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Abstract—The dense Tucker decomposition method is one of
the most popular algorithms for analyzing and compressing data
with multi-way relationship. Its execution time is typically dom-
inated by dense matrix multiplication operations, which makes
it well-suited for GPU acceleration. State-of-the-art distributed
dense Tucker implementations for CPU clusters adopt multi-
dimensional partitioning that optimizes for storage and commu-
nication. This, however, leads to smaller matrix dimensions that
result in under-utilizing the GPU resources. In this paper, we
present our optimized implementation and performance analysis
of dense Tucker decomposition on a multi-GPU cluster. We
propose three key optimizations: a new partitioning strategy
that improves performance for GPUs, a new tensor matricization
layout that halves the number of communication and matriciza-
tion steps, and a variation of the randomized SVD algorithm to
overcome the eigenvalue calculation bottleneck that arises from
the high speedup gained from GPU acceleration.

When compared to the state-of-the-art TuckerMPI library, our
best GPU implementation, which employs all three optimizations
described above, achieves up to 11.8× speedup on 64 nodes.
Our best CPU implementation, which also employs all three
optimizations, achieves up to 3.6× speedup over TuckerMPI on
64 nodes. When we compare our best GPU implementation to
our best CPU implementation, the speedup ranges from 2.1×
to 3.6× on a single node, and from 1.8× to 3.3× on 64 nodes,
depending on the input data set.

Keywords-tensor decomposition, Tucker, GPU, MPI, dis-
tributed, high-performance computing, HPC, HOSVD

I. INTRODUCTION

The Tucker method [1] is one of the most popular tensor

decomposition algorithms currently in use, and its computation

time on dense data sets is largely dominated by dense matrix-

matrix multiplication. As such, GPUs would be highly suited

for accelerating dense Tucker decomposition, and should yield

significantly higher performance than CPUs.
However, our study of state-of-the-art distributed imple-

mentations of dense Tucker decomposition for CPUs [2],

[3] reveals several bottlenecks that are particularly critical

to GPUs. First, the prevalent data partitioning strategy for

distributed dense Tucker implementations is N-D partitioning.

While dividing a mode-N tensor into smaller N-dimensional

blocks reduces storage for the factor matrices and eliminates

the communication requirement for tensor matricization, it also

creates the problem of (a) reducing the size of the matrices

involved in the multiplication, thereby lowering the achievable

performance on GPUs, and (b) creating communication for the

Gram matrix and tensor-times-matrix (TTM) phases.

∗During the period of this research, Xing Liu was affiliated with IBM T.
J. Watson Research Center.

Secondly, calculating the eigenvectors of the Gram matrix

increasingly dominates the overall execution time on a GPU

cluster as the number of nodes grows. This is due to two fac-

tors: (a) GPU can achieve up to an order of magnitude higher

performance on dense matrix multiplication, which drastically

reduces the overall execution time, but (b) distributed solutions

for eigenvector calculation on small matrices do not scale

well, even on a small number of nodes; therefore, calculating

identical eigenvectors on every node using a shared-memory

solution is faster in many cases (we demonstrate this issue in

Section III-C and Figure 5). Consequently, as the time spent

on matrix multiplication decreases with the number of nodes,

the eigenvector calculation takes up a larger proportion of the

overall execution time, making it the critical bottleneck.

In this paper, we provide three optimizations to overcome

these bottlenecks. First, we propose a new partitioning scheme

that keep the matrix dimension sizes high, allowing the GPUs

to operate more efficiently. This, however, shifts the commu-

nication requirements from the Gram and TTM phases to the

tensor matricization phase. Therefore, we propose a new tensor

matricization layout that cuts the number of communication

and matricization steps in half. By keeping the nth mode and

the (n + 1)th mode adjacent in memory, we only need to

communicate and matricize the tensor on every other mode.

Lastly, we propose a new variant to the traditional randomized

SVD algorithm that reduces the time spent on the eigenvector

calculation by as much as 9.8×, greatly reducing the impact

of this bottleneck

When compared to the state-of-the-art distributed CPU im-

plementation by Austin et al. [3], our best (i.e, one that uses all

three optimizations) GPU and CPU implementations achieve

up to 11.8× and 3.6× speedup, respectively, on 64 nodes. On

our largest data set – a 5-D tensor that is 275 GB in size – our

best GPU implementation running on just eight nodes closely

matches the performance of TuckerMPI running on 64 nodes;

when our GPU implementation employs all 64 nodes, it can

decompose this tensor in a mere 0.4 seconds, 5.2× faster than

TuckerMPI. Additionally, when we compare our best GPU

implementation to our best CPU implementation, the speedup

ranges from 2.1× to 14.4× on a single node, and from 1.8×
to 3.3× on 64 nodes, depending on the input data set. Finally,

when we compare our best GPU implementation to the GPU

implementation that only uses our new partitioning method on

64 nodes, we observe a 2.3× speedup.

Our interest in tensor decomposition stems from the fact

that it is quickly becoming a popular technique for analyzing
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and compressing large data sets with multi-way relationship. It

has found application in fields ranging from identifying phe-

notypes in electronic health records (EHR) [4] to compressing

scientific data [3] and convolutional neural network layers [5].

With Summit and Sierra – the next generation of supercomput-

ers – relying on GPUs for performance, and with increasingly

larger social data becoming available for data mining, an

efficient and scalable GPU solution for tensor decomposition

will become essential for solving critical problems in the near

future.

II. BACKGROUND

We begin by providing a brief overview of the Tucker

decomposition method and related notations. For a more in-

depth discussion of tensors and tensor computations, we direct

the readers to the work by Kolda and Bader [6], [7].

A. Tensor notation

Tensors are the higher-order generalization of matrices. An

N dimensional tensor is also referred to as having N modes or

a mode-N tensor. We use the following notations in this paper:

1) Scalars are denoted by lower case letters (e. g., a).

2) Vectors are denoted by bold lower case letters (e. g., a).

3) Matrices are denoted by bold capital letters (e. g., A). If

A is a I1×I2 matrix, it can also be denoted as A ∈ R
I1×I2 .

4) Higher-order tensors are denoted by Euler script letters

(e. g., X). A mode-N tensor whose dimensions are I1 ×
I2×·· ·×IN can be denoted as X ∈ R

I1×I2×···×IN . The total

size of the tensor is denoted by I = ∏ In, and the size of

all modes excluding n is denoted by În = ∏i�=n In.

5) Fibers are the higher-order analog of matrix rows and

columns. A mode-n fiber of X is defined by fixing every

mode except the nth mode of X.

6) Slices are two-dimensional sections of a tensor and are

defined by fixing all except two of the modes.

7) Tensor matricization is the process of reordering the

elements of a tensor into a matrix. Mode-n matricization

of a tensor X, denoted as X(n), is a In× În matrix. It can be

achieved by taking the mode-n fibers of X, and arranging

them as the columns of the resulting matrix.

8) Tensor times matrix (TTM) is the product between a

tensor and a matrix that results in another tensor. The

mode-n TTM of X ∈ R
I1×I2×···×IN and A ∈ R

J×In results

in a I1 × ·· · × In−1 × J × In+1 × ·· · × IN tensor and is

denoted as X ×n A. It can be better expressed in terms

of matricized tensors:

Y= X×n A ↔ Y(n) = AX(n) (1)

Note that the dimension sizes must match for the opera-

tion to be valid.

B. Tucker decomposition

Tucker decomposition [1] approximates the tensor X as

X≈ G×1 U(1)×2 U(2) · · ·×N U(N) (2)

X
≈

G
U 1

U 2

U 3

Figure 1: Tucker decomposition of a three-dimensional tensor X

where G is known as the core tensor, with dimensions

R1×R2×·· ·×RN , and U(n) are factor matrices of dimensions

In ×Rn for n = 1, · · · ,N. This process is similar to finding a

low-rank approximation, where R1,R2, · · · ,RN are the ranks of

the reduced representation. Tucker decomposition for a three-

dimensional tensor is illustrated in Figure 1.

There are two common methods for computing the Tucker

decomposition. The first method is the truncated higher-order

singular value decomposition (T-HOSVD) [8], in which the

factor matrices U(n) are set to be the Rn leading left singular

vectors of X(n), and the core tensor is computed by a se-

quence of TTMs between the tensor and the factor matrices.

The second method is the higher-order orthogonal iteration

(HOOI). The HOOI method uses T-HOSVD to initialize the

factor matrices and further improves the accuracy through a

few iterations of alternating least squares (ALS). For certain

applications, it has been shown in prior work that using T-

HOSVD alone is sufficient to yield accurate results [3], [9],

with HOOI making only little improvement in accuracy.

In this paper, we choose to parallelize the sequentially trun-
cated HOSVD (ST-HOSVD) method, a variant of T-HOSVD.

For certain applications [9], ST-HOSVD reduces the number of

floating-point operations to compute the decomposition over

the T-HOSVD method, while simultaneously improving the

approximation accuracy. The ST-HOSVD method is shown

in Algorithm 1. The reduction in floating-point operations

comes from replacing the calculation of SVD on the matricized

tensor X(n) with the calculation of SVD on the matricized

intermediate tensor Y(n), whose size gradually decreases as

each mode is traversed (line 5 in Algorithm 1, see Section IV-B

for more details.).

Algorithm 1: Sequentially Truncated High-Order Sin-

gular Value Decomposition (ST-HOSVD)

Data: X, {Rn}
Result: G, {U(n)}

1 Y ← X;
2 for n = 1, . . . , N do
3 S ← Y(n)YT

(n) ; // Gram matrix construction

4 U(n) ← Rn leading eigenvectors of S ;
// Eigensolve

5 Y ← Y ×n U(n)T ; // TTM
6 end
7 G ← Y;

It is worth noting that all the three Tucker decomposi-

tion methods described above (T-HOSVD, ST-HOSVD, and

HOOI) share a similar computational structure (i. e., TTM



sequence and SVD). Therefore, the parallel ST-HOSVD al-

gorithm proposed in this paper can easily be applied to both

T-HOSVD and HOOI.

C. Related work

Tensor decomposition for high-performance computing

(HPC) has recently gained momentum in the field of Big Data

mining and analytics.

Applications: Tucker decomposition has been shown to

provide high compression ratio with little quality loss for dense

data, such as images [10], volume rendering [11], and scientific

simulation [3]. For data analytics, Tucker decomposition has

been shown to generate meaningful disease hierarchy within

public healthcare records [12], and detect anomalous behavior

from streaming network traffic data [13].

Shared memory optimizations: The work by Li et al. [14]

improves the performance of dense TTM kernel for Tucker

decomposition by replacing the expensive tensor matricization

step with an in-place computation. In the work by Smith et

al. [15], the authors apply compressed sparse fiber (CSF), a

form of hierarchical compressed sparse row (CSR) for sparse

matrices, to demonstrate significant speedup over prior state-

of-the-art.

Distributed Tucker decomposition: The first distributed

implementations of dense Tucker decomposition is Tuck-
erMPI [3] by Austin et al. This was quickly followed by

two others. First, the work by Kaya et al. [16] reformulates

the successive TTM steps to increase the re-use of interme-

diate computation. Second, in the work by Chakaravarthy et

al. [2], dynamic programming is used to determine the optimal

sequence of TTM operations to minimize computation and

communication.

GPU acceleration: The only other GPU implementation

of Tucker decomposition is the work by Shi et al. [17],

which implements the HOOI method using NVIDIA’s Strid-
edBatchedGEMM library on a single node. While this library

provides a convenient solution for improving the performance

of matrix multiply on small matrices, their work does not offer

any insight into reducing communication or improving the

performance of the SVD bottleneck. Also, their evaluation was

limited to a small three-dimensional tensor with a mode length

of 120 and decomposed rank of 10 (tensor size < 0.014 GB).

In contrast, our largest data set is 275 GB.

As far as we are aware, our work is the first distributed

implementation of Tucker decomposition using GPUs for

arbitrarily large data sets.

III. DISTRIBUTED PARALLEL ST-HOSVD ALGORITHM

A. Parallel data distribution

Prior work on distributed dense Tucker decomposition [2],

[3], [18] distributes the tensor using a N-D partitioning

method, also known as the medium-grained partitioning

method. For a mode-N tensor of size I1 × I2 × . . .× IN , the

medium-grained method divides the tensor along all modes

and distributes it across P processors organized in a logical N-

way processor grid of size P1 ×P2 × . . .×PN . Each processor

p11 1 p21 1

p11 1 p21 1

p11 2 p21 2

p11 2 p21 2

p11 3 p21 3

p11 3 p21 3

p12 1 p22 1

p12 1 p22 1

p12 2 p22 2

p12 2 p22 2

p12 3 p22 3

p12 3 p22 3

Y(n)

S1 S2 S3

S4 S5 S6

I1/P1

Î1/P1

all 
processors

S
all-reduce

În/Pn
ˆ

In/Pn

Figure 2: Computing Gram matrix using the medium-grain method

owns a distinct sub-tensor of size I1/P1 × I2/P2 × . . .× IN/PN ,

with I/P entries.

The major disadvantage of using the medium-grained

method for dense Tucker decomposition on a GPU cluster is

that calculating the Gram matrix and TTM on a large number

of nodes requires computing matrix-matrix multiplications for

matrices with small dimension sizes, which is well-known to

performs poorly on GPUs [19] (see Table III for our own

comparison). For example, Figure 2 shows the parallel mode-

n Gram matrix computation for a mode-3 tensor using the

medium-grained method. The data is distributed on a 2×2×3

processor grid. In the figure, P̂n = ∏i�=n Pn denotes the number

of processors in all dimensions except n, and pi jk denotes the

processor with the i, j and k indices along the first, second

and third dimension of the grid, respectively.

As seen in the figure, the processors with the same j and

k indices need to work together to compute a partial Gram

matrix Sc, for c ∈ {1,2, . . . , P̂1}. Each processor calculates one

column block of Sc (highlighted in color), which requires

computing Pn matrix-matrix multiplications of size In
Pn

× În
P̂n

.

When Pn is large, In
Pn

will become too small to achieve good

compute efficiency on GPUs.

To address this problem, we propose a (N−2)-D partition-

ing method for data distribution. The proposed method, which

we call the slice block partitioning method, distributes the

tensor by blocks of tensor slices (described in Section II-A).

Figure 3 shows the mode-n Gram matrix computation for the

same tensor on 12 processors using the slice block distribution,

in which each processor owns ns tensor slices of size In× In+1,

where ns = ∏i�=n,n+1 Ii/P. To compute the Gram matrix, each

processor needs to compute only one large matrix-matrix

multiplication of size In× În
P . The size is typically large enough

to achieve good performance on GPUs, even when P is very

large. Note that În
P is typically larger than In, meaning that

the matrix assigned to each processor in our slice block

partitioning is not tall and skinny as it appears in Figure 3. It

was only drawn in such manner to better illustrate how each

block is assigned to a processor.

Our implementation also batches slices together and use

CUDA streams to overlap communication and computation
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Figure 3: Computing the Gram matrix using the slice block parti-
tioning

on the GPU to further improve performance. This is similar

in idea to StridedBatchedGEMM [17], and our slice block

partitioning strategy can leverage such libraries to achieve

even higher performance. However, even in the absence of

such libraries (since such highly optimized libraries may not

be available on every platform), our partitioning strategy will

improve performance over traditional methods.

One main difference between Tucker decompositions using

the medium-grain method and the slice block distribution is

when and where the communication occurs. For the medium-

grain method, communication is required during the Gram

matrix and TTM computation, while the tensor matricization

step only involves local data movement (i.e., no communi-

cation). As seen in Figure 2, each processor computes one

column block of Sc, which requires sending its sub-tensor to

and receiving sub-tensors from Pn−1 processors that have the

same j and k indices. It is followed by an all-reduce operation

across P̂n processors to sum all the partial Gram matrices.

Using the α–β model, where α is the latency cost and β is the

per-word transfer cost, the total communication cost is

2(Pn −1)(α+β
I
P
) (3)

Since the Gram matrix S is much smaller than the tensor (In×
In for the Gram matrix vs. I

P for the tensor), we ignore the

communication cost for the all-reduce operation. While we

do note that with non-uniformly shaped tensors with skewed

dimension sizes, the Gram matrix may be comparable in size

to the tensor, we nevertheless ignore it, as it is uncommon

and only makes the communication cost higher for medium-

grained partitioning.

In contrast, our slice block method does not require com-

munication during the Gram matrix and TTM computations

(it does require the same all-reduce to sum the partial Gram

matrices like the medium-grained method), but requires com-

munication for matricizing the tensor. This is done via an all-

to-all operation across P processors, in which each processor

sends and receives I/P elements. The total communication is

2((P−1)α+β
I
P
) (4)

Since I
P is typically large, the bandwidth term dominates (e.g.,

for a 3000×3000×3000 tensor running on the largest GPU-

based supercomputer (Titan), P = 20000 and I
P = 1350000).

Therefore, the slice block distribution method has lower com-

munication overhead than the medium-grained method.

Generally, the medium-grained partitioning method has two

key advantages - it strikes a balance between minimizing

synchronization (coarse-grained) and load balancing (fine-

grained), and saves memory by allowing the factor matri-

ces to also be partitioned across processors. As such, it is

highly suited for sparse CP decomposition [20], where the

nonzero sparsity is unpredictable, and the factor matrices can

be relatively large due to long mode lengths found in real

data sets [21]. However, for dense Tucker decomposition,

the benefits are less pronounced. since load balancing can

be easily achieved using even 1-D partitioning, and the core

tensor takes up much more space than the factor matrices.

Therefore, our slice block method is better suited for dense

Tucker decomposition, particularly when GPUs are involved.

B. New tensor matricization layout

As we mentioned in Section III-A, using our slice block

partitioning method shifts the communication from the Gram

matrix calculation and the TTM phases to the matricization

phase and reduces the overall communication overhead. In this

section, we describe our optimization that further reduces the

communication overhead, now incurred at the matricization

phase.

Tensor matricization involves reorganizing the data layout

such that the nth mode is the fastest changing dimension.

The conventional scheme [6] “swaps” the 1st and the nth

mode so that it results in the following ordering of modes:

n,2, ...,(n−1),1,(n+1), ...,N. Using this conventional layout

and our slice block partitioning method requires, for every
mode, an all-to-all communication to re-partition the interme-

diate tensor, followed by a local matricization.

We propose a new matricization layout that synergises with

our slice block partitioning method to reduce the number

of communication and matricization steps by a factor of

two; communication is now required for every even or odd
numbered mode (i.e., every other mode). Instead of “swap-

ping” the 1st and the nth mode, we “rotate” the modes so

that the we end up with the following ordering instead:

n,(n + 1), ...,N,1,2, ...,(n − 1). That is, we have essentially

left-shifted the current mode to the end, so that mode-n, and

mode-(n+1) would always be adjacent.

When a processor has completed calculation for mode n,

it can achieve matricization for mode n + 1 (i.e., construct

Y(n+1) from Algorithm 1) by taking the block of ns slices of

Y(n) that were assigned to it through slice block partitioning,

and then transposing each slice one by one and concatenating

the transposed slices. With this layout, no communication is

required to re-distribute the tensor for mode n+ 1. We refer

to this optimization as tensor “reuse,” and is illustrated in

Figure 4.

Moreover, the transpose step is often unnecessary. During

the subsequent Gram and TTM phases, we can leverage the
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Figure 4: Tensor rotation for a I1 × I2 × I3 tensor. Each slice is
transposed to matricize the tensor for the next mode.

transpose option provided in many modern matrix multi-

plication libraries (e.g, LAPACK and cuBLAS) to multiply

transposed matrices (i.e., matricized tensors), typically at the

same performance as multiplying non-transposed matrices.

And even if such an option is not available, transposing a

slice (i.e., a matrix) is a simple operation, and is optimized in

many libraries.

C. Improving the performance via randomized SVD

Prior work on distributed Tucker decomposition has used

all-reduce to distribute the final Gram matrix to every node,

and then execute the eigenvalue decomposition function re-

dundantly on every node [2], [3]. The primary reason for this

is the inefficiency of distributed eigenvalue decomposition on

small matrices.

This inefficiency can be seen in Figure 5, which shows

how the ScaLAPACK library’s pdsyevx – parallel (distributed)

double-precision syevx (eigenvalue decomposition) – function

scales with the number of nodes. For each test matrix, the

best distribution granularity was chosen. We can see from

the figure that for a matrix with relatively large dimension

size (i.e, “10000-R100” which refers to calculating the first

100 eigenvectors of a 10000×10000 matrix. Remember from

Algorithm 1 that the ST-HOSVD algorithm only requires

the first Rn leading eigenvectors), the execution time initially

decreases with more nodes. However, after only four nodes,

the execution time levels off and even starts to increase at

higher number of nodes. For a dimension size of 6000 (i.e.,

“6000-R600”), there is little to no benefit to using more than

one node, and for the two smallest dimension sizes (i.e, “3000-

R300” and “200-R20”), using more than one node actually

increases the execution time.

Since mode lengths are often small for dense tensors due

to the number of elements growing exponentially with the

number of modes, it is difficult to find a scalable solution to

calculating the eigenvectors for dense Tucker decomposition.

Even if one of the tensor mode lengths is large (e.g., a

160 GB tensor of size 100000× 2000× 100), the lengths of

the remaining modes will proportionally be smaller, leading

to the same problem.

Replicating the eigenvalue calculation on every node is often

“good enough” on CPU platforms, as the Gram matrix and

TTM calculations tend to dominate the overall execution time,

even on a large number of nodes. This, unfortunately, changes

Figure 5: Execution time scalability for SCALAPACK PDSYEVX.

on GPU platforms, where we see an order of magnitude better

performance on these two key calculations. For the input

tensor 3D3000-R300 (Table I), if we replicate the eigenvector

calculation on every node, it starts to dominate the overall exe-

cution time when more than four nodes are used. On 64 nodes,

it accounts for approximately 82% of the total execution time.

Therefore, an alternative solution to the distributed eigenvalue

calculation is necessary to allow our GPU implementation to

scale beyond four nodes. We do, however, note that if the

dimension sizes were large enough (i.e., � 10000), using

ScaLAPACK or other distributed solutions may give us the

scalability we seek.

To overcome this bottleneck, we take advantage of matrix

symmetry – for symmetric matrices, the leading Rn eigenvec-

tors are identical to the Rn left singular vectors – to use SVD

in place of eigenvalue decomposition, and propose a modified

randomized SVD algorithm based on the work by Halko et

al. [22]. Our modified randomized SVD algorithm is shown

in Algorithm 2.

Algorithm 2: Modified randomized SVD algorithm.

We modify the original algorithm [22] to further reduce

the size of the target matrix via Gram matrix (line 5)

construction.

Data: A ∈ R
m×n; number of left singular vectors required, r

Result: left singular vectors ϒϒϒ
1 O ← Gaussian random matrix ∈ R

n×2r;
2 T ← AO;
3 [Q R]← QR(T) ; // Find orthonormal basis
4 B ← QT A ; // such that A≈ QQTA = QB
5 G ← BBT ; // Gram matrix construction
6 [ϒ̂ϒϒ Σ̂ΣΣ Ψ̂ΨΨ] ← SV D(G);

7 ϒϒϒ ← Q ϒ̂ϒϒ;

In the original algorithm, instead of directly calculating

the SVD of the input matrix A, we first find a matrix Q
with r orthonormal columns such that A ≈ QQT A. Then,

we calculate the matrix B = QT A, which is relatively smaller

than A, and find the SVD of B. The singular values and the

right singular vectors of B are identical to those of the input

matrix A, and the left singular vectors of A can be constructed

from Q and the left singular vectors of B.



However, since we are only interested in the left singular

vectors of the input matrix A, we can further improve the

original algorithm by calculating the gram matrix of B (matrix

G in line 7) and applying SVD to G. As in the original

algorithm, the left singular vectors can be constructed from

Q and the left singular vectors of the Gram matrix G.

Constructing the right singular vectors of the input matrix A
involves more computation, but we do not calculate it since

they are not needed. Our modified randomized SVD algorithm

is currently implemented only on the CPU, as using the GPUs

for such small matrices would likely takes longer.

While calculating Gram one additional times during the

randomized SVD step can potentially lower accuracy, it is

unlikely to happen in real world scenarios, as the second Gram

calculation (during the randomized SVD step) is much smaller

than the Gram matrix calculation on the entire matricized

tensor (required by the original ST-HOSVD algorithm), and

therefore, its impact should be negligible. Moreover, as long as

the rank of the decomposition does not far exceed the rank of

the tensor, the input matrix to the randomized SVD algorithm

should always be well-conditioned. While calculating the

precise rank of a tensor is an NP-hard problem, heuristics

can be used to obtain an approximation [6], and this should

ensure that the matrix is always well-conditioned before its

SVD is calculated.

On the other hand, this algorithm also demonstrates a

potential for performance-accuracy trade-off via the number

of randomized columns r. In the original algorithm, twice

the number of required eigenvectors are used to initialize the

random matrix. However, we found empirically that we can

achieve similar accuracy using fewer randomized columns,

which further and significantly improves its performance. We

explore this issue in Section IV-D.

D. Parallel Cost Analysis

Lastly, we analyze the parallel cost of the three key com-

ponents of the ST-HOSVD algorithm – Gram, Eigensolve,

and TTM – using our slice block partitioning method. All

calculations are done per node.

a) Gram: Each processor has a block of the intermediate

matricized tensor Y (Algorithm 1), whose size is J1×J2×·· ·×
JN . Note that initially Jn = In for all n. However, as we go

through each mode, Y becomes smaller as its mode length is

reduced from In to Rn. Assuming we traverse the modes from

1 to N in order, we define Ĵn = ∏n−1
i=1 Ri ∏N

i=n+1 Ii. Then, the

total cost of the Gram operation is

N

∑
n=1

2I2
n Ĵn

P
(5)

b) Eigensolve: After the Gram calculation, each proces-

sor redundantly stores its result, which is a matrix of size

In × In. Calculating the leading eigenvectors of this matrix

incurs the following cost:

N

∑
n=1

10

3
I3
n (6)

c) TTM: After the eigenvector calculation, the resulting

factor matrix is multiplied to the slice block of the intermediate

tensor Y that each processor owns. This is done by multiplying

the factor matrix (Rn × In) by the slice block (In × Ĵn
P ), which

incurs the following cost:

N

∑
n=1

2
RnInĴn

P
(7)

IV. EXPERIMENTAL RESULTS

A. Test platform and data sets

We used a cluster of dual-socket POWER8 systems with

a total of 20 cores, and four NVIDIA P100 Pascal GPUs

connected via NVLink for all our experiments. Each POWER8

core is capable of executing two 128-bit vector FMA instruc-

tions at 3.624 GHz for a peak double-precision throughput of

29 GFLOPS per core, or 580 GFLOPS per node. Each P100

GPU is equipped with 3584 CUDA cores running at 1.48 GHz,

for a peak double-precision FMA throughput of 5.3 TFLOPS.

Unless otherwise noted, the CPU implementation utilizes

all 20 cores, with two threads per core, and the GPU imple-

mentation utilizes all four GPUs. The operating system was

Red Hat Linux 4.8.5-11, and our code was compiled using

IBM XL C/C++ 13.1.5 for Linux. For the GPU code, we used

CUDA 8.0, and for MPI, we used Spectrum MPI 10.2.0. We

compare our implementations against the latest version (as of

January 23, 2018) of TuckerMPI [3], the state-of-the-art dense

Tucker library for CPU clusters, compiled and running on the

same system.

Table I shows a list of data sets that were used to evaluate

our work. The entries “Dimension” and “Rank” indicate

the length and the number of principal components along

each mode, and are identical for every mode. Input tensors

were generated by taking a core tensor of size “Rank” and

multiplying it by the factor matrices of appropriate size along

each mode. Both the core and the factor matrices were gener-

ated randomly with Gaussian distribution in double-precision.

Since the data sets are dense, only the meta data (i.e., number

of modes and dimension size) is important to performance,

and a range of dimensions (3-5) and mode lengths (128-3000)

were selected to cover those found in real data sets [3].

Name Modes Dimension Rank Size

3D3000-R300 3 3000 300 216 GB

3D2000-R1000 3 2000 1000 64 GB

4D200-R20 4 200 20 13 GB

4D400-R64 4 400 64 205 GB

5D128-R16 5 128 16 275 GB

Table I: List of data sets used for evaluation.

Note that we did not include non-uniformly shaped ten-

sors because the amount of computation and communication

required changes with the order in which the modes are tra-

versed for such tensors. This issue has already been explored

extensively in prior work [2], [3], and is orthogonal to our

optimizations and analysis, and as such, our optimization and

analysis can be applied to non-uniformly shaped tensors with

minimal modifications. The performance of the key kernels



that are executed for each mode (i.e., TTM, SVD, and Gram)

behave predictably with respect to its length and rank (i.e., the

workload size), and the mode length variation only obfuscates

our analysis. However, we do admit that this may change with

extremely short mode lengths, which are typically uncommon.

Table II shows a list of our implementation “variations”

and description of their associated optimizations. First, every

implementation in our evaluation uses our slice block distri-

bution method (Section III-A). Second, our implementation

can either employ or not employ tensor re-use (Section III-B).

Lastly, we have a choice of three different methods for

calculating the eigenvectors:

- DSYEVX: replicating the Gram matrix and computing the

eigenvalue decomposition on ever node;

- PDSYEVX: using the distributed parallel implementation

from the ScaLAPACK library;

- Randomized SVD: using our shared-memory randomized

SVD implementation.

The implementations variations are applicable to both the

CPU implementation and the GPU implementation. The key

differences between our CPU and GPU implementations are

that on the GPU implementation,

1) the Gram matrix and TTM calculations are off-loaded to

the GPUs, and

2) the DSYEVX operation is calculated either on the CPU

(ESSL) or the GPU (cuSolver), depending on whether the

data set fits in the GPU device memory, and whichever

is faster.

ID Name Re-use Eigenvalue

1 NoReuse + DSYEVX No DSYEVX

2 Reuse + DSYEVX Yes DSYEVX

3 Reuse + PDSYEVX Yes PDSYEVX

4 Reuse + RndSVD Yes Randomized SVD

Table II: List of implementation variations and optimizations.

B. Single node performance

Figure 6 shows the observed GPU speedup over the CPU

for the Reuse + DSYEVX variation on the data sets 3D3000-

R300 and 4D400-R64, when the number of GPUs is increased

from one to four on a single node. Note that Gram n and

T T M n refers to the Gram and TTM calculation for mode n.

Eigenvalue and Matricize times are summed across all modes,

as they were too small to be easily differentiated in the figure

otherwise.

When the Gram matrix and TTM are computed for the first
mode (i.e., Gram 0 and T T M 0), the intermediate tensor Y

is identical in size to the original tensor, and therefore, they

account for majority of the total execution time. Since both

computations are basically dense matrix-matrix multiplication

(DGEMM), we also see a significant speedup over the CPU

when the work is offloaded to even a single GPU.

As more GPUs are utilized, the size of work per GPU

diminishes, and as a result, the efficiency on the GPU also

decreases (i.e., we see lower performance for DGEMM on

(a) 3D3000-R300

(b) 4D400-R64

Figure 6: Execution time breakdown across multiple GPUs.

smaller matrices), lowering the overall parallel efficiency (i.e.,
speedup
# GPUs ). This effect is also exacerbated when the dimension

size of the tensor is smaller, as it can be seen from Figure 6b,

where the speedup plateaus at two GPUs.

Table III shows how the performance of Gram 0 and

T T M 0 scales with the number of GPUs. For the larger

tensor 3D3000-R300, we see near-peak performance (95% of

peak) and near-perfect scaling (parallel efficiency of 0.995)

over four GPUs for Gram 0, which is essentially a dense

matrix multiplication between two identically sized matricized

tensors. The performance does not scale as well for T T M 0,

as it is a matrix multiplication between a tensor (Y) and a

much smaller factor matrix (U(n)). The overall performance

and scalability is much lower for 4D400-R64, as the dimension

size of both the tensor and the factor matrices are much

smaller.

Function
Performance (GFLOPS)

1× GPU 2× GPU 3× GPU 4× GPU

3D3000-R300

Gram 0 5008 9998 14982 19941

T T M 0 3914 7617 7241 6446

4D400-R64

Gram 0 2685 5159 5325 4486

T T M 0 895 1643 1524 1329

Table III: Performance scaling across multiple GPUs

C. Rank vs. performance on a single node

We also test how the performance and approximation error

(Equation 8) scales as we increase the number of decomposed



rank, Rn on a single node. We use a different data set –

a three dimensional tensor with mode length of 2000 and

1000 principal components, or 3D2000-R1000 – for this

experiment, as we wish to demonstrate how the performance

and approximation error changes with respect to the number

of decomposed rank at a finer granularity.

The GPU implementation uses both tensor re-use and

randomized SVD (Reuse + RndSVD), whereas the CPU

implementation uses tensor re-use and DSYEVX (Reuse +
DSYEVX). We chose to use DSYEVX (instead of our modi-

fied randomized SVD) for the CPU implementation in order to

compare against the accuracy of DSYEVX (the default choice

for Algorithm 1), and also because the DSYEVX function

made up only a small percentage of the total time on the CPU

implementation, and using randomized SVD did not improve

the performance significantly (performance improves by less

than 2%).

As it can be seen from Figure 7a, our GPU implementation

using randomized SVD shows similar approximation error to

that of the CPU implementation using DSYEVX at every rank

(Rn), while maintaining a significant speedup (≥ 10×). We

calculate the approximation error using the equation

E =
‖X−X′‖

‖X‖ (8)

where X′ is reconstructed from the calculated core and factor

matrices.

Figure 7b shows a breakdown of where time is spent as

we increase the calculated rank for the GPU implementation.

As we increase the rank from 10 to 1000, the proportion of

time taken up by all Gram calculations decreases, since the

most expensive Gram calculation – along the first mode – is

independent of the rank (i.e., the execution time for Gram 0

remains constant). The increase in total time for all Gram

calculations when rank is increased from 10 to 1000 is less

than 2×.

On the other hand, all TTM calculations are dependent

on the calculated rank Rn. For the first mode, TTM requires

multiplying the mode-1 factor matrix (Rn ×2000) by the full

tensor (2000× 20002), and for the last mode, TTM requires

multiplying the mode-3 factor matrix (Rn × 2000) by the

intermediate core tensor Y (2000×R2
n). Therefore, the total

time for all TTM calculations increases by approximately 3×
when rank is increased from 10 to 1000.

Randomized SVD execution time demonstrates a linear

dependence on Rn, and increases by approximately 360× as

the rank increases from 10 to 1000. As a result, randomized

SVD makes up approximately 40% of the total execution time

when the rank is 1000, as opposed to 0.5% when the rank

is 10. This stresses the importance of having a fast and/or

scalable solution to eigenvalue decomposition for ST-HOSVD

on GPU implementations. If we had used the shared-memory

DSYEVX eigenvalue decomposition function, instead of our

randomized SVD algorithm, this bottleneck would have been

much larger (27.1% at Rn = 10 to 62.5% at Rn = 1000).

(a) CPU vs. GPU. Performance and accuracy.

(b) GPU execution time breakdown.

Figure 7: Rank vs. performance and approximation error on a single
node for 3D2000-R1000.

D. Randomized SVD performance

Our modified randomized SVD algorithm further improves

the performance of our CPU and GPU implementations,

particularly for the 3D3000-R300 tensor. First, we show how

both the execution time and error changes with respect to

the number of randomized columns used for our randomized

SVD algorithm, and how it compares to those of using the

eigenvalue function (DSYEVX). We use the CPU eigenvalue

function from the ESSL library for this comparison, since

our randomized SVD implementation is also CPU only, and

because eigenvalue performs similarly on the two platforms

for our data sets. We also do not compare the distributed

eigenvalue function (PDSYEVX) and only show single node

performance results, since using the distributed eigenvalue

decomposition function (PDSYEVX) generally leads to lower

performance than replicating the shared-memory eigenvalue or

randomized SVD function on every node (Section III-C).

Figure 8a shows the result for a 3000× 3000 matrix (i.e.,

used for 3D3000-R300) and Figure 8b shows the result for a

200× 200 matrix (i.e., used for 4D200-R20). Note that only

the first 300 (3D3000-R300) or 20 (4D200-R20) left-singular

vectors or eigenvectors are calculated. Since DSYEVX is

independent of the number of randomized columns, they are

straight lines in both plots. Note that the execution times

are for the randomized SVD and DSYEVX functions only,

whereas the error is calculated between the original tensor

and the final decomposition using Equation 8.

We can make three key observations.

• Using our randomized SVD algorithm can achieve tensor



(a) 3D3000-R300 (b) 4D200-R20

Figure 8: Exec. time and approx. error scaling for our randomized
SDV algorithm, with respect to the number of randomized columns.

approximation error (Equation 8) comparable to that of

using DSYEVX when enough randomized columns are

used.

• Using the recommended 2r randomized columns (i.e.,

600 for 3D3000-R300, and 40 for 2D200-R20), our

randomized SVD algorithm achieves a 4.2× speedup

for the 3000 × 3000 matrix (3D3000-R300) and 9.8×
speedup for the 200×200 matrix (4D200-R20) over the

DSYEVX function (also calculating only the necessary

eigenvectors).

• We can use fewer than the recommended number of

randomized columns to achieve comparable accuracy and

observe even higher speedups .

We see that the accuracy starts to converge at 400 and

32 randomized columns for the 3D3000-R300 and 4D200-

R20 data sets, respectively. These are approximately 1.5r
randomized columns, and they yield an even higher speedups

of 6.9× and 12.7×. This suggests that there is a potential for

accuracy vs. performance trade-off. However, we leave this for

future studies.

E. Multi-node performance

Table IV shows the achieved speedup and parallel efficiency

of our GPU and CPU Reuse + RndSVD implementations on

64 nodes using four GPUs and two CPUs per node. We can

see from the table that, for the CPU implementation, we see

good speedup and parallel efficiency on every data set except

4D200-R20, our smallest data set in terms of both total size

and mode lengths. The poor speedup and parallel efficiency for

4D200-R20 are caused by the increase in communication time

at 64 nodes, which results in an increase in the total execution

time when going from 32 nodes to 64 nodes. This occurs due

to the latency component dominating the communication time

(Equation 4) for our slice block partitioning method on small

data sets (i.e., large P and small J).

GPU implementation shows a different trend. As the mode

length increases from 128 to 3000, the scalability becomes

worse due to the eigenvalue calculation bottleneck. Even with

our randomized SVD optimization, the percentage of time

spent on the eigenvalue calculation increases from 5.2% on

one node to 56% on 64 nodes for 3D3000-R300. However,

for the 5D128-R16 data set, that percentage only ranges from

0.02% on one node to 1.05% on 64 nodes. The exception

to this is 4D200-R20, which shows poor scaling due to the

aforementioned issue of latency dominating the communica-

tion time.

GPU CPU

Input
Parallel

Speedup
Parallel

Speedup
Eff. Eff.

3D3000-R300 0.17 10.59 0.73 46.84

4D200-R20 0.15 9.79 0.34 21.69

4D400-R64 0.44 28.08 0.74 47.23

5D128-R16 0.72 45.93 0.67 43.03

Table IV: Achieved speedup and parallel efficiency on 64 nodes.

Figure 9 shows how our best CPU and GPU implementa-

tions (Reuse + RndSVD) strong scale up to 64 nodes, and how

their execution time and performance compare against each

other. When comparing the CPU implementation to the GPU

implementation, we always achieve better performance on the

GPU, even at 64 nodes. However, with enough nodes, this

performance gap will likely close, since the GPU performance

for small enough matrices will not be higher than the CPU

performance.

Our GPU implementation for the entire ST-HOSVD cal-

culation achieves as much as 59% and 10% of total system

peak on one node and 64 nodes, respectively. This is lower

than what we observed for Gram 0 in Table III (over 94%

of aggregate peak FLOP/s on four GPUs) and happens due

to the tensor dimension lengths gradually decreasing as we

traverse the modes, lowering the overall efficiency of the

overall ST-HOSVD calculation, as well as due to increased

communication with increased number of nodes.

Table V shows a summary of GPU implementation exe-

cution times that compares our four implementation varia-

tions. On 64 nodes, our fastest implementation (Reuse +
RndSVD) achieves up to 2.32× speedup over the baseline

implementation (NoReuse + DSYEVX) for 3D3000-R300,

and between 1.4× and 1.5× for the remaining sets. The

implementation using distributed eigenvalue decomposition

performs very poorly, as predicted.

Impl. ID Nodes

Execution Time (s)

Nodes

Execution Time (s)

3D3000 4D200 4D400 5D128 3D3000 4D200 4D400 5D128

-R300 -R20 -R64 -R16 -R300 -R20 -R64 -R16

1

1

19.99 0.89 16.36 21.04

16

5.06 0.19 1.51 1.75

2 18.56 0.74 13.71 18.53 4.82 0.13 1.09 1.35

3 18.98 0.88 13.76 18.67 5.79 0.89 1.80 1.86

4 16.08 0.71 13.63 18.52 2.48 0.10 1.02 1.34

1

2

12.67 0.59 9.48 11.99

32

4.64 0.19 1.12 0.98

2 10.91 0.48 6.94 9.03 4.62 0.11 0.74 0.80

3 11.16 0.68 7.03 9.25 6.27 1.46 1.84 1.93

4 8.59 0.44 6.85 9.01 2.23 0.08 0.67 0.79

1

4

8.03 0.29 4.84 5.85

64

4.14 0.17 0.84 0.70

2 7.29 0.24 3.73 4.62 3.99 0.15 0.62 0.51

3 7.74 0.53 3.95 4.92 6.48 2.01 2.63 2.08

4 5.22 0.21 3.66 4.61 1.78 0.12 0.55 0.50

1

8

5.94 0.23 2.45 3.11

2 5.56 0.19 1.94 2.45

3 6.26 0.69 2.24 2.91

4 3.42 0.16 1.88 2.44

Table V: Summary of exec. times for our GPU implementations.



(a) 3D3000-R300

(b) 4D200-R20

(c) 4D400-R64

(d) 5D128-R16

Figure 9: Execution time and performance scaling for TuckerMPI
and our CPU and GPU implementations on 64 nodes.

F. Comparsion against state-of-the-art

As far as we are aware, ours is the first GPU implementation

of the STHOSVD method. Therefore, we are only able to

compare against a state-of-the-art CPU implementation for

STHOSVD - TuckerMPI [3]. Figure 9 shows how our CPU

and GPU performance compares against that of TuckerMPI.

There two things to note. First, some of the execution

times are missing for TuckerMPI: execution time on nodes

1 – 4 for 3D3000-R300 and 4D400-R64, and 1 – 8 for

5D128-R16. We were unable to run TuckerMPI on fewer

nodes because the file I/O function used in the library was

unable to access more than 2.1 GB of data per MPI rank; the

program printed a warning and then crashed when more than

2.1 GB was accessed. Unfortunately, assigning too many MPI

ranks per node degraded performance severely and produced

misleading execution times. Therefore, they were omitted from

the comparison.

Secondly, TuckerMPI uses the dsyev function which calcu-

lates every eigenvector, rather than using the dsyevx function

that only calculates the first R eigenvectors, as is done in

our CPU implementation. As such, the execution time was

significantly higher for TuckerMPI, particularly for the data

set 3D3000-R300. To make the comparison as fair as possible,

for the data shown in Figure 9, we subtracted the original

eigenvector execution times from the TuckerMPI times, and

then added our dsyevx time instead, lowering the overall

execution times.

With these adjustments, It can be seen from Figure 9

that our CPU implementation and TuckerMPI demonstrate

similar scaling trends. However, our implementation performs

slightly better, with speedup ranging from 2.0× to 3.6× on

64 nodes. The difference in performance comes from our two

optimizations - using randomized SVD instead of dsyevx, and

our new tensor matricization layout.

Speedup from our GPU implementation over TuckerMPI is

even greater, ranging from 4.1× to 11.8× on 64 nodes.

V. CONCLUSION

We have presented our implementation and performance

analysis of distributed and GPU-accelerated Tucker decompo-

sition for dense tensors. We proposed three optimizations: 1)

the slice block partitioning method that improves performance

for GPUs, 2) a new tensor matricization layout that allows us

to reduce the number of all-reduce communication and matri-

cization steps by half, and 3) an variation of the randomized

SVD algorithm to overcome the eigenvector bottleneck that

could not easily be solved with a distributed solution.

With these optimizations, we can beat the performance of

the state-of-the-art TuckerMPI library running on a 64-node

two-socket CPU cluster with just a single node equipped with

four GPUs each (for data set 3D3000-R300), or compress

a 275 GB tensor in 0.4 seconds using 64 nodes (for data

set 5D128-R16). Additionally, our analysis identified critical

bottlenecks for the ST-HOSVD algorithm in the context of

GPU acceleration, which should provide insight into other

tensor algorithms that share similar computational structure.
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