling [16]; and hard-

ware counter-based measurement methods available on some

Intel and NVIDIA systems [17], [18].

Other efforts to model power dissipation include the CACTI,

McPAT, and GPUWATTCH modeling tools [19]–[21]. The

underlying models derive from device-level estimates of power

dissipation for caches and processor cores. The tools enable

design-space exploration by quantifying the cost of new fea-

tures and materials over different process technology genera-

tions. However, CACTI and McPAT are only validated against

other simulators or against a breakdown of maximum thermal

design power (TDP) published by the vendors. GPUWATTCH

validates against real measurements, but only on NVIDIA

GPUs. Therefore, an interesting question may be to what

extent these tools corroborate, complement, or contradict our

experimental data and modeling approach.

III. A FIRST-PRINCIPLES MODEL

Our model of time, energy, and power assumes the abstract

von Neumann architecture of fig. 2. The system comprises

a processor attached to a fast memory of finite capacity (Z
words), which is then attached to an infinite slow memory.

The fast memory is effectively a last-level cache and may be

generalized in the presence of a memory hierarchy. An abstract

algorithm running on this machine executes W = W (n) flops

and transfers Q = Q(n;Z) bytes of data between slow and

fast memory, given an input of size n. (In what follows, we

suppress the arguments n and Z unless needed explicitly.3)

Below, we describe how we estimate time, energy, and power

3If flops are not the natural unit of work, one could imagine substituting, for
instance, “comparisons” for sorting or “edges traversed” in a graph traversal
computation.

Slow memory

xPU

Q transfers

W operations

Fast memory
(total size = Z)

Fig. 2: A simple von Neumann architecture with a two-

level memory hierarchy. In our first analysis, suppose that an

algorithm performs W arithmetic operations and Q memory

operations, or “mops,” between slow and fast memories. The

figure is taken from our prior work [3], [4].

for the abstract algorithm running on this abstract machine.

The model derives partly from our earlier work [3], [4]; here,

we highlight which features of this paper’s model are new.

a) Cost model: Let the abstract machine be described by

four fundamental time and energy costs: the time per flop, τflop;

the time per byte, τmem; the energy per flop, εflop; and the energy

per byte, εmem. Time and energy have units of, for instance,

seconds (s) and Joules (J), respectively. In our abstract model,

we do not take τflop and τmem to be latency costs; rather, we will

use throughput values based on peak flop/s and peak memory

bandwidth, respectively. That is, these costs are optimistic.

They also imply power costs, in units of energy per unit

time. These are the peak power per flop, πflop ≡ εflop/τflop, and

the peak power per byte, πmem ≡ εmem/τmem.

In addition, our abstract machine will require a minimum

amount of constant power, π1. This power is what the machine

requires independent of what operations are executing. In

contrast to other notions of “static power” in the literature,

constant power in our model may include the power of other

system components and peripherals, taken together.

b) Modeling execution energy: To estimate an algo-

rithm’s energy cost, we tally the total energy to execute all

flops, to move the full volume of data, and to run given the

cost of constant power. That is, the total energy E is

E = E(W,Q) ≡ Wεflop +Qεmem + π1T (W,Q), (1)

where T (W,Q) is the total running time of the computation,

estimated below. The basic form of eq. (1) is identical to our

earlier energy model [3], [4].

We will sometimes consider another form of eq. (1), pa-

rameterized by intensity, I ≡ W/Q, and energy balance,

Bε ≡ εmem/εflop. Both these quantities have units of flops per

Byte, with I expressing an intrinsic property of the algorithm

and Bε expressing an intrinsic property of the machine with

449

respect to energy. From these definitions, eq. (1) becomes

E = E(W, I) = Wεflop

(
1 +

Bε

I

)
+ π1T

(
W,

W

I

)
. (2)

Equation (2) clarifies that the total energy, relative to the

minimum energy Wεflop to execute the flops alone, increases

with increasing energy balance, decreases with increasing

intensity, and increases with relative increases in constant

power or other time inefficiencies.

c) Modeling execution time: Executing W flops takes

Wτflop time and moving Q bytes takes Qτmem time. In the best

case, we may maximally overlap flops and memory movement,

in which case T will be the maximum of these two values.

Indeed, this definition was exactly our previous model [3].

Here, we extend our model of T to include power caps.

Our previous model sometimes over-predicted performance

and average power [3]. For some GPU and low-power systems

we consider in this paper, which go beyond the original work,

ignoring a potential power cap can be severe (§V).

We model a power cap as follows. Suppose that on top of

the π1 constant power, the system has Δπ additional units of

usable power to perform any operations. The parameter Δπ
is now a new fundamental parameter of the system. Thus,

an algorithm limited only by Δπ will require no more than

(Wεflop + Qεmem)/Δπ time to execute. Then, the best-case

execution time is

T = T (W,Q) ≡ max

(
Wτflop, Q τmem,

Wεflop +Qεmem

Δπ

)
. (3)

That is, if there is enough usable power to run at peak oper-

ational or memory performance, we do so assuming maximal

overlap; otherwise, we must throttle all operations, which the

third term of max captures. We may also rewrite eq. (3) as,

T = T (W, I) = Wτflop max

{
1,

Bτ

I
,
πflop

Δπ

(
1 +

Bε

I

)}
, (4)

where Bτ ≡ τmem/τflop is the time balance of the system.

This value is more commonly referred to as the intrinsic

flop-to-Byte ratio of the machine, and defines the intensity at

which the time to execute flops and time to execute memory

operations are equal.

d) Modeling power: Given models of E and T , we may

model average instantaneous power as P̄ ≡ E/T .

There are many ways to expand this definition, one of which

we present here. Let

B+
τ ≡ Bτ max

(
1,

πmem

Δπ − πflop

)
(5)

and B−
τ ≡ Bτ min

(
1,

Δπ − πmem

πflop

)
. (6)

Observe that B−
τ ≤ Bτ ≤ B+

τ . When Δπ ≥ πflop + πmem,

there is enough usable power to run flops and move data

at their maximum rates, in which case B+
τ = B−

τ = Bτ .

Otherwise, [B−
τ , B+

τ] defines an interval containing Bτ . From

these definitions, one can show that P̄ becomes

P̄ = P̄ (I) = π1 +

⎧⎪⎨
⎪⎩

πflop + πmem
Bτ

I if I ≥ B+
τ

πflop
I
Bτ

+ πmem if I ≤ B−
τ

Δπ otherwise

. (7)

Equation (7) reflects what we might expect. As I increases

beyond B+
τ toward infinity, P̄ decreases toward flop-only

power, πflop. Similarly, as I decreases away from B−
τ toward

0, P̄ decreases toward memory-only power, πmem. The peak

power occurs when B−
τ ≤ I ≤ B+

τ . In particular, when

there is enough usable power, meaning Δπ ≥ πflop + πmem,

then P̄ (I) peaks at the value, π1 + πflop + πmem, at I = Bτ ;

otherwise, the power cap dominates and P̄ (I) = π1 +Δπ for

all B−
τ ≤ I ≤ B+

τ .

IV. EXPERIMENTAL SETUP

We benchmarked and assessed the nine systems shown in

table I. For the four discrete coprocessors—NVIDIA GTX

580, 680, Titan, and Intel Phi—we consider just the card

itself and ignore host power and host-to-coprocessor transfer

costs. Additionally, three of the systems—labelled “NUC,”

“Arndale,” and “APU”—have hybrid CPU+GPU processors.

We considered their CPU and GPU components separately,

i.e., running no or only a minimal load on the other component.

As such, we claim to evaluate twelve “platforms.”

For each platform, we wrote an architecture-specific hand-

tuned microbenchmark that gets as close to the vendor’s

claimed peak as we could manage. These microbenchmarks

measure “sustainable peak” flop/s, streaming bandwidth (from

main memory, L1, and L2 caches where applicable), and

random main memory access. The measured values appear

parenthetically in columns 8–10 of table I, and should be

compared against the theoretical peaks shown in columns

3–5. For cache bandwidth, we were not able to determine

theoretical peaks on all platforms; therefore, we report only

measured values in columns 11 and 12. Lastly, we fitted our

model to the microbenchmark data. The model parameters

appear as columns 6–13 of table I.
e) Intensity microbenchmark: The intensity microbench-

mark varies intensity nearly continuously, by varying the

number of floating point operations (single or double) on

each word of data loaded from main memory. We hand-

tuned these microbenchmarks for each platform. Examples

of specific tuning techniques we used include unrolling, to

eliminate non-flop and non-load/store overheads that might

otherwise distort our energy estimates; use of fused-multiply

adds where available; tuning the instruction selection and

instruction mix, carefully considering pipeline and issue port

conflicts; prefetching; and resorting to assembly where needed;

to name a few. We test single- and double-precision operations

separately; their energy costs appear as εs and εd, respectively.
f) Random access microbenchmark: Our random access

microbenchmark implements pointer chasing, as might appear

in a sparse matrix or other graph computation. It fetches data

from random places in the memory rather than streaming

the data, reporting sustainable accesses per unit time. By its

450

C
o

lu
m

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

V
en

d
o

r’
s

cl
ai

m
ed

p
ea

k
P

o
w

er
(e

m
p

ir
ic

al
)

E
n

er
g

y
(a

n
d

em
p

ir
ic

al
th

ro
u

g
h

p
u

t)
R

an
d

o
m

ac
ce

ss

P
la

tf
o

rm
P

ro
ce

ss
o

r
si

n
g

le

G
fl

o
p

/s

d
o

u
b

le

G
fl

o
p

/s

m
em

.
b

w
.

G
B

/s

π
1

W
at

ts

(i
d

le
)

Δ
π

W
at

ts

ε s
p

J/
fl

o
p

(G
fl

o
p

/s
)

ε d
p

J/
fl

o
p

(G
fl

o
p

/s
)

ε m
em

p
J/

B

(G
B

/s
)

ε L
1

p
J/

B

(G
B

/s
)

ε L
2

p
J/

B

(G
B

/s
)

ε r
an

d

n
J/

ac
ce

ss

(M
ac

c/
s)

D
es

k
to

p
C

P
U

“N
eh

al
em

”

In
te

l
C

o
re

i7
-9

5
0

(4
5

n
m

)

1
0

7
5

3
.3

2
5

.6
1

2
2

(7
9

.9
)

4
4

.2
3

7
1

(9
9

.4
)

6
7

0

(4
9

.7
)

7
9

5

(1
9

.1
)

1
3

5

(2
0

1
)

1
6

8

(1
2

0
)

1
0

8

(1
4

9
)

N
U

C
C

P
U

“I
v

y
B

ri
d

g
e”

In
te

l
C

o
re

i3
-3

2
1

7
U

(2
2

n
m

)

5
7

.6
2

8
.8

2
5

.6
1

6
.5

(1
3

.2
)

7
.3

7
1

4
.7

(5
5

.6
)

2
4

.3

(2
7

.9
)

4
1

8

(1
7

.9
)

8
.7

5

(2
0

1
)

1
4

.3

(1
0

3
)

5
4

.6

(5
5

.3
)

N
U

C
G

P
U

H
D

4
0

0
0

2
6

9
—

2
5

.6
1

0
.1

(1
3

.2
)∗

1
7

.7
7

6
.1

(2
6

8
)

—
8

3
7

(1
5

.4
)

—
—

—

A
P

U
C

P
U

“B
o

b
ca

t”

A
M

D

E
2

-1
8

0
0

(4
0

n
m

)

1
3

.6
5

.1
0

1
0

.7
2

0
.1

(1
1

.8
)

1
.3

9
3

3
.5

(1
3

.4
)

1
1

9

(5
.0

5
)

4
3

5

(3
.3

2
)

8
4

.0

(2
5

.8
)

1
3

8

(1
1

.6
)

7
5

.6

(8
.0

3
)

A
P

U
G

P
U

“Z
ac

at
e”

H
D

7
3

4
0

1
0

9
—

1
0

.7
1

5
.6

(1
1

.8
)

3
.2

3
5

.8
2

(1
0

4
)

—
3

3
3

(8
.7

0
)

6
.4

7

(4
6

.0
)

—
4

5
.8

(1
1

5
)

G
T

X
5

8
0

“F
er

m
i”

N
V

ID
IA

G
F

1
0

0

(4
0

n
m

)

1
5

8
0

1
9

8
1

9
2

1
2

2

(1
4

8
)∗

1
4

6
9

9
.7

(1
4

0
0

)

2
1

3

(1
9

6
)

5
1

3

(1
7

1
)

1
4

9

(7
6

1
)

2
5

7

(2
8

4
)

1
1

2

(9
7

7
)

G
T

X
6

8
0

“K
ep

le
r”

N
V

ID
IA

G
K

1
0

4

(2
8

n
m

)

3
5

3
0

1
4

7
1

9
2

6
6

.4

(1
0

0
)∗

1
4

5
4

3
.2

(3
0

3
0

)

2
6

3

(1
4

7
)

4
3

7

(1
5

8
)

5
1

(1
1

5
0

)

1
9

5

(2
9

7
)

1
8

4

(1
4

2
0

)

G
T

X
T

it
an

“K
ep

le
r”

N
V

ID
IA

G
K

1
1

0

(2
8

n
m

)

4
9

9
0

1
6

6
0

2
8

8
1

2
3

(7
2

.9
)

1
6

4
3

0
.4

(4
0

2
0

)

9
3

.9

(1
6

0
0

)

2
6

7

(2
3

9
)

2
4

.4

(1
6

1
0

)

1
9

5

(2
9

7
)

4
8

.0

(9
6

8
)

X
eo

n
P

h
i

“K
N

C
”

In
te

l

5
1

1
0

P

(2
2

n
m

)

2
0

2
0

1
0

1
0

3
2

0
1

8
0

(9
0

)
3

6
.1

6
.0

5

(2
0

2
0

)

1
2

.4

(1
0

1
0

)

1
3

6

(1
8

1
)

2
.1

9

(2
8

9
0

)

8
.6

5

(5
9

1
)

5
.1

1

(7
0

6
)

P
an

d
aB

o
ar

d
E

S

“C
o

rt
ex

-A
9

”

T
I

O
M

A
P

4
4

6
0

(4
5

n
m

)

9
.6

0
3

.6
0

3
.2

0
3

.4
8

(2
.7

4
)

1
.1

9
3

7
.2

(9
.4

7
)

3
0

2

(3
.0

2
)

8
1

0

(1
.2

8
)

7
9

.5

(1
8

.4
)

1
3

4

(4
.1

2
)

6
0

.9

(1
2

.1
)

A
rn

d
al

e
C

P
U

“C
o

rt
ex

-A
1

5
”

S
am

su
n

g

E
x

y
n

o
s

5

(3
2

n
m

)

2
7

.2
6

.8
0

1
2

.8
5

.5
0

(1
.7

2
)

2
.0

1
1

0
7

(1
5

.8
)

2
7

5

(3
.9

7
)

3
8

6

(3
.9

4
)

7
6

.3

(5
0

.8
)

2
4

8

(1
5

.2
)

1
3

8

(1
4

.8
)

A
rn

d
al

e
G

P
U

“M
al

i
T

-6
0

4
”

7
2

.0
—

1
2

.8
1

.2
8

(1
.7

2
)∗

4
.8

3
8

4
.2

(3
3

.0
)

—
5

1
8

(8
.3

9
)

7
1

.4

(3
3

.4
)

—
1

2
5

(3
3

.6
)

T
A

B
L

E
I:

P
la

tf
o

rm
s

su
m

m
ar

y,
w

it
h

9
sy

st
em

s
an

d
1

2
d

is
ti

n
ct

“p
la

tf
o

rm
s.

”
W

e
d

is
ti

n
g

u
is

h
b

et
w

ee
n

m
an

u
fa

ct
u

re
r’

s
p

ea
k

(c
o

lu
m

n
s

3
–

5
)

an
d

“s
u

st
ai

n
ed

p
ea

k
”

u
si

n
g

o
u

r
m

ic
ro

b
en

ch
m

ar
k

s,
sh

o
w

n
p

ar
en

th
et

ic
al

ly
in

co
lu

m
n

s
8

–
1

0
.

N
ot

e
1:

In
fo

u
r

ca
se

s,
d

en
o

te
d

b
y

an
as

te
ri

sk
(“

*
”)

,
o

u
r

fi
tt

ed
co

n
st

an
t

p
o
w

er
is

le
ss

th
an

o
b

se
rv

ed

id
le

p
o
w

er
u

n
d

er
n

o
lo

ad
.

N
ot

e
2:

S
o

m
e

d
at

a
ar

e
m

is
si

n
g

.
In

p
ar

ti
cu

la
r,

d
o

u
b

le
-p

re
ci

si
o

n
su

p
p

o
rt

is
n

o
t

av
ai

la
b

le
o

n
al

l
p

la
tf

o
rm

s;
ad

d
it

io
n

al
ly

,
d

efi
ci

en
ce

s
in

th
e

cu
rr

en
t

O
p

en
C

L
d

ri
v
er

p
re

v
en

te
d

so
m

e
m

ic
ro

b
en

ch
m

ar
k

s
fr

o
m

ru
n

n
in

g
o

n
th

e
In

te
l

H
D

4
0

0
0

G
P

U
.

451

nature, it cannot fully use the memory interface width or

the prefetching units. Therefore, we expect poor performance

compared to the system’s bandwidth.

g) Cache microbenchmarks: Our cache microbench-

marks assess the performance and energy cost of accessing

the different levels of the cache.

On CPU systems, these can be either the pointer chasing

or the intensity benchmark, depending on which gives better

performance. We need only ensure the data set size is small

enough to fit into the target cache level.

GPUs have different memory hierarchy designs, which

requires platform-dependent coding and tuning. On NVIDIA

Fermi GPUs, we assess L1, L2 caches; on Kepler systems, we

test L2 and shared memory, since the L1 cache is no longer

used to store data and all data reuse has to be done manually

via the shared memory. On AMD HD 7340 and ARM Mali-

T604, we use the software-managed scratchpad memory.

ATX PSU

PowerMon 2

PCIe
Interposer

GPU

CPU

Motherboard

Input

Output

1 2

1

2

3 3 44 5

5

Power Brick

Power Brick

6

7

6 7

ARM
Dev

Board
APU

Fig. 3: Placement of the measurement probes, PowerMon 2

and our custom PCIe interposer

h) Power measurement infrastructure: Our power mea-

surement setup appears in fig. 3. We use two tools to measure

power. The first is Powermon 2, a fine-grained integrated

power measurement device for measuring direct current (DC)

voltage and current [15]. PowerMon 2 sits between any device

and its DC source to intercept and measure the DC current

and voltage. It samples at 1024 Hz per channel, with an

aggregate frequency of up to 3072 Hz over 8 channels. It

reports time-stamped measurements without the need for spe-

cialized software. It also fits in a 3.5-inch internal hard drive

bay, which simplifies installation. The second measurement

tool is a custom-made PCIe interposer that sits between the

motherboard and the target PCIe device (i.e., GPU) to measure

the power provided by the motherboard.

For the mobile systems, we measure system-level power,

which includes CPU, GPU, DRAM, and peripherals. For

CPU systems, we measure input both to the CPU and to the

motherboard, which provides power to the DRAM modules.

High-performance GPUs, such as the GTX Titan, require

a more complicated setup. They draw power from multiple

sources, including the motherboard via the PCIe connector

and the 12 V 8-pin and 6-pin PCIe power connectors.

PowerMon 2 measures the current and voltage from each

source at a regular interval and computes the instantaneous

power by multiplying measured current and voltage. Assuming

uniform samples, we compute the average power as the aver-

age of the instantaneous power over all samples. For systems

that draw from multiple power sources, such as a GPU, we

sum the average powers to get total power. Total energy is

then the average power times the execution time.

V. RESULTS AND DISCUSSION

We divide the analysis and discussion of our experiments

into four parts. First, we compare the power-capped model

of this paper with our prior model [3], [4], showing both

qualitative and quantitative improvements (§V-A). Secondly,

we explain our memory hierarchy measurement results (§V-B).

Thirdly, we analyze the platforms in detail (§V-C), to show

what one might conclude about their relative time-efficiency,

energy-efficiency, and power characteristics. Lastly, we use the

model to consider a variety of “what-if” scenarios, such as

what we expect to happen under power throttling or power

bounding (§V-D).

We focus on single-precision results, since full support for

double is incomplete on several of our evaluation platforms.

However, the interested reader can still find the main summary

estimate of double-precision flop energy cost in table I.

A. Model fitting and accuracy

For each of the twelve platforms shown in table I, we ran

our microbenchmark suite (§IV) at varying W and Q values,

and measured total execution time and energy. These include

runs in which the total data accessed only fits in a given level

of the memory hierarchy. We then used (nonlinear) regression

parameter fitting techniques to obtain statistically significant

estimates of the values τflop, τmem, εflop, εmem, π1, and Δπ, as

well as the corresponding parameters for each cache level

where applicable.4 The resulting set of parameters appears in

columns 6–13 of table I.

To assess the model fits, we evaluated both our prior

“uncapped” model [4] and our new “capped” model, eqs. (1)–

(7). We compared them against the measured values, as

follows. First, we calculated the relative error, (model −
measured)/measured, at each intensity value. Given a platform

and model, we regard the set of errors over all intensity values

as the error distribution. For each platform, we compared our

prior and new models by comparing their distributions.

Figure 4 summarizes these error distributions. (We have

similar data for time and energy, omitted for space.) Each

platform appears on the x-axis, and the y-axis measures

relative error. Each observed error value appears as a dot; the

boxplots reflect the median, 25%, and 75% quantiles of the

distribution of those errors. Platforms are sorted in descending

order of median uncapped model’s relative error. That is,

4The precise fitting procedure follows our prior work [4] and is part of our
publicly released source code: http://hpcgarage.org/archline

452

�� �

�

�

�

�

�

�

�

�
��

�

���

�
�

��
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�

�
�

����

��

�
�

�

�

��

�
�

�

�
�

�

����

��
�

�

�

�
�

��

�

�

�

�

�

�

�

�

�
�
�
�

�
���

�

�
�

�

�

�

�
���

�
��
���

�

�

�

�
��

�

�
�
��
�

����
��

�

�
��
�

��
�
����
�
��

�

�

�

�

�

��
� ���

�
������
����

���
�
�
�

�
���
�
��
���
�

�
�
���
��
�
�
�������������

��
�
�
�

�

��
�������

��
��������
������
�

��
��������
�
�
��
�

���

�
�
�
�����������������������������0

0.25

0.5

0.75

1

1.25

1.5

Arndale GPU**
Samsung Exynos 5
[ARM Mali T−604]

NUC GPU**
Intel HD 4000
[Ivy Bridge]

Arndale CPU**
Samsung Exynos 5
[ARM Cortex−A15]

GTX 680**
NVIDIA GK104

[Kepler]

PandaBoard ES**
TI OMAP4460

[ARM Cortex−A9]

GTX Titan
NVIDIA GK110

[Kepler]

GTX 580
NVIDIA GF100

[Fermi]

Xeon Phi**
Intel 5110P

[KNC]

Desktop CPU
Intel i7−950
[Nehalem]

NUC CPU
Intel i3−3217U

[Ivy Bridge]

APU GPU**
AMD HD7340
[Zacate GPU]

APU CPU
AMD E2−1800

[Bobcat]

(M
od

el
 −

 M
ea

su
re

d)
 /

M
ea

su
re

d

� Uncapped Capped

Power Prediction Error [single−precision]

Fig. 4: Summary of modeling errors with respect to performance (FLOP/s). We compare the prediction errors of our prior model

(“free” or uncapped; [3], [4]) against our new model (“capped”), which notably includes an explicit power cap. Qualitatively, the

distribution of errors on all platforms improves, becoming either lower in median value or more tightly grouped. On platforms

labeled by a double-asterisks (“**”), the free and capped distributions differ statistically (at p < .05) by the Kolmogorov-

Smirnov test [22].

our original model does relatively better as we move from

platforms on the left toward platforms on the right of fig. 4.
Qualitatively, fig. 4 shows that the new capped model tends

to reduce the magnitude and spread of relative error compared

to the previous model. The bias is to overpredict, i.e., most er-

rors greater than zero. To facilitate a more rigorous quantitative

comparison, we also performed the Kolmogorov-Smirnov non-

parametric test of whether two empirical distributions differ,

against a null hypothesis that the distributions come from the

same underlying distribution. (The K-S test makes no assump-

tions about the distributions, such as normality, and so may be

pessimistic.) Any platform for which the null hypothesis may

be rejected (at a p-value less than 0.05) is marked with two

asterisks (“**”) in fig. 4. In this statistical sense, 7 of the 12

platforms–Arndale GPU, NUC GPU, Arndale CPU, GTX 680,

PandaBoard ES, Xeon Phi, and APU GPU—the uncapped and

capped error samples likely come from different distributions.

B. Interpreting memory hierarchy energy costs
Some care is needed to correctly interpret the memory

hierarchy parameter estimates of table I. The key principle

is that our energy cost estimates reflect inclusive costs. Al-

ternatively, one should regard the energy cost of a memory

hierarchy operation in our model as the additional energy

required to complete one additional instance of that operation.

The following examples clarify how this interpretation works.
The cost of loading a byte from DRAM (εmem) includes

not only the costs of reading the byte from the DRAM

cells and driving the wires, but also the energy spent by the

memory controller as well as the cost of going through the

memory hierarchy (e.g., the L1 and L2 caches). The rationale

is that these costs are unavoidable whenever data moves

between DRAM and registers. Note that we currently do not

differentiate reads and writes, so consider εmem as the average

of these costs. Also, in order to prevent the prefetcher from

loading unused data, we have designed our microbenchmark

to “direct” the prefetcher into prefetching only the data that

will be used.

We define εL1, εL2, and εrand in a similar manner as εmem. The

energy cost of loading data from the L2 cache (εL2) includes the

energy consumed by reading data from the L2 memory cells

as well as those consumed by reading from and writing data

to the L1 cache as the data moves up the cache hierarchy.

It also includes instruction overheads, as well as any other

costs that might be involved such as the energy consumed by

the cache coherency protocol. Naturally, we expect εL1 to be

smaller than εL2 on the same system as they would most likely

incur similar overheads, but fetching data from the L1 cache

will not involve going through the L1 cache itself. This also

serves as a way of sanity checking our model and as it can be

seen in table I, εL1 ≤ εL2 for every system.

The energy cost of accessing memory at random locations

(εrand) will include the cost of reading an entire cache line

from the memory, as well as the usual overheads such as

instruction, memory hierarchy, and associated protocols. As

such, we expect this cost to be at least an order of magnitude

higher than εmem, as table I reflects.

C. Constant power and power caps across platforms

There is a wide range of power behaviors across platforms,

but also a narrow relative range within each platform. Refer

to fig. 5, which shows the power of the twelve platforms

from table I. It compares model (solid lines) to measurements

(dots), and facilitates cross-platform comparisons across a full

range of intensities (x-axis). The platforms are ordered from

top-left to bottom-right in decreasing order of peak energy-
efficiency, with the GTX Titan in the top-left at 16 Gflop/J

453

16 Gflop/J, 1.3 GB/J/ 3p ,1 l 1 B

4.0 Tflop/s [81%], 240 GB/s [83%]4 0 Tflop/s [81%] 240 GB/s [83%]f]0 p 1 4 B 3

120 W (const) + 160 W (cap) [99%]0 (co st) 60 (cap) [99%]1 s 60 o + a 9

Cap

Memory

Compute

B/J1.2 GB2pop/J, /p ,15 Gfl1 l 1 B

2%]2%][82[82B/s B/s60 GB60 GB6%], 16%] 1]p/s [86p/s [860 Tflop0 Tflopf3.03 00 p 6 6 B 2

0%]0%]10000p) [1p) [1W (cap(capc140 W00nst) + st))W (con(co(66 W666 W n W p 0

Cap

Memory

Compute

11 Gflop/J, 880 MB/JG J p ,1 o 8 B

2.0 Tflop/s [100%], 180 GB/s [57%]2 0 Tflop/s [100%] 180 GB/s [57%]2 o 1]/ 0 8 B 7

180 W (const) + 36 W (cap) [100%]80 (co st) 36 (cap) [00%]1 s 6 c 10 o + W p 0

Cap
Memory

Compute

8.8 Gflop/J, 670 MB/JG J p ,. o 6 B

270 Gflop/s [100%], 15 GB/s [60%]270 Gflop/s [100%] 15 GB/s [60%]2 f %0 p 0 1 B 0

10 W (const) + 18 W (cap) [91%]0 (co st) 8 (cap) [9 %]W n 1c) a

Cap

Memory

B/J1.5 GB5op/J, /p ,8.1 Gfl88 l 1 B

6%]6%]B/s [66B/s [668.4 GB8 4 GB6%], 86%] 8%33 Gflop/s [433 Gflop/s [4G s3 o 6 8 B 6

8%]8%]ap) [88ap) [88W (ca(ca+ 4.8 841.3 W (const) 3 (co st)W s3 c a 8

Cap

Memory

Compute

B/J470 MB op/J, 4Jp ,.4 GfloG6. o 4 B

%]%]B/s [81B/s [818.7 GB8 7 GB5%], 85%] 8%p/s [95p/s [95s100 Gflo100 GfloG0 o 5 8 B

0%]0%]p) [100p) [001W (cap(capc+ 3.2 W3 2onst) +o st)t16 W (co6 (co1 o + W p 0

Cap

Memory

Compute

B/J810 MB op/J, 8Jp ,.3 GfloG5. o 8 B

9%]9%]B/s [89B/s [8970 GB70 GB8%], 18%] 1]p/s [88p/s [884 Tflop4 Tflopf1.41 44 p 8 7 B 9

4%]%]ap) [94ap) [9W (ca(ca+ 150 505onst) +o st)sW (co(co 12001 0 o + a 4

Cap

Memory

Compute

B/J750 MB pop/J, 7Jp ,.2 GfloG3. o 7 B

0%]0%]B/s [70B/s [7018 GB18 GB97%], 97%]%op/s [9op/s [9s56 Gflo56 GfloG555 o 9 1 B 0

8%]8%]ap) [98ap) [98W (ca(ca+ 7.4 7const) co st)s7 W (c(cW177 c a 8

Cap

Compute

p2.5 Gflop/J, 280 MB/J op/J, 2J.5 GfloG2 p ,. o 2 B

0%]0%]B/s [40B/s [40.3 GB3 GB9%], 19%] 1%p/s [99p/s [99s5 Gflo5 GfloG9.59 55 o 9 1 B 0

5%]5%]ap) [95ap) [95W (ca(ca+ 1.2 1const) co st)s5 W (c5 (cW3.53 55 c a 5

CapMemory

Compute

p2.2 Gflop/J, 560 MB/J op/J, 5J.2 GfloG2 p ,. o 5 B

%]%]B/s [31B/s [313.9 GB3 9 GB8%], 38%] 3%p/s [58p/s [58s6 Gflo6 GfloG16166 o 8 3 B

7%]%]ap) [97ap) [9W (ca(ca+ 2.0 02const) co st)s5 W (c5 (cW5.55 55 c a 7

Cap

Memory Compute

B/J50 MB op/J, 1Jp ,50 MfloM655 o 1 B

%]%]B/s [31B/s [313.3 GB3 3 GB8%], 38%] 3%p/s [98p/s [98s3 Gflo3 GfloG13133 o 8 3 B

8%]8%]ap) [98ap) [98W (ca(ca+ 1.4 1const) co st)s0 W (c0 (cW2000 c a 8

Cap
Compute

B/J620 Mflop/J, 140 MBM J p ,2 o B

4%]4%]99 Gflop/s [93%], 19 GB/s [7499 Gflop/s [93%] 19 GB/s [74G s %9 o 9 1 B 4

9%]9%]120 W (const) + 44 W (cap) [990 (co st) (cap) [99W n 42 c) a 9

Cap

Memory Compute

GTX Titan GTX 680 Xeon Phi NUC GPU Arndale GPU APU GPU

GTX 580 NUC CPU PandaBoard ES Arndale CPU APU CPU Desktop CPU

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512 1/8 1/2 2 8 32 128 512
Intensity (single−precision flop:Byte)

P
ow

er
 [

no
rm

al
iz

ed
]

Fig. 5: Power (normalized). The y-axis is linear but the x-axis is logarithmic, base 2. The model appears as solid lines in up to

three segments, indicating the three possible regimes: memory bandwidth-bound, power-bound due to capping, and compute-

bound. Measurements appear as solid grey dots. Platforms appear from left-to-right and top-to-bottom in decreasing order of

peak energy-efficiency, i.e., the most energy-efficient platform is the GTX Titan, whose peak is 16 Gflop/J.

and the Desktop CPU (Nehalem) at the bottom-right at just

620 Mflop/J.

Across platforms, power allocation between memory and

processing differs. Flops on the GTX Titan consume more

of the power budget than memory operations, while the Arn-

dale GPU exhibits just the opposite behavior. However, there

are no strongly discernable patterns in the architectural power

allocations as energy-efficiency varies. The Arndale GPU, for

example, has a peak energy-efficiency within a factor of two of

the GTX Titan (8.1 Gflop/J vs. 16 Gflop/J), while putting much

more of its power into the memory system. Consequently, its

design yields on peak flop energy-efficiency to boost memory

energy-efficiency, e.g., 1.5 Gflop/J on the Arndale GPU vs.

1.3 Gflop/J on GTX Titan.

But within a platform, the measurements vary only between

the range of 0.65 to 1.15, or less than 2×. A narrow range

means there is little room to reconfigure power to improve or

adapt energy-efficiency to a computation. The main obstacle

is the relatively large value of constant power, π1, shown

in table I. Indeed, the fraction of maximum power that π1

consumes, or π1/(π1 + Δπ), is more than 50% for 7 of the

12 platforms in table I. As it happens, this fraction corre-

lates with overall peak energy-efficiency, with a correlation

coefficient of about -0.6 (not shown). Thus, driving down π1

would be the key factor for improving overall system power

reconfigurability.

Indeed, the mere fact of π1 can invert our expectations.

Consider a hypothetical workload that simply streams data

from memory. How much energy does this computation

use? Referring to table I, the Xeon Phi has the lowest εmem

(136 pJ/B). It is lower than, for instance, the higher band-

width GTX Titan (267 pJ/B) and lower-power Arndale GPU

(518 pJ/B). However, we must also pay a constant energy

charge of τmem×π1, which adds 994 pJ/B to Xeon Phi, 515 pJ/B

to GTX Titan, and just 153 pJ/B to the Arndale GPU. Then,

the total energy per byte is 671 pJ/B for the Arndale GPU,

782 pJ/B for the GTX Titan, and 1.13 nJ/B to the Xeon Phi.

This example underscores the critical role that π1 plays.

The extent to which power capping, as we model it, affects

the power characteristics of a given platform varies widely.

Caps apply over a wider range of intensities on the hybrid

NUC CPU+GPU and AMD APU platforms than they do on the

GTX Titan and Xeon Phi. However, our approach to capping

appears inaccurate on the NUC GPU and Arndale GPU.

Although these mispredictions are always less than 15%, they

raise questions about what mechanisms are operating. On the

NUC GPU, as it happens measurement variability owes to OS

interference.5 However, on the Arndale GPU, the mismatch

at mid-range intensities suggests we would need a different

model of capping, perhaps one that not assume constant time

and energy costs per operation. That is, even with a fixed clock

frequency, there may be active energy-efficiency scaling with

respect to processor and memory utilization.

5OpenCL drivers for NUC are available only when running Windows, which
lacks easy user-level power management support.

454

Full

1/2

1/4
1/8

3 GB/JG3 GB/JJ, 1.1J 1op/Jp/JGfloGGfl16 616 o J 3

s [83%][3GB/sB40 G , 2421%]%s [8[op/sp TflT4.00 o s 1] 4 G s

) [99%]) [99%][9cap)cap)aW (cW (c60 W60 W0+ 1616nst) nst)tconconoW (W (W20 200111 (n 6 W c)

C
C

C

F
M Full

1/2

1/4

1/8

2 GB/JG2 GB/JJ, 1.1J 1op/Jp/JGfloGGfl15 515 o J 2

s [82%][2GB/sB60 G , 1616%]%s [86[op/sp TflT3.00 o s 6] 6 G s

[100%][100%]0ap) ap)pW (caW (ca0 W0 WW 140140st) +st)onsonsnW (cW (c(66 W66 W666 W co s + 0 W a [

C

C

C

FM
1/41/2
Full

1/8

11 Gflop/J, 880 MB/J1 f / 8 M11 Gfl /J 880 MB/J1 G o , 0

2.0 Tflop/s [100%], 180 GB/s [57%]0 l / % 1 B [72 T p 0] 8 G s

180 W (const) + 36 W (cap) [100%]180 W (const) 36 W (cap) [100%]0 W o t W p 01 (n 6 W a [

C
C
F
F

M Full

1/2

1/4

1/8

8.8 Gflop/J, 670 MB/J8 f / 6 M8 8 Gfl /J 670 MB/J8 G o , 0

270 Gflop/s [100%], 15 GB/s [60%]7 G p [0 , B [02 o s 0 % 1 G s

10 W (const) + 18 W (cap) [91%]10 W (const) 18 W (cap) [91%]W c s + 8 a [10 W o) 1 W c)

C
C

C

M C Full

1/2

1/4

1/8

5 GB/JG5 GB/JJ, 1.J 1op/Jp/JGfloGGfl8.1 8 1888 o J 5

s [66%][6GB/sB.4 G], 846%%/s [4lop/3 GfG3333 f / 4 % . G s

) [88%]) [88%][8cap)cap)aW (cW (c4.8 W4 8 W8+ 44+nst)nst)s(con(concW WW1.31 33 n 4 W c)

C

C

C
F

M Full
1/2
1/81/4

6.4 Gflop/J, 470 MB/J4 f / 4 M6 4 Gfl /J 470 MB/J6 G o , 0

100 Gflop/s [95%], 8.7 GB/s [81%]0 G % 7 B [10 f / 9 % . G s

16 W (const) + 3.2 W (cap) [100%]16 W (const) 3 2 W (cap) [100%]6 o) 3 W p 01 W c s + 2 W a [

C
C
F
F

M

Full

1/2

1/4
1/8

5.3 Gflop/J, 810 MB/J3 f / 8 M5 3 Gfl /J 810 MB/J5 G o , 0

1.4 Tflop/s [88%], 170 GB/s [89%]T p [% 1 B [94 o s 8] 7 G s

120 W (const) + 150 W (cap) [94%]120 W (const) 150 W (cap) [94%]0 W o t 0 a [41 (n 5 W c)

C
C

C

M F Full

1/2
1/41/8

3.2 Gflop/J, 750 MB/J2 f / 7 M3 2 Gfl /J 750 MB/J3 G o , 0

56 Gflop/s [97%], 18 GB/s [70%]G o s 7 , B [06 f p 9 % 1 G s

17 W (const) + 7.4 W (cap) [98%]17 W (const) 7 4 W (cap) [98%]1 W c s + 4 a [87 n 7 W c)

C
F
F
F

1/2
Full

1/41/8

2.5 Gflop/J, 280 MB/J5 f / 2 M2 5 Gfl /J 280 MB/J2 G o , 0

9.5 Gflop/s [99%], 1.3 GB/s [40%]9 G % B [05 f / 9 % . G s

3.5 W (const) + 1.2 W (cap) [95%]3 5 W (const) 1 2 W (cap) [95%]W c s + 2 a [55 n 1 W c)

C
C
F
FM Full

1/2
1/41/8

2.2 Gflop/J, 560 MB/J2 f / 5 M2 2 Gfl /J 560 MB/J2 G o , 0

16 Gflop/s [58%], 3.9 GB/s [31%]1 G % B [16 f / 5 % . G s

5.5 W (const) + 2.0 W (cap) [97%]5 5 W (const) 2 0 W (cap) [97%]W c s + 0 a [75 n 2 W c)

C
C
C
FM Full

1/81/41/2

650 Mflop/J, 150 MB/J0 f / M650 Mfl /J 150 MB/J5 M o , 0

13 Gflop/s [98%], 3.3 GB/s [31%]1 G % B [13 f / 9 % . G s

20 W (const) + 1.4 W (cap) [98%]20 W (const) 1 4 W (cap) [98%]2 W c s + 4 a [80 n 1 W c)

C
C
F
F

Full
1/2
1/41/8

620 Mflop/J, 140 MB/J0 f / M620 Mfl /J 140 MB/J2 M o , 0

99 Gflop/s [93%], 19 GB/s [74%]G o s 3 , B [49 f p 9 % 1 G s

120 W (const) + 44 W (cap) [99%]120 W (const) 44 W (cap) [99%]2 W c s + 4 a [90 W o) 4 W c)

C
C
C
FM

GTX Titan GTX 680 Xeon Phi NUC GPU Arndale GPU APU GPU

GTX 580 NUC CPU PandaBoard ES Arndale CPU APU CPU Desktop CPU

1/4

1/2

1

2

1/4

1/2

1

2

1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128
Intensity (single−precision FLOP:Byte)

P
ow

er
 [n

or
m

al
iz

ed
 to

 c
on

st
+

ca
p]

Fig. 6: Hypothetical power, performance, and energy-efficiency as the usable power cap (Δπ) decreases. Note the log-log

scales, base 2. Each curve represents a power cap setting: full refers to Δπ from table I and 1/k refers to a power cap setting

of Δπ/k, for k ∈ {2, 4, 8}. The curve color annotations, “F” for flop-bound (compute-bound), “C” for power cap-bound, and

“M” for memory-bound.

D. Power throttling scenarios

Using the model, we may consider a variety of “what-if”

scenarios related to power.

i) Power throttling: Suppose we lower Δπ. What could

the impact on maximum system power, performance, and

energy-efficiency be, assuming all other model parameters,

including π1, remain equal?

Figure 6 shows power when the power cap is set to Δπ/k,

where Δπ is the original power cap (see table I) and k ∈ [1, 8]
is the reduction factor.

First, consider the extent to which reducing Δπ reduces

overall system power. Figure 6 confirms that, owing to con-

stant power π1 > 0, reducing Δπ by k reduces overall power

by less than k. It further shows that the Arndale GPU has

the most potential to reduce system power by reducing Δπ,

whereas the Xeon Phi, APU CPU, and APU GPU platforms

have the least. More node-level headroom—that is, low π1

compared to Δπ—may be very important, since it leaves

more relative power for other power overheads, including the

network and cooling.

Next, consider the extent to which reducing Δπ reduces

performance. Figure 7a shows the variability across platforms

and computational intensities. Highly memory-bound, low

intensity computations on the GTX Titan degrade the least as

Δπ decreases, since its design overprovisions power for com-

pute. By contrast, for highly compute-bound computations, the

NUC CPU degrades the least, since its design overprovisions

power for memory. A similar observation holds for energy-

efficiency, fig. 7b.

j) Power bounding: The preceding scenarios may have

further implications for the idea of dynamic power bounding,

which Rountree et al. have suggested will be a required

mechanism of future systems [23].

Recall fig. 1 from §I, which compared GTX Titan and

Arndale GPU building blocks. That analysis suggested that, as

configured, an Arndale GPU building block would, even in the

best case, offer only marginal improvements over GTX Titan,

and would likely be worse.

However, in a power bounding scenario, it might be nec-

essary to reduce node power to a particular level. Suppose

that, in a system based on GTX Titan nodes, it is necessary

to reduce per-node power by half, to 140 Watts per node.

This corresponds to a power cap setting of Δπ/8 in fig. 6,

which in turn will imply a performance of approximately

0.31× at I = 0.25 relative to the default Δπ. One can

determine that, in the best case, assembling 23 Arndale GPUs

will match 140 Watts but will be approximately 2.8× faster at

I = 0.25, which is better than the 1.6× scenario from fig. 1.

Essentially, a lower power grainsize, combined with a compute

building block having a lower π1, may lead to more graceful

degradation under a system power bound.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Our study adopts an algorithmic first-principles approach to

the modeling and analysis of systems with respect to time,

energy, and power. This approach can offer high-level analyt-

ical insights for current debates about the form of future HPC

platforms. Our central example is the ability to consider—even

in the model’s relatively simple form—a variety of “what-if”

scenarios, including what would happen if it became necessary

to impose a power cap on any of the 12 evaluation platforms.

Constant power, π1, is a critical limiting factor. It accounts

for more than 50% of observed power on 7 of the 12 evalu-

455

(a) Performance (Gflop/s)

Full
1/2
1/4
1/8

3 GB/J3 GB/JGJ, 1.J 11op/Jop/JpGfloGflof16 166 G o J 3

s [83%]83[83%]83[83%]GB/sBGB/BGB/40 G40 G40 G, 242242241%]%1%]%1%]s [81[81[81op/spTfloT4.0 . /TflT4 04 0 Tfl /o s 1 4 G s

) [99%]9) [99%]cap)acap)W (cW (c60 W060 W+ 16+ 16st) tst) conoconW (WW (20 W020 W11 W c n + 6 W c)

C
C
CM F Full

1/2
1/4
1/8

2 GB/J2 GB/JGJ, 1.J 11op/Jop/JpGfloGflof15 155 G o J 2

s [82%]82[82%]GB/sBGB/60 G60 G, 161166%]%6%]s [86[86op/sp/TfloTTfl3.0 .3 0 o s 6 6 G s

[100%]00[100%]ap) pap) W (cacW (ca0 WW0 W140140t) +t) +onsnonsW (co(W (co66 W66 W6 W o st 0 W a [

C
C
CM
F

1/41/2Full

1/8

0 MB/J0 MB/JM8808808p/J,p/J/GfloGflol11 G11 G111 G p 0

s [57%]57[57%]GB/sBGB/80 G80 G, 181180%]%0%][100[100p/s s/TflopTfl2.0 T02 0 T2 T p [0 8 G s

[100%]00[100%]ap) pap) W (cacW (ca6 WW6 W+ 36+ 36st) tst) conoconW (WW (180 W0180 WW c n + 6 W a [

C
CM F
F

Full
1/2
1/4
1/8

0 MB/J0 MB/JM6706706p/J,p/J/GfloGflol.8 G8 G8888 G p 0

s [60%]0[60%]GB/sBGB/5 G5 G%], 1,%] 100%000%s [10[10op/sp/GfloGGfl270 0270222 o s 0 % 1 G s

) [91%]1) [91%]cap)acap)W (cW (c18 W818 W) + 1+) + 1nst)snst)(coc(co0 W W0 W 101100 o) 1 W c)

C
CM
C
C

Full1/2
1/4
1/8

5 GB/J5 GB/JGJ, 1.J 11op/Jop/JpGfloGflof8.1 8 11888 G o J 5

s [66%]6[66%]GB/sBGB/.4 G4 G], 8] 86%%6%s [4[4op/p/ GflGGfl333333 l /s 4 %] . G s

) [88%]88) [88%]cap)acap)W (cW (c4.8 W84.8 W+ 4++ 4nst) snst) (cono(conW WW 1.3 .1.3 (n 4 W c)

M C
C
C
F

Full1/2
1/8
1/4

6.4 Gflop/J, 470 MB/J6 4 Gflop/J 470 MB/J4 l / 4 M6 G p 0

100 Gflop/s [95%], 8.7 GB/s [81%]0 G p % B 81100 Gfl / [95%] 8 7 GB/ [81%]1 0 l /s 9 %] . G s

16 W (const) + 3.2 W (cap) [100%]6) 3 W c p 0016 W (const) + 3.2 W (cap) [100%]1 W c s + 2 W a [

CM
C
F
F

Full
1/2
1/4
1/8

0 MB/J0 MB/JM8108108p/J,p/J/GfloGflol.3 G3 G3555 G p 0

s [89%]89[89%]GB/sBGB/70 G70 G, 171178%]%8%]s [88[88op/sp/TfloTTfl1.4 .1 4 o s 8 7 G s

) [94%]4) [94%]cap)acap)W (cW (c50 W050 W+ 15+ 15st) tst) conoconW (WW (20 W020 W11 W c n + 5 W c)

C
C

M C
F

Full1/21/41/8

0 MB/J0 MB/JM7507507p/J,p/J/GfloGflol.2 G2 G2333 G p 0

s [70%]0[70%]GB/sBGB/8 G8 G%], 1,%] 197%797%56 Gflop/s [95 G o 56 Gfl / [96 f / 9 % 1 G s

) [98%]8) [98%]cap)acap)W (cW (c7.4 W47.4 W+ 7++ 717 W (const) W o s17 W (const) (n 7 W c)

C
F
F
F

1/2Full1/4
1/8

0 MB/J0 MB/JM2802802p/J,p/J/GfloGflol.5 G5 G5222 G p 0

s [40%]40[40%]GB/sBGB/.3 G3 G], 1] 19%%9%s [9[9op/p/ GflGGfl9.59 55 l /s 9 %] . G s9

) [95%]5) [95%]cap)acap)W (cW (c.2 W2.2 W+ 1++ 1nst) snst) (cono(conW WW 3.5 .3.5 (n W c)

CM
C
F
F Full

1/2
1/4
1/8

0 MB/J0 MB/JM5605605p/J,p/J/GfloGflol.2 G2 G2222 G p 0

s [31%]31[31%]GB/sBGB/.9 G9 G], 3] 38%%8%16 Gflop/s [51 G p16 Gfl / [56 l /s 5 %] . G s

) [97%]7) [97%]cap)acap)W (cW (c2.0 W02.0 W+ 2++ 25.5 W (const) . W o s5.5 W (const) (n 2 W c)

C
M C

C
F Full

1/8
1/41/2

0 MB/J0 MB/JM150150p/J,p/J/MfloMflol50 M50 M0656565 M p 0

s [31%]31[31%]GB/sBGB/.3 G3 G], 3] 38%%8%13 Gflop/s [91 G p13 Gfl / [93 l /s 9 %] . G s

) [98%]8) [98%]cap)acap)W (cW (c.4 W4.4 W+ 1++ 120 W (const) 2 W o s20 W (const) (n W c)

C
C
F
F

Full
1/2
1/4
1/8

0 MB/J0 MB/JM140140p/J,p/J/MfloMflol20 M20 M0626262 M p 0

s [74%]4[74%]GB/sBGB/9 G9 G%], 1,%] 193%393%99 Gflop/s [99 G o 99 Gfl / [99 f / 9 % 1 G s

) [99%]9) [99%]cap)acap)W (cW (c44 W444 W) + 4+) + 4120 W (const)2 W c s120 W (const)0 o) 4 W c)

C
C
CM F

GTX Titan GTX 680 Xeon Phi NUC GPU Arndale GPU APU GPU

GTX 580 NUC CPU PandaBoard ES Arndale CPU APU CPU Desktop CPU

2−17

2−15

2−13

2−11

1/512

1/128

1/32

1/8

1/2

2

2−17

2−15

2−13

2−11

1/512

1/128

1/32

1/8

1/2

2

1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128
Intensity (single−precision FLOP:Byte)

F
lo

ps
 /

T
im

e
[n

or
m

al
iz

ed
 to

 4
.0

 T
flo

p/
s]

(b) Energy-efficiency (Gflop/J)

Full1/2
1/4
1/8

3 GB/JG3 GB/JJ, 1.1J 1op/Jpop/JGflofGflo16 616 G o J 3

s [83%]s [83%]83GB/sGB/sB40 G40 G, 24, 2421%]1%]%s [81s [81op/sop/spTfloTfloT4.0 4.0. o s 1 4 G s

) [99%]9) [99%]cap)acap)W (cW (c60 W060 W+ 16+ 16st) tst) conoconW (WW (20 W020 W11 W c n + 6 W c)

C
C

M C
F Full

1/2
1/4
1/8

2 GB/JG2 GB/JJ, 1.1J 1op/Jpop/JGflofGflo15 515 G o J 2

s [82%]s [82%]82GB/sGB/sB60 G60 G, 16, 1616%]6%]%s [86s [86op/sop/spTfloTfloT3.0 3.0. o s 6 6 G s

[100%]00[100%]ap) pap) W (cacW (ca0 WW0 W140140t) +t) +onsnonsW (co(W (co6 W6 W666 W o st 0 W a [

C
CM
C
F

1/4
1/2Full

1/8

0 MB/JM0 MB/J8808880p/J,/p/JGflolGflo11 G11 G111 G p 0

s [57%]s [57%]57GB/sGB/sB80 G80 G, 18, 1810%]0%]%2.0 Tflop/s [1002.0 Tflop/s [1000 s2 T p [0 8 G s

[100%]00[100%]ap) pap) W (cacW (ca6 WW6 W+ 36+ 36180 W (const) 0 W o t180 W (const) W c n + 6 W a [

C
CM F
F

Full
1/2
1/4
1/8

0 MB/JM0 MB/J6706670p/J,/p/JGflolGflo.8 G88 G888 G p 0

s [60%]s [60%]0GB/sGB/sB5 G5 G%], 1%], 1,00%00%0s [10s [10op/sop/spGfloGfloG270 2700222 o s 0 % 1 G s

) [91%]1) [91%]cap)acap)W (cW (c18 W818 W) + 1+) + 1nst)snst)(coc(co0 W W0 W 101100 o) 1 W c)

CM
C
C
C Full1/2

1/4
1/8

5 GB/JG5 GB/JJ, 1.1J 1op/Jpop/JGflofGflo8.1 18 1888 G o J 5

s [66%]s [66%]6GB/sGB/sB.4 G.4 G], 8], 86%6%%s [4s [4op/op/p GflGflG333333 l /s 4 %] . G s

) [88%]88) [88%]cap)acap)W (cW (c4.8 W84.8 W+ 4++ 4nst) snst) (cono(conW WW 1.3 .1.3 (n 4 W c)

M

C
C
C
F

Full1/2
1/8
1/4

0 MB/JM0 MB/J4704470p/J,/p/JGflolGflo.4 G44 G666 G p 0

s [81%]s [81%]81GB/sGB/sB.7 G.7 G], 8], 85%5%%s [9s [9op/op/p GflGflG10010001 0 l /s 9 %] . G s

[100%]00[100%]ap) pap) W (cacW (ca2 WW2 W+ 3.23+ 3.2st) +)st) +consconsW (cW (c16 W616 W111 W c s + 2 W a [

CM
C
F
F

Full
1/2
1/4
1/8

0 MB/JM0 MB/J8108810p/J,/p/JGflolGflo.3 G33 G555 G p 0

s [89%]s [89%]89GB/sGB/sB70 G70 G, 17, 1718%]8%]%s [88s [88op/sop/spTfloTfloT1.4 1.4. o s 8 7 G s

) [94%]4) [94%]cap)acap)W (cW (c50 W050 W+ 15+ 15st) tst) conoconW (WW (20 W020 W11 W c n + 5 W c)

C
M C

C
F

Full1/21/41/8

0 MB/JM0 MB/J7507750p/J,/p/JGflolGflo.2 G22 G333 G p 0

s [70%]s [70%]0GB/sGB/sB8 G8 G%], 1%], 1,97%97%7/s [9/s [9 flopflopo6 Gf6 GfG565656 f / 9 % 1 G s

) [98%]8) [98%]cap)acap)W (cW (c7.4 W47.4 W+ 7++ 7nst) snst) (cono(conW WW 17 17 (n 7 W c)

C
F
F
F

1/2Full1/4

1/8

0 MB/JM0 MB/J2802280p/J,/p/JGflolGflo.5 G55 G222 G p 0

s [40%]s [40%]40GB/sGB/sB.3 G.3 G], 1], 19%9%%9.5 Gflop/s [99.5 Gflop/s [9G p5 l /s 9 %] . G s

) [95%]5) [95%]cap)acap)W (cW (c.2 W2.2 W+ 1++ 13.5 W (const) . W o s3.5 W (const) (n W c)

M C
C
F
F

Full
1/2

1/4

1/8

0 MB/JM0 MB/J5605560p/J,/p/JGflolGflo.2 G22 G222 G p 0

s [31%]s [31%]31GB/sGB/sB.9 G.9 G], 3], 38%8%%s [5s [5op/op/p GflGflG161616 l /s 5 %] . G s

) [97%]7) [97%]cap)acap)W (cW (c2.0 W02.0 W+ 2++ 2nst) snst) (cono(conW WW 5.5 .5.5 (n 2 W c)

C
M C

C
F

Full

1/8

1/4
1/2

0 MB/JM0 MB/J150150p/J,/p/JMflolMflo50 M050 M656655 M p 0

s [31%]s [31%]31GB/sGB/sB.3 G.3 G], 3], 38%8%%s [9s [9op/op/p13 Gfl13 Gfl1 G3 l /s 9 %] . G s

) [98%]8) [98%]cap)acap)W (cW (c.4 W4.4 W+ 1++ 1nst) snst) (cono(con20 W 2 W20 W (n W c)

C
C
F
F

Full
1/2

1/4

1/8

620 Mflop/J, 140 MB/J6 0 l / M620 Mflop/J 140 MB/J2 M p 0

99 Gflop/s [93%], 19 GB/s [74%]99 Gflop/s [93%], 19 GB/s [74%]9 G o 3 , B 49 f / 9 % 1 G s

120 W (const) + 44 W (cap) [99%]2 W c s + 4 a 9120 W (const) + 44 W (cap) [99%]0 o) 4 W c)

C
C
CM
F

GTX Titan GTX 680 Xeon Phi NUC GPU Arndale GPU APU GPU

GTX 580 NUC CPU PandaBoard ES Arndale CPU APU CPU Desktop CPU

2−12

2−10

1/256

1/64

1/16

1/4

1

2−12

2−10

1/256

1/64

1/16

1/4

1

1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128 1/4 1/2 1 2 4 8 16 32 64 128
Intensity (single−precision FLOP:Byte)

F
lo

ps
 /

E
ne

rg
y

[n
or

m
al

iz
ed

 to
 1

6
G

flo
p/

J]

Fig. 7: Hypothetical performance and energy-efficiency as the usable power cap (Δπ) decreases. This figure uses same plotting

and notation conventions as fig. 6.

ation platforms. Its impact is to reduce the degree of power

reconfigurability possible, and invert our expectations relative

to the time and energy costs of primitive operations. These

observations raise a natural question for device designers,

architects, and system integrators: To what extent can π1 be

reduced, perhaps by more tightly integrating non-processor

and non-memory components?

Beyond these observations, we hope the microbenchmarks

and modeling methodology, as well as the parameters of

table I, will prove useful to others. Indeed, table I is full of

interesting data points, such as the fact that random memory

access is on the Xeon Phi at least one order of magnitude

less energy per access than any other platform, suggesting its

utility on highly irregular data processing workloads.

The main limitations of this work are its many simplifying

assumptions and its microbenchmark-only evaluation. Conse-

quently, there may be a considerable gap between the best-case

abstract analysis of this paper and actual applications. We are

pursuing both more complex applications and more detailed

models that can account for the observed errors (e.g., Arndale

GPU) as part of our on-going work.

456

ACKNOWLEDGEMENTS

We thank Edmond Chow and Intel for providing access to

Xeon Phi. Thanks also to Hyesoon Kim for the PCIe inter-

poser. This work was supported in part by the National Sci-

ence Foundation (NSF) under NSF CAREER award number

0953100; the U.S. Dept. of Energy (DOE), Office of Science,

Advanced Scientific Computing Research under award DE-

FC02-10ER26006/DE-SC0004915, and the Scientific Discov-

ery through Advanced Computing (SciDAC) program under

award DE-FC02-06ER25764 and DE-FG02-11ER26050/DE-

SC0006925; and grants from the Defense Advanced Research

Projects Agency (DARPA) Computer Science Study Group

program. Any opinions, findings and conclusions or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect those of NSF, DOE, or DARPA.

REFERENCES

[1] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez, “The
low power architecture approach towards exascale computing,” Journal
of Computational Science, no. 0, pp. –, 2013.

[2] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009.

[3] J. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in Proc. IEEE Int’l. Parallel and Distributed Processing Symp.
(IPDPS), Boston, MA, USA, May 2013.

[4] J. W. Choi and R. Vuduc, “A roofline model of energy,” Georgia Institute
of Technology, School of Computational Science and Engineering,
Atlanta, GA, USA, Tech. Rep. GT-CSE-12-01, December 2012.

[5] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrading
the loft,” IEEE Computer Architecture Letters, vol. 99, no. RapidPosts,
p. 1, 2013.

[6] D. Antão, L. Taniça, A. Ilic, F. Pratas, P. Tomás, and L. Sousa,
“Monitoring performance and power for application characterization
with cache-aware roofline model,” in Proc. 10th Int’l. Conf. Parallel
Processing and Applied Mathematics (PPAM), September 2013.

[7] G. Kestor, R. Gioiosa, D. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in Workload
Characterization (IISWC), 2013 IEEE International Symposium on, Sept
2013, pp. 56–65.

[8] K. Fürlinger, C. Klausecker, and D. Kranzlmüller, “Towards energy
efficient parallel computing on consumer electronic devices,” in Pro-
ceedings of the First international conference on Information and
communication on technology for the fight against global warming, ser.
ICT-GLOW’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 1–9.

[9] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search
using mobile cores: quantifying and mitigating the price of efficiency,”
SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 314–325, Jun. 2010.

[10] P. Stanley-Marbell and V. Cabezas, “Performance, power, and thermal
analysis of low-power processors for scale-out systems,” in Parallel
and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, 2011, pp. 863–870.

[11] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources
of inefficiency in general-purpose chips,” in Proceedings of the 37th
annual international symposium on Computer architecture, ser. ISCA
’10. New York, NY, USA: ACM, 2010, pp. 37–47.

[12] A. Pedram, R. van de Geijn, and A. Gerstlauer, “Codesign tradeoffs for
high-performance, low-power linear algebra architectures,” Computers,
IEEE Transactions on, vol. 61, no. 12, pp. 1724–1736, 2012.

[13] A. Pedram, S. Z. Gilani, N. S. Kim, R. A. van de Geijn, M. J. Schulte,
and A. Gerstlauer, “A linear algebra core design for efficient level-3
blas,” in ASAP, 2012, pp. 149–152.

[14] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” pp. 1–1, 2013.

[15] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “Powermon:
Fine-grained and integrated power monitoring for commodity computer
systems,” in IEEE SoutheastCon 2010 (SoutheastCon), Proceedings of
the, march 2010, pp. 479 –484.

[16] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron, “Pow-
erpack: Energy profiling and analysis of high-performance systems and
applications,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 21, no. 5, pp. 658–671, May 2010.

[17] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-
mann, “Power-management architecture of the intel microarchitecture
code-named sandy bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27,
March-April 2012.

[18] NVIDIA, “NVML API Reference Manual,” 2012.
[19] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing

nuca organizations and wiring alternatives for large caches with cacti
6.0,” in Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM
International Symposium on, Dec 2007, pp. 3–14.

[20] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, Dec
2009, pp. 469–480.

[21] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy
optimizations in gpgpus,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ser. ISCA ’13.
New York, NY, USA: ACM, 2013, pp. 487–498. [Online]. Available:
http://doi.acm.org.prx.library.gatech.edu/10.1145/2485922.2485964

[22] A. Kolmogorov, “Sulla determinazione empirica di una legge di dis-
tribuzione (On the empirical determination of a distribution law),”
Giornale dell’Instituto Italiano degli Attuari, vol. 4, pp. 83–91, 1933.

[23] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond DVFS: A First Look at Performance under a
Hardware-Enforced Power Bound,” 2012 IEEE 26th International Par-
allel and Distributed Processing Symposium Workshops & PhD Forum,
pp. 947–953, May 2012.

457

