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Abstract—This paper reports our experiences in reimple-
menting an entry-level graduate course in high-performance
parallel computing aimed at physical scientists and engineers.
These experiences have directly informed a significant redesign
of a junior/senior undergraduate course, Introduction to High-
Performance Computing (CS 4225 at Georgia Tech), which we
are implementing for the current Spring 2012 semester. Based
on feedback from the graduate version, the redesign of the
undergraduate course emphasizes peer instruction and hands-
on activities during the traditional lecture periods, as well as
significant time for end-to-end projects. This paper summarizes
our anecdotal findings from the graduate version’s exit surveys
and briefly outlines our plans for the undergraduate course.
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I. INTRODUCTION AND BRIEF HISTORY

The demand for high-performance computing (HPC)

among the general science and engineering population at

Georgia Tech is on the rise. Figure 1 summarizes this trend,

showing how enrollments in just the core HPC classes1 have

steadily increased since the 2006-7 academic year (AY).2

Where 62 students took two graduate-level courses in AY

2006-7, 146 students are taking four courses in AY 2011-12,

including both graduate and undergraduate course offerings.3

As we explain below, the audiences for these courses have

diverse backgrounds and needs. The major question with

which this paper is concerned is how to implement the

courses in a way that can best meet those needs.

As is true elsewhere, computer-based modeling and simu-

lation plays a prominent role in the science and engineering

research and education at Georgia Tech. As such, the new

HPC offerings came about in part because of the creation

of a new interdisciplinary academic department, the School

of Computational Science and Engineering (CSE),4 which

at present offers its own masters and Ph.D. degree programs

and faculty lines. This department is distinct from those

1“Core HPC” excludes the usual courses in computer architecture,
compilers, programming languages, numerical algorithms. It also excludes
specialty courses in parallelism, such as a multicore and GPU video game
course and a variety of graduate-level topics-driven seminars.

2AY begins with a Fall semester an ends with a Spring semester.
3There is typically a very small overlap of students taking more than one

of these four courses.
4See: http://www.cse.gatech.edu. The School of CSE was created during

Richard A. DeMillo’s tenure as dean of the College of Computing [1].
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Figure 1. HPC enrollment trends at Georgia Tech. All courses are
graduate-level, except Intro to HPC (UG*), an undergraduate section of
the corresponding graduate course; and Intro to HPC (UG), a completely
separate undergraduates-only course.

in computer science, mathematics, and the physical and

biological science and engineering disciplines. Thus, where

one graduate HPC course (labeled HPC Sci./Eng. in Fig. 1)

used to serve all students interested in HPC, there are now

two such courses: the same course5 targeting the broad cross-

section of scientists and engineers on campus; and a new

Intro to HPC,6 which satisfies a core breadth requirement in

the CSE program and whose syllabus has a stronger parallel

algorithms theory component. Separate from these courses,

the faculty is developing additional transition courses, both

to help non-computing specialists learn enough computer

science to take HPC and to help computer scientists learn

enough parallel numerical and combinatorial methods to

apply HPC to disciplinary science.

The overall demand for an HPC skillset is trickling down

to the undergraduate level. In response, the faculty created

in AY 2008-9 a new Intro to HPC for undergraduates.7

This course was a special section of the graduate course

5Now known as CSE 6230; see: http://bit.ly/gtcse6230 [2].
6Known as CS 6220 and CSE 6220; see: http://www.cc.gatech.edu/

∼gbiros/teaching/6220-s10.html.
7Known as CS 4225; see: http://j.mp/gtcs4225 [3].
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in AY 2008-9 and AY 2010-11, and an entirely separate
course in AY 2009-10 and AY 2011-12. (Faculty availability

drives this schedule.) In the current separate offering for

Spring 2012, exactly half of the twenty students enrolled are

computer science majors; the other half come from physics,

materials, chemical engineering, electrical, and aerospace

engineering. Notably and perhaps unsurprisingly, enrollment

is higher in the separate undergraduate course than the

undergraduate section of the graduate offering (in Fig. 1,

17 and 20, versus 12 and 9).

The first three authors used the Fall 2011 graduate HPC
Sci./Eng. course as an experiment to prototype a variety of

educational activities. These activities now form the heart of

the current separate Spring 2012 undergraduate HPC course,

taught by the first and last authors. This paper summarizes

our Fall 2011 experience and how it informed our Spring

2012 plan. In particular, the Spring 2012 course will try

to engage undergraduates with intensive hands-on projects,

labs, and lectures using peer activities [4], [5], based on the

exit-survey results of the Fall 2011 prototype.

Importantly, this paper is only an experience report, rather

than any sort of controlled study that proves or disproves

a particular parallel computing teaching methodology as

superior to some other. Furthermore, we report on a graduate

course, from which we have designed the undergraduate

course being implemented this semester. We hope that,

if invited to participate in the EduPar workshop, we can

interact with others on such issues as well as report on the

undergraduate version of the course being offered now.

II. GRADUATE HPC FOR SCIENTISTS AND ENGINEERS

The structure of the Fall 2011 graduate course, HPC:
Tools and Applications (CSE 6230 [2]), departed from the

largely traditional lecture + homework + project + exam-

based format of previous instances. This course is designed

to be accessible to a broad audience of scientists and engi-

neers; as such, it de-emphasizes theoretical aspects covered

in the core CSE Intro to HPC class in favor of practical

topics, such as programming and analysis and tuning of

parallel programs. This section reviews the similarities and

differences, and analyzes the exit survey given at the end

of the course. These results were used to re-design the

undergraduate course that we describe in Sec. III.

Regarding demographics of the course, there were a total

of 49 students enrolled, about two-thirds of whom were mas-

ters degree students. About 60% of these students were from

computer science, with the remaining from math, biophysics;

electrical, mechanical, aerospace, and nuclear engineering;

and operations research. We also gave a “calibration quiz”

on the first day of class to get a sense of the students

understanding of basic sequential programming, algorithmic

complexity, and microprocessor architectures. Although all

the students did well on a programming exercise (writing

a function in any language), only 20% knew that n1.1

grows faster asymptotically than n log2 n.8 In addition, less

than a third of students were able to answer the question

about microprocessor pipelines. These results implied that

our course needed to review algorithm analysis and give a

crash course on the fundamentals of sequential computer

architecture.

A. Similarities to prior offerings

As in the past, the three-credit course met twice per week

for 80 minutes each session over a total of 15 weeks. Each

student took a final exam (with no other exams) and spent the

last third of the course working on an independent project

of their own choosing and design, possibly with a partner.

The textbook was Levesque’s [6], though it served primarily

as a reference and supplemental reading material since it

does not cover many of the preceding topics. In terms of

breadth and depth of topics, the course’s scope is largely

the same as earlier versions, with the notable exception of

omitting parallel I/O and debugging, other than a few cursory

mentions.

The first 8-9 weeks focused on “core” topics: analysis
basics, such as Amdahl’s Law, Little’s Law, and the no-

tion of strong vs. weak scaling; algorithm design includ-

ing PRAM-style work-span analysis, distributed latency-

bandwidth communication model, the external memory

model, and computational intensity analysis; programming
models, including MPI and OpenMP; parallel architectures,

including distributed memory, shared memory multicore,

manycore (i.e., GPU), and multithreaded designs; single-
core architecture, including pipelining, out-of-order super-

scalar execution, and cache design; and low-level tuning
techniques, such as short-vector (SSE) programming. The

remaining 6-7 weeks cover advanced topics, which in Fall

2011 consisted of a survey of advanced compiler topics (i.e.,

the polyhedral model) and experimental programming mod-

els, namely, UPC, Coarray Fortran, Chapel, and Concurrent

Collections.

B. Differences from prior offerings

There were several key differences from prior instances

of the course.

A highly structured “end-to-end” project: The course

has always included an independent self-directed project,

carried out during the second half of the term, with ad-

ditional homework assignments during the first half. In this

offering, we replaced the homework assignments with the

following end-to-end project, carried out in teams of two.

This first project, which we refer to as Project 1, asks

students to implement a hybrid message-passing and shared-

memory matrix multiply that is explicitly tuned for the

memory hierarchy and x86 processors, including prefetching

8Most students plugged in what they thought was a large value of n.
However, the cross-over point does not occur until n ≈ 1018, which
suggests students lack imagination that something might reach exascale.
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and SSE. (The self-directed independently chosen project

became Project 2.) The goal of Project 1 was to give students

practical experience in how to approach performance analy-

sis and tuning from top-to-bottom. We chose matrix multiply

because the computation is regular and the analysis results

relatively well-established, thereby offering a clear way to

connect theory and practice—well, in theory at least.

The students began by implementing a basic distributed

memory code based on the SUMMA algorithm. The initial

naı̈ve distributed SUMMA implementations that they im-

plemented initially ran at a mere 1% of peak. Through a

series of staged checkpoints, the students gradually added

more and more layers to their codes. By the end, the

most successful students had implemented a complete hybrid

MPI+OpenMP matrix multiply tuned for the memory hier-

archy and underlying processor architecture so as to achieve

over 75% of system peak. In addition, about half the class

achieved 40-50% or more of peak.

Hands-on labs: The latter part of the class covered ex-

perimental programming models. As a matter of philosophy,

we felt students would not really develop a concrete sense

for the new models unless they were required to try them.

However, since the students were supposed to spend their

out-of-class time on their self-directed course projects, we

felt adding more programming assignments would create too

much work.

Instead, we devoted 1 week per programming model,

using the first class meeting to give an overview of the

model, and using the second class meeting to carry out

a “hands-on” lab, in which students would be asked to

implement and analyze some computation in the model.

During the lab, the three instructors would circulate among

the students to answer questions. The first of these labs took

place during the second week of class, in order to get stu-

dents up and running on the cluster, which required learning

how to create and submit batch jobs. The remaining labs

took place during the last part of the course, and included

CUDA/GPU programming, as well as a range of models

as mentioned above, which were developed as part of the

DARPA HPCS and UHPC programs. Of course, it is hardly

possible in two 80-minute sessions to become fluent in a

model, especially with only one 80-minute session’s worth

of actual programming. However, since the students would

have at this point already had relatively deep exposure to

parallel programming from the end-to-end SUMMA project,

we believed these sessions had the opportunity to be quite

productive.

PeerWise Q&A: Since the course focused on practical

aspects of parallel programming, the only formal and in-

dividualized evaluation was the final exam. Thus, we felt

that we needed some additional activity to reinforce formal

aspects of the course material. We chose to do so using

PeerWise, an online system in which students create anony-

mous multiple choice test questions, and answer questions

created by their peers [5]. The online system keeps track of

who answers which questions and has a number of abstract

awards (e.g., “Most Questions Correctly Answered”) to

encourage participation. There are also mechanisms that

allow each student to identify challenging or interesting

questions and to provide anonymous feedback to his or

her peers. We asked students to create five such questions

during the semester and made these a part of their grade. As

an additional incentive to participate and use the PeerWise

system to study, we told students of our intent to base about

half of the final exam on these questions (suitably modified).

C. Survey responses

The university asks students to complete a standard survey

at the end of the course. From our class, 42 of the 49

students completed this survey. On the overall question

of, “Considering everything, this was an effective course,”

students gave the course an overall rating of 4.3 out of

5.0, where a 4.0 or a 5.0 indicate “agree” and “strongly

agree,” respectively, with no one selecting “disagree” or

“strongly disagree.”9 However, this survey is also generic to

all university courses and therefore does not indicate what

students did or did not like about our course specifically.

Therefore, just prior to submission of Project 2 and

the final exam, we also administered our own independent

and anonymous survey. Thirty students responded. Of our

survey’s many questions, the one that best summarizes their

overall reaction to the course was, “How much did you learn

from . . . ?” Students answered by indicating positive (“a

lot”), moderate (“a fair amount”), or negative (“very little”)

responses to each of the course’s main teaching mechanisms:

lectures, hands-on labs, the end-to-end project, the course

textbook, and individual interaction with the instructors.

Figure 2 summarizes these responses, showing that the

respondents felt overwhelmingly that they learned the most

from the end-to-end Project 1. Answers to other questions

(not shown) show that students felt Project 1 was by-

and-large “very interesting,” “highly relevant,” and “well-

designed,” even though they also nearly universally agreed

that it was “too much work.”

However, Fig. 2 also shows that students perceived labs,

lectures, individual interaction with instructors moderately,

and by comparison to the project, deemed these mechanisms

as decidedly less effective. The textbook was not assessed

favorably as a learning tool, though we remind the reader

that we used it mostly as a supplement to the course.

Regarding hands-on labs, the students’ overall moderate

reaction as suggested above may be more nuanced, as

Fig. 3 indicates. The vast majority of respondents agreed

that the labs were “beneficial,” “interesting,” “relevant,” and

“well-designed.” However, these respondents also felt more

9Values for other courses that semester at the university were not
available for comparison at the time of this writing.
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Figure 3. Survey results, overall lab evaluation: The labs were . . . , on a 3-point scale of “Agree,” “Neutral,” and “Disagree.”

neutral or even negative on whether the labs were either

too hard or could be completed within the lab period. We

also asked about specific lab activities (not shown). Students

gave strongly positive responses to the labs on MPI and

CUDA; slightly positive responses to labs on PolyOpt10 and

UPC; and slightly negative responses to labs on Chapel

and Concurrent Collections. The latter two involved little

or no programming; instead, students only performed some

analysis (both reading of code and running benchmarks),

which perhaps dampened these labs’ appeal.

10A source-to-source parallelization and locality-enhancing compiler
based on the polyhedral models. See: http://www.cse.ohio-state.edu/
∼pouchet/software/pocc/

D. Project vs. the final exam

The surveys indicate that the students appreciated the

projects, especially the end-to-end Project 1. Indeed, the

Project 1 implementations achieved very good performance

as noted previously, and the grade assigned for Project 1

was based partly on the actual fraction of peak achieved.

An interesting question is whether this experience with

Project 1 is also reflected in the course’s main individual

assessment mechanism, namely, the final exam. The final

exam questions emphasize conceptual and theoretical ideas,

asking the students to generalize beyond the programming-

oriented projects.

Figure 4 compares the grade received on Project 1 (x-axis)
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Figure 4. Comparison of Project 1 grades (x-axis) with those of the final
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represent incomplete grades due to extenuating circumstances at the time
of the final.

with the final exam score (y-axis). The mean on the final was

about a 60%. Had the Project 1 and final exam grades been

perfectly correlated, they would lie parallel to the diagonal

line. However, we see only a weak relationship (correlation

coefficient is 0.5). This lack of strong correlation owes

partly to the fact that the Project 1 grades are compressed

into a narrow range, mostly between 80% (an equivalent

C+/B- letter grade) and 100% (A+). In any case, we do not

have an explanation for the Project 1 vs. final exam grade

discrepancy. However, we do note anecdotally that several

students who came to look at their exam results commented

that, since there were no other tests or quizzes during the

semester, they felt a little surprised by the questions and at

how relatively poorly they performed. Though we cannot

explain this occurrence, it is clear that the perceived value

of the hands-on experience simply did not translate directly

into a mastery of the more abstract concepts.

III. INTRO TO HPC FOR UNDERGRADS

The results summarized in Sections II-C and II-D implied

a number of considerations for the undergraduate HPC

course, which we are implementing in the current semester

at the time of this writing (Spring 2012). (The syllabus is

available at: http://j.mp/gtcs4225.)

• Students highly valued the experience from the end-

to-end project. Thus, a strong hands-on component is

desirable though care is needed to ensure it is not an

excessive amount of work.

• However, hands-on experience did not translate directly

into a mastery of abstract or higher-level concepts.

Thus, more direct reinforcement of such concepts is

necessary.

• The students were not very interested in the exper-

imental programming models. Perhaps it is because

we covered too many and none in any depth. Thus,

focusing on just a few models but providing more

experience and opportunity to use them might be a

better approach.

• The students did not perceive above-average value from

lectures and individual interaction with the instructors.

Thus, mechanisms to increase this value are warranted.

• Students perceived little value in the textbook, which

we emphasize we had used only in a peripheral way.

If we require a textbook at all, it should be better and

more directly integrated into the course.

From these observations, we have designed the undergradu-

ate course to reuse the positive aspects of the graduate course

while addressing its shortcomings.
The logistics of the course and background of its students

as of this writing are as follows. The enrollment is capped at

20 students and is currently full. The course is worth three-

credit hours and meets three days per week for 50 minutes

each day. The class has only undergraduates, half of whom

are computer science majors and the rest of whom come

from other science and engineering disciplines. Based on

an entry survey, only two have had any prior exposure to

parallel computing.
Regarding the course design, we first are choosing to

preserve the strong hands-on focus of the graduate course.

However, we use extended labs to accomplish this goal. In

this format, we devote one day of class time per week to

a hands-on lab assignment, part of which is due at the end

of class and the rest of which is completed as “homework.”

Thus, students are essentially forced to start assignments

in-class and therefore keep better pace with the course

material. Also, during the in-class time, we circulate and

guide students through directed exercises. By devoting in-

class time to this activity, we hope to increase the frequency

and quality of face-to-face interaction time between the

students and ourselves, as well as reduce the perception

that the programming assignments require “too much work”

outside of class.
Students of the graduate course cited the end-to-end

experience of their Project 1 assignment as particularly

valuable. Thus, we have sequenced the extended lab topics in

a similar way, starting with message passing algorithms and

codes to which we add shared memory, memory hierarchy

optimizations, GPU acceleration, and low-level CPU and/or

GPU tuning. We also spend several extended labs working

with one programming model, to help increase the depth of

experience in that model. Our programming model choices
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this term are MPI, OpenMP, Cilk Plus, and CUDA, with

about four weeks of instruction in each.

To increase the value of lectures and reinforce high-level

abstract concepts, we use a variant of the peer instruction for-

mat [4]. In this format, we give mini-quizzes, or checkpoints,

during certain points in each lecture. Students first submit

an answer to a quiz question individually; they then have

an opportunity to discuss their answer with their neighbor.

We allow the students to resubmit their answer based on

the peer discussion. These quizzes happen online in real-

time, so that the instructors can monitor the responses and

adjust the lecture accordingly to address confusing material.

The checkpoints are also graded to create an incentive to

pay attention during class and actually try to get the right

answer.

To facilitate even more communication among the stu-

dents as well as with the instructors outside of class, we are

using Piazza11 as our online discussion forum.

Lastly, we have adopted the textbook by Hager and

Wellein [7]. This textbook has more material directly of use

in the course, based on the course’s syllabus, and addresses

some criticisms students expressed in the graduate course.

Though the undergraduate class has not in years past had a

textbook, students in the graduate class expressed a desire

to have an organized offline reference.

IV. RELATION TO THE NSF/TCPP INITIATIVE?

The preceding discussion does not shed direct light on

how to approach teaching of parallel computing concepts in

the core computing curriculum, as outlined in the NSF/TCPP

Curriculum Initiative (CI for short) [8].

That said, at least one aspect of our course is worth noting

in relation to the CI: our course may actually “invert” several

of the ordering and Bloom classifications of topics that the

CI implies. In particular, we began with quick introductions

to concepts of work and span for algorithm design, but im-

mediately after that—starting in the second day of classes—

we introduced distributed memory algorithms. Distributed

memory exposes the need for explicit communication. This

choice inverts the usual approach of focusing on shared

memory parallelism, which hides communication and is

therefore perceived as “easier” than distributed memory and

(later) memory hierarchy-aware programming. However, it

is our opinion that establishing strong foundations in explicit

communication and locality is as important (if not more

so) as parallelism itself. We are trying this approach in the

undergraduate course as well.
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