
Brief Announcement:
Towards a Communication Optimal Fast Multipole Method

and its Implications at Exascale

Aparna Chandramowlishwaran
Georgia Institute of

Technology
aparna@gatech.edu

Jee Whan Choi
Georgia Institute of

Technology
jee@gatech.edu

Kamesh Madduri
The Pennsylvania State

University
madduri@cse.psu.edu

Richard Vuduc
Georgia Institute of

Technology
richie@cc.gatech.edu

ABSTRACT
This paper presents the first in-depth models for compute and mem-
ory costs of the kernel-independent Fast Multipole Method (KIFMM).
The Fast Multiple Method (FMM) has asymptotically linear time
complexity with a guaranteed approximation accuracy, making it
an attractive candidate for a wide variety of particle system sim-
ulations on future exascale systems. This paper reports on three
key advances. First, we present lower bounds on cache complexity
for key phases of the FMM and use these bounds to derive an-
alytical performance models. Secondly, using these models, we
present results for choosing the optimal algorithmic tuning param-
eter. Lastly, we use these performance models to make predictions
about FMM’s scalability on possible exascale system configura-
tions, based on current technology trends. Looking forward to ex-
ascale, we suggest that the FMM, though highly compute-bound on
today’s systems, could in fact become memory-bound by 2020.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: Numer-
ical Algorithms and Problems

Keywords
Fast Multipole Method; Cache Complexity Analysis; Performance
Modeling; Exascale

1. INTRODUCTION
We report on a new analysis of memory hierarchy communica-

tion for the Fast Multipole Method (FMM) [6], which is widely
regarded as one of the most significant algorithms in scientific com-
puting [3]. For a particle simulation involving n interacting parti-
cles, which naïvely is a O

(
n2
)

computation, the FMM performs a
work-optimalO (n) operations with user-selectable accuracy guar-
antee.

Our analysis refines the estimates of the constants, normally ig-
nored in traditional asymptotic analyses of the FMM, with cali-
bration against our state-of-the-art implementation [4, 5]. The re-

Copyright is held by the author/owner(s).
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
ACM 978-1-4503-1213-4/12/06.

sult is an analytical performance model with two important prop-
erties. First, the model predicts the optimal setting of one of the
FMM’s tuning parameters, which in practice had previously re-
quired manual experimentation to set. Secondly, since the analysis
includes important high-level architectural parameters, such as last-
level cache capacity, the resulting models can be used to estimate
whether the FMM will scale or not on future architectural designs.

In fact, our model suggests a new kind of high-level analytical
co-design of the algorithm and architecture. For instance, classical
analyses of balance relate algorithmic properties, such as intensity
(intrinsic ratio of useful operations to bytes transferred), to a pro-
cessor’s balance (its peak ops/sec divided by peak bandwidth). The
total time T is given by the sum of the times taken by the different
phases of FMM. Based on the analytical execution time estimates
for the most expensive phases of FMM, we derive analytically an
optimal value for an algorithmic tuning parameter, denoted by q
(see Section 2), which practitioners had previously thought could
only be determined experimentally.

q =
γ3/2

C1

√
C2 + C3

C0

βmem
(1)

The constants C1, C2, and C3 can be estimated given a kernel
and an implementation. The fraction C0

βmem
is the processor’s bal-

ance and γ is the number of digits of precision required. For our
current state-of-the-art multicore implementation, C2

C3
≈ 50 and on

a single socket Intel Westmere node C0
βmem

= 2.6 resulting in the
optimal q ≈ 250 which exactly matches our experimental value.

If we further assume that q = O(γ
3
2 ), then T can be simplified

as the expression below.

T =
Nγ3/2

C0
(C′ + C

′′ C0

βmem
) (2)

C′ and C′′ are constants defined in terms of prior constants.
One corollary of our analysis is that the accuracy of the FMM

and one of its algorithmic tuning parameters can be used to com-
pensate for processor imbalance, which is an unavoidable technol-
ogy trend. However, we also find that although the FMM is to-
day compute-bound and therefore highly scalable in practice, the
current trajectory of processor architecture design could cause the
FMM to become communication-bound as early as the year 2020.

182



2. FAST MULTIPOLE METHOD
Given a system of N source particles, with positions given by
{y1, . . . , yN}, andN targets with positions {x1, . . . , xN}, we wish
to compute the N sums, f(xi) =

∑N
j=1K(xi, yi) · s(yj), where

f(x) is the desired potential at target point x; s(y) is the density
at source point y; and K(x, y) is an interaction kernel that speci-
fies “the physics” of the problem. The FMM can approximate of
all of these sums in an optimal O(N) time with a guaranteed user-
specified accuracy ε [6]. This acceleration is based on two key
ideas: (i) organizing the points spatially in a tree representation,
such as an octree in three dimensions or a quadtree in 2D; and (ii)
fast approximate evaluation, in which we compute summaries at
each node using a constant number of tree traversals with constant
work per node.

The tree is constructed so that the leaves contain no more than q
points each, where q is a tuning parameter chosen by the user. We
also associate with each node of the tree one or more neighbor lists.
Each list has bounded constant length and contains (logical) point-
ers to a subset of other tree nodes. These are canonically known
as the U , V , W , and X lists. Given the tree T , evaluating the
sums consists of six distinct computational phases: one per U , V ,
W , and X lists (which are all neighborhood iterations), as well as
upward (up) and downward (down) phases.

We model and implement the kernel-independent variant of the
FMM, or KIFMM [11]. Our analysis uses our own recent imple-
mentation for multicore and GPU systems [4, 5, 7, 9].

3. ANALYTICAL PERFORMANCE MODEL
FOR FMM

In this section, we present the lower bounds for the two key
phases of FMM. We assume a uniform random distribution of source
and target points for the rest of the analysis.

We assume a simple two-level memory hierarchy, consisting of
an infinite memory and a cache of size Z. Data is transferred be-
tween the memory and cache in cache lines of size L.

3.1 Near field Interactions (U list step)
For each target leaf box, this phase of the FMM algorithm per-

forms a direct summation of potentials due the source boxes in its
immediate neighborhood. The neighborhood of a box B is defined
to be the set of all the source leaf boxes adjacent toB, and contains
B as well. This list of boxes LBU is called the U list, and we refer
to this near field interactions evaluation phase as the U list step.

For each target-source pair, a dense matrix of kernel evaluations
is created, and the target potential vector is updated with a dense
matrix and vector multiplication. Given b leaf boxes and assuming
q points per leaf box, the computational complexity of the near field
interaction phase is O(bq2). In 3D, the operation count is more
precisely 27bq2. This estimate can be further refined to account for
boundary boxes, and we have (3b

1
3 − 2)3q2.

The time spent performing floating-point operations in the U list
step is the total number of floating point operations, divided by the
peak computation throughput (C0) in floating-point operations per
unit time.

Tcomp,u =
C1
u . (3b

1/3 − 2)3 . q2

C0
(3)

C1
u is a kernel- and implementation-dependent constant.

To account for memory costs in accessing the source and target
box data structures, we observe that the outer loops of the compu-
tation can be modeled as a sparse matrix vector multiply (SpMV).

Each source box contains q points on an average. For each point,
the position (x, y, and z coordinates) and density are maintained,
resulting in a cumulative size of 4q machine words per source or
target box.

Blellochet al. [1,2] present a cache-oblivious algorithm for SpMV
that is based on a separator-based reordering of the matrix. They
show that if the support graph of a matrix satisfies the nε edge-
separator theorem [8], then such a matrix, when laid out in row-
major format after reordering, would incur at mostO

(
m
L

+ n
Z1−ε

)
(where m is the number of non-zeros in the matrix) cache misses
for SpMV. The U list implicit dependency matrix is indeed struc-
tured, and this is a result of the spatial sorting of the boxes during
tree construction. The source boxes are also stored contiguously in
row-major format, and so we can adapt the SpMV bounds for near
interaction computation.

The memory access costs for this step are comprised of read ac-
cesses to the source boxes, the U lists for each target box, and up-
dates to the target leaf box potentials. The rows of the kernel ma-
trix K are constructed on-the-fly for each source-target pair prior
to matrix vector multiplication, and so we do not consider accesses
to this matrix. The U list upper bounds for the number of cache
lines fetched are as follows:

Qu = Qu_src +Qu_trg +Qu_lists

Qu_src ≤ ku ·
N

q
· 4q
L

=
4kuN

L

Qu_trg ≤
N

q
· 4q
L

=
4N

L

Qu_lists ≤
ku

N
q

L

Here, ku is the average number of source boxes in the U list of a
target leaf box. The above bound for Qu_src assumes that there is
no reuse of source boxes. The cache complexity for U list is thus
dominated by the time to read source boxes.

Utilizing the SpMV bounds from [1] and assuming ε = 2/3 for
3D, we get a tighter bound on Qu_src, and thus the overall cache
complexity. Since each non-zero in the matrix corresponds to a
source box of size 4q, we scale the fast memory capacity Z by a
factor of 4q.

Qu ≤
4N

L
+
ku

N
q

L
+

4N

L
+

N
q(
Z
4q

) 1
3

(4)

The dominant memory access time in this step is modeled as
the total data fetched into fast memory, divided by the peak rate
at which data is fetched into memory (i.e., memory bandwidth
βmem).

Tmem,u =
C2
uN

βmem
+

C3
uNL

βmem(Z
1
3 q

2
3 )

(5)

C2
u and C3

u are implementation- and machine-dependent con-
stants that we determine empirically by fitting the execution times
to the model.

3.2 Far field Interactions (V list step)
For each target box in the tree, this phase accumulates the multi-

pole expansions of the source boxes in its V list into a local expan-
sion. This step is also called multipole to local (M2L) translation.

183



The V list of a box B is defined to be the set of all source boxes
that are children of the neighbors of box B’s parent, but not ad-
jacent to B itself. The computation performed in the V list is 3D
convolution. We implement this in 3 steps, namely, (a) 3D FFT,
(b) complex pointwise multiplication in the frequency domain, and
(c) 3D inverse FFT. Assuming bs source boxes, the computational
complexity of the FFT phase is O(bs . p

3
2 log p) where p is a con-

stant determined by the desired accuracy (p = O(γ2)). The inverse
FFT’s are done once for each target box, resulting in a complexity
of O(bt . p

3
2 log p), assuming bt target boxes. Each target box per-

forms kv pointwise multiplications (kv = 189 for an interior box
for an uniform distribution), and has an asymptotic complexity of
O(bt . kv . p

3
2 ).

Refining these estimates, the computational time for V list if
given by

Tcomp,v =
C1
v (bs + bt + 343) p

3
2 log p

C0
+
C2
v bt kv p

3
2

C0
(6)

C1
v and C2

v are implementation-dependent constants.
The number of translation operators (316) is fixed and hence we

assume they fit in the shared cache Z. Hence, the effective cache
size becomes Z

′
= Z − 316p

3
2 . The V-list implicit dependency

matrix between target boxes, source boxes, and translation opera-
tors is also structured and similar to U list, re-applying the SpMV
bounds from [2], we get an upper bound on the cache complexity
for this phase:

Qv ≤
(bt + bs) p

3
2

L
+
kv bt
L

+
bt(
Z
′

p
3
2

) 1
3

(7)

Considering the higher order terms, the memory access time of
V list can be approximated by,

Tmem,v =
C3
vNp

3
2

qβmem
+

C4
vNp

1
2L

(Z′ 1
3 q)βmem

(8)

4. EXASCALE PROJECTIONS
Using the above analytic expression for execution time and the

optimal choice of q, we predict the execution time for large-scale
problem instances on possible future CPU-based exascale systems.
The machine characteristics of the exascale system are based on
extrapolating historical technology trends [10]. Figure 1 shows the
execution time split into computational and memory access time.
We observe that the crossover point when the memory access time
Tmem matches the compute time Tcomp would occur around 2020.
We are currently extending our KIFMM performance model and
analysis to GPU-based systems.

5. REFERENCES
[1] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons,

V. Ramachandran, S. Chen, and M. Kozuch. Provably good
multicore cache performance for divide-and-conquer
algorithms. In Proc. 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’08), pages 501–510,
Philadelphia, PA, USA, 2008. SIAM.

[2] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low
depth cache-oblivious algorithms. In Proc. ACM Symposium

2010 2012 2014 2016 2018 2020 2022 2024
0

20

40

60

80

100

Year

Ti
m

e
(%

)

Tcomp
Tmem

Figure 1: A depiction of the KIFMM computational and mem-
ory costs for parallel execution on extrapolated CPU-like mul-
ticore systems. The problem size N starts at 4 million points in
2010, and is scaled at the same rate as the cache size Z.

on Parallel Algorithms and Architectures (SPAA), Thira,
Santorini, Greece, July 2010.

[3] J. Board and K. Schulten. The fast multipole algorithm.
Computing in Science and Engineering, 2(1):76–79,
January/February 2000.

[4] A. Chandramowlishwaran, K. Madduri, and R. Vuduc.
Diagnosis, tuning, and redesign for multicore performance:
A case study of the Fast Multipole Method. In
Proc. ACM/IEEE Conf. Supercomputing (SC), New Orleans,
LA, USA, November 2010.

[5] A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk,
G. Biros, and R. Vuduc. Optimizing and tuning the Fast
Multipole Method for state-of-the-art multicore
architectures. In Proc. IEEE Int’l. Parallel and Distributed
Processing Symp. (IPDPS), Atlanta, GA, USA, April 2010.

[6] L. Greengard and V. Rokhlin. A fast algorithm for particle
simulations. J. Comp. Phys., 73:325–348, 1987.

[7] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A.
Nguyen, R. Sampath, A. Shringarpure, R. Vuduc, L. Ying,
D. Zorin, and G. Biros. A massively parallel adaptive Fast
Multipole Method on heterogeneous architectures. In
Proc. ACM/IEEE Conf. Supercomputing (SC), Portland, OR,
USA, November 2009.

[8] R. Lipton and R. Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36(2), 1979.

[9] A. Rahimian, I. Lashuk, D. Malhotra,
A. Chandramowlishwaran, L. Moon, R. Sampath,
A. Shringarpure, S. Veerapaneni, J. Vetter, R. Vuduc,
D. Zorin, and G. Biros. Petascale direct numerical simulation
of blood flow on 200k cores and heterogeneous architectures.
In Proc. ACM/IEEE Conf. Supercomputing (SC), New
Orleans, LA, USA, November 2010.

[10] R. Vuduc and K. Czechowski. What GPU computing means
for high-end systems. IEEE Micro, 31(4):74–78, July/August
2011.

[11] L. Ying, D. Zorin, and G. Biros. A kernel-independent
adaptive Fast Multipole Method in two and three dimensions.
J. Comp. Phys., 196:591–626, May 2004.

184




