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Abstract—We present a semi-empirical model for analyzing
where a program spends its energy. This model combines mea-
sured features of an application, such as its instruction mix, with
measured costs of the platform, such as the energy per operation
specialized to different operations. The model permits costs to
vary with voltage and frequency, as they would on platforms
that support dynamic voltage and frequency scaling (DVFS).
Our experiments indicate that the model accurately predicts
the energy consumption of both microbenchmarks and a proxy
application, which implements the fast multipole method for n-
body problems. It is accurate enough to identify near-optimal
voltage and frequency settings that maximize energy efficiency
and permits an analysis of where potential hardware and software
energy bottlenecks might be in our proxy application. We believe
our overall methodology could be applied more broadly by other
performance analysts.

I. INTRODUCTION

We consider the problem of understanding and tuning
the energy efficiency of programs running on real systems.
Similar to earlier execution time-centric work by others [1], our
approach develops a model that combines measurable charac-
teristics of a given program with the target system’s operational
costs, such as joules per floating point operation and or per byte
of data transferred between levels of the memory hierarchy
under different voltage and frequency settings. Such a model
should permit an analysis that can identify where a program
or the underlying hardware spends its energy.

Our model extends the energy roofline that we developed
in prior work [2], [3]. We modify the cost models to include
the impact of changing the voltage and frequency settings and
test the accuracy of the extended model using two different
cross-validation techniques. Armed with this model, we can
also try to predict the most energy-efficient settings. We carry
out such an evaluation on a microbenchmark suite against a
natural baseline predictor, which simply uses the setting that
minimizes execution time.

We also evaluate our model on our own proxy application,
which is an implementation of the (kernel-independent) fast
multipole method (FMM), developed as a part of our prior
work, for n-body problems [4], [5]. The model allows us to
estimate how the distribution of instructions and data move-
ment relate to the energy they consume, identifying several
energy bottlenecks.

Beyond our specific findings and data, we emphasize
the methodological aspects of this paper. Using our publicly
available microbenchmark suite and analysis scripts, other
analysts can easily replicate our work on different systems and
applications. In particular, we hope that performance analysts,
whether focused on hardware or software, may find it to be a
useful tool in diagnosing bottlenecks.

There is a considerable body of related work (Section VI),
of which two subareas are especially relevant. The first is
prior work on saving energy through dynamic voltage and
frequency scaling (DVFS). These proposals focus primarily on
detecting computational phases when the system can throttle
instruction throughput. By contrast, our work applies to both
uniform and non-uniform computation since it selects the
optimal DVFS setting after considering all factors that impact
overall energy consumption, including the execution time and
static energy. The second subarea comes from the architecture
community, where several papers analyze power dissipation in
the microarchitecture at the component-level using low-level
microbenchmarks and simulation. While accurate, they are also
hardware-centric, which makes them hard to apply directly at
the level of algorithms and software. Our microbenchmarks,
on the other hand, generate energy estimates for application-
relevant features, such as floating point or memory operations
from different levels of the memory hierarchy, which may more
readily aid in higher-level algorithmic or software analysis.

II. MODELING TIME, ENERGY, AND POWER

Our proposed model extends our prior work on the energy
roofline model [2], [3]. The prior model assumed fixed time
and energy costs per operation and fixed constant power, which
is the baseline power consumed when the system is on but
no algorithmic operations are running. The new model allows
these costs to vary under dynamic voltage and frequency
scaling (DVFS) of both the processor and memory.

A. DVFS-aware energy roofline model

The classic equations for dynamic and static (leakage)
power appear in equations 1 and 2, respectively [6]:

Pdyn ∝ CV 2Af (1)

Pleak ∝ V
(
ke−qVth/(akaΘ)

)
. (2)
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In these relations, C is the load capacitance, V is the supply
voltage, A is the activity factor, f is the clock frequency, Vth

is the threshold voltage, Θ is temperature, k is Boltzmann’s
constant, and the parameters q, a, and ka are related to logic
design and fabrication characteristics, which we assume are
fixed for a given system.

Let us make the following simplifying assumptions. Sup-
pose the activity factor A, which quantifies how often tran-
sistors are switching, and capacitance C, a physical property
of the material, both remain constant for a given application
and hardware. Further suppose that the system operates at a
relatively constant temperature Θ, which would occur when
it is used for an extended period of time and reaches some
thermal steady-state. Lastly, suppose Vth is effectively a con-
stant. In principle, Vth might decrease as V decreases, but we
can ignore this effect when the range of allowable values of
V is relatively narrow, which is true on most platforms. Then,
equations 1 and 2 may be rewritten more simply as

Pdyn ≡ c0V
2f (3)

Pleak ≡ c1V, (4)

where c0 and c1 are constants.

Let us now update the energy roofline to incorporate these
expressions for power. Consider a program that executes W
flops, Q memory operations, and completes in execution time
T . Then, the original energy roofline model says that the total
execution energy is given by [2]

E = Wεflop +Qεmem + π0T (5)

where εflop and εmem are the energy (Joules) per flop and
memory operation (“mop”), respectively, and π0 is the constant
power of the system.

When the frequency and voltage settings change, εflop,
εmem, and π0 also change. Suppose that the processor and
memory system have independently controllable voltage and
frequency settings. Start by considering εflop. Let the time
to execute a flop be τflop and let the processor’s frequency,
voltage, and circuit constants be Vproc, fproc, and c0,proc,
respectively. Then, the energy per flop is the dynamic power
dissipated by a flop times the time per flop, or

εflop ≡ Pdyn,flopτflop

= c0,procV
2
procfprocτflop

≡ ĉ0,procV
2
proc, (6)

where ĉ0,proc ≡ c0,procfprocτflop is a new constant. This value
must be some constant because fproc and τflop are inversely
related.

By analogous reasoning, the energy per mop is,

εmem ≡ Pdyn,memτmem

= c0,memV
2
memfmemτmem

≡ ĉ0,memV
2
mem. (7)

What about constant power, π0? Previously, we took con-
stant power to be the power that is not directly involved in
computation or data movement [2]. Such power included static
power and power consumed by peripherals. In our revised
model of π0, we separate out these components since only

some will change with respect to the supply voltage and
clock frequency. In particular, there are at least three sources
of constant power dissipation: the processor’s leakage power
(Pleak,proc), the memory’s leakage power (Pleak,mem), and all
other sources of operation-independent power (Pmisc). Only
Pleak,proc and Pleak,mem depend on voltage and frequency
settings. Thus,

π0 = Pleak,proc + Pleak,mem + Pmisc

= c1,procVproc + c1,memVmem + Pmisc. (8)

This DVFS-aware, or dynamic, energy roofline model is then

E = Wĉ0,procV
2
proc +Qĉ0,memV

2
mem

+ (c1,procVproc + c1,memVmem + Pmisc)T. (9)

B. Test platform: NVIDIA Jetson TK1 and PowerMon 2

We evaluate our approach on NVIDIA’s Jetson TK1 mobile
system-on-chip (SoC) development board. This choice owes to
its support for DVFS over a relatively wide range of frequen-
cies in both the processor and the memory.1 Additionally, we
use the PowerMon 2 device to make physical energy and power
measurements [7].

The main processing engine of the Jetson TK1 is the Tegra
K1 SoC, which consists of a 4-plus-1 quad-core ARM Cortex
A15 CPU and a single Kepler GPU multiprocessor (SMX)
with 192 CUDA cores. A schematic of the Tegra K1 SoC is
shown in figure 1. Each core can deliver 1 single-precision
fused multiply-add (FMA) instruction per cycle. For the rest
of this paper, we use only the GPU part of the SoC. The
processor will be assumed to be idle and dissipate no energy
during an application’s execution other than leakage, as part of
the system’s constant power, π0. One downside of this system
is that unlike its HPC counterpart, the Tesla GPU series, the
double-precision performance is severely limited, with a peak
throughput of just 1/24× that of single-precision.

The system runs Linux for Tegra (L4T), a modified Ubuntu
14.04 Linux distribution using Linux kernel version 3.10, and
at the time of this study included the CUDA 6.0 Toolkit.

PowerMon 2 is a fine-grained integrated power measure-
ment device [7]. It sits between the power source and Jetson
TK1 and measures the direct current and voltage at a rate
of up to 1024 Hz. Figure 2 shows how PowerMon 2 can
be connected to our development board and other devices to
intercept and measure their current and voltage.

C. Model instantiation

To determine the various constants of the model (Sec-
tion II-A), we apply a method similar to what was described
in our original energy roofline work [2], [3]. As before, we use
our highly-tuned “intensity” microbenchmarks to measure the
system’s performance and power consumption.2 However, on
top of varying the arithmetic intensity (by changing the number
flops executed per word of data loaded from the memory), we
also change the frequency and voltage of the processing cores

1Changing the frequency automatically changes the voltage to a pre-
determined value.

2http://hpcgarage.org/archline
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Fig. 1: A schematic of the NVIDIA Tegra K1 mobile SoC
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Fig. 2: Power measurement setup

and the memory system. Out of the 105 possible permutations
(15 for the processor and 7 for the memory), we chose 16
settings at random for a total of 1856 sample measurements.

Once we have collected all our performance and power
measurements, we apply a non-negative least squares (NNLS)
fitting procedure on equation 9 to estimate the constants
ĉ0,proc, ĉ0,mem, c1,proc, c1,mem, and Pmisc. These values are
then used to estimate εflop, εmem, and π0 using equations 6, 7,
and 8. The complete list of frequency and voltage settings, as
well as their associated energy and power costs, are shown in
table I. One important point to note is that while our model in
equation 9 only accounts for W and Q to simplify the explana-
tion, our actual evaluation differentiates single-precision (SP)
and double-precision (DP) flops, and also includes the energy
cost of integer operations and loading data from different levels
of the memory hierarchy (shared memory, or SM, and L2).

D. Validation

We first validated our model using 2-fold cross validation,
also known as the “holdout method” [8]. Measurements from
settings of type “T” in table I were used for training the model
and deriving the constants, and measurements from setting type
“V” were used for validation. When compared to measured
energy, the mean error for the validation set was 2.87% with a
standard deviation of 2.47%, and the minimum and maximum
error were 0.00% and 11.94%, respectively.

We then used 16-fold cross validation to assess how well
the model will generalize to an independent data set when
used to make predictions for other kernels and applications.
The results showed a mean error of 6.56% with a standard
deviation of 3.80%, while the minimum and maximum error
were 1.60% and 15.22%, respectively.

Our dataset and analysis code, written in R,3 is publicly
available for download.4

E. Autotuning for energy

In the context of autotuning for energy, we compare using
our model to a method based purely on execution time to find
the (fproc, fmem) pair that minimizes energy consumption for
a given arithmetic intensity. We assume that we have a “time
oracle” that can tell us which configuration yields the best
performance. If the idea of “race-to-halt” is true,5 then the
configuration that minimizes execution time should do just as
well or better than our model in minimizing energy. Table II
summarizes our findings.

Our results show that choosing a configuration that yields
the best performance (i.e., the smallest execution time) does
not always result in the most energy efficient configuration. For
example, in the case of the single–precision microbenchmark,
adopting the “race–to–halt” strategy resulted in getting an
energy inefficient configuration 20 out of 25 cases (i.e., arith-
metic intensity values), whereas our model made the correct
prediction every time.

While the energy “lost” by either strategy is relatively
small for most benchmarks (under 11% in all but one case),
our results show that energy can be saved by changing the
frequency and voltage settings even when the computation is
uniform. This finding stands in contrast to many other DVFS
strategies, which can save energy only in the presence of
application “slack.” In section IV we investigate whether this
idea can be applied to save energy in a proxy application,
which implements the fast multipole method.

III. THE FAST MULTIPOLE METHOD

This section summarizes the fast multipole method, which
is the basis for the proxy application we wrote and evaluated
in section IV. This summary borrows from some of our earlier
papers [5], [9].

3https://www.r-project.org/
4https://bitbucket.org/jee/jetson-tk1-data
5The race-to-halt strategy says that the best way to save energy is to run

as fast as possible and then turn everything off
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Core Core Memory Memory Energy Energy Energy Energy Energy Energy Const.
freq. volt. freq. volt. SP DP Integer SM L2 Mem power

Type (MHz) (mV) (MHz) (mV) (pJ) (pJ) (pJ) (pJ) (pJ) (pJ) (W)

T 852 1030 924 1010 29.0 139.1 60.0 35.4 90.2 377.0 6.8
T 396 770 924 1010 16.2 77.7 33.5 19.8 50.4 377.0 6.1
T 852 1030 528 880 29.0 139.1 60.0 35.4 90.2 286.2 6.3
T 648 890 528 880 21.7 103.8 44.8 26.4 67.3 286.2 5.9
T 396 770 528 880 16.2 77.7 33.5 19.8 50.4 286.2 5.6
T 852 1030 204 800 29.0 139.1 60.0 35.4 90.2 236.5 6.0
T 648 890 204 800 21.7 103.8 44.8 26.4 67.3 236.5 5.6
T 396 770 204 800 16.2 77.7 33.5 19.8 50.4 236.5 5.2

V 756 950 924 1010 24.7 118.3 51.0 30.1 76.7 377.0 6.6
V 180 760 528 880 15.8 75.7 32.7 19.3 49.1 286.2 5.5
V 540 840 528 880 19.3 92.5 39.9 23.5 59.9 286.2 5.8
V 540 840 204 800 19.3 92.5 39.9 23.5 59.9 236.5 5.4
V 756 950 204 800 24.7 118.3 51.0 30.1 76.7 236.5 5.8
V 72 760 68 800 15.8 75.7 32.7 19.3 49.1 236.5 5.2
V 756 950 68 800 24.7 118.3 51.0 30.1 76.7 236.5 5.8
V 180 760 924 1010 15.8 75.7 32.7 19.3 49.1 377.0 6.0

TABLE I: List of frequency and voltage settings, and derived energy and power costs.

Energy lost (%)
Mispredictions Mean Minimum Maximum

Single
Our model 0 (out of 25) 0 0 0

Time Oracle 20 (out of 25) 18.52 7.21 26.52

Double
Our model 10 (out of 36) 3.11 0.34 7.30

Time Oracle 23 (out of 36) 3.95 0.23 13.90

Integer
Our model 6 (out of 23) 2.37 0.32 5.12

Time Oracle 23 (out of 23) 3.56 0.44 9.72

Shared Our model 7 (out of 10) 3.31 2.92 3.99
memory Time Oracle 10 (out of 10) 10.64 7.07 12.75

L2
Our model 0 (out of 9) 0 0 0

Time Oracle 0 (out of 9) 10.71 10.49 11.28

TABLE II: Summary of energy autotuning result. “Energy
lost” shows how much more energy the incor-
rect configuration (mispredictions) chosen by our
model and the time oracle dissipated when com-
pared to experimentally measured minimum for
different microbenchmarks and their intensities.

Given a system of N source particles, with positions given
by {y1, . . . , yN}, and N targets with positions {x1, . . . , xN},
we wish to compute the N sums,

f(xi) =
N∑
j=1

K(xi, yi) · s(yj), i = 1, . . . , N (10)

where f(x) is the desired potential at target point x; s(y) is the
density at source point y; and K(x, y) is an interaction kernel
that specifies “the physics” of the problem. For instance, the
single-layer Laplace kernel, K(x, y) = 1

4π
1

||x−y|| , might model

electrostatic or gravitational interactions.

Evaluating these sums appears to require O(
N2

)
opera-

tions. The FMM instead computes approximations of all of
these sums in optimal O(N) time with a guaranteed user-
specified accuracy ε, where the desired accuracy changes the
complexity constant [10].

In our previous work, we modeled and implemented [5],
[9] the kernel-independent variant of FMM, or KIFMM [11],
which has the same structure as the classical FMM [10]. Its
main advantage over the classical FMM is that it avoids the
mathematically challenging analytic expansion of the kernel,
instead requiring only the ability to evaluate the kernel. This
feature of the KIFMM allows us to leverage our optimization
techniques and apply them to new kernels and problems. For

our evaluation in section IV, we only use the GPU version of
FMM.

The FMM is based on two key ideas:

• organizing the points in a spatial tree; and

• using fast approximate evaluations, in which we com-
pute summaries at each node using a constant number
of tree traversals with constant work per node.

A. Tree construction

Given the input points and a user-defined parameter Q, we
construct an octree T (or quad-tree in 2D) by starting with a
single box representing all the points and recursively subdi-
viding each box if it contains more than Q points. Each box
(octant in 3D or quadrant in 2D) becomes a tree node whose
children are its immediate sub boxes. During construction, we
associate with each node one or more neighbor lists. Each list
has bounded constant length and contains (logical) pointers to
a subset of other tree nodes. These are canonically known as
the U , V , W , and X lists. For example, every leaf box B has
a U list, U(B), which is the list of all leaves adjacent to B.
Figure 3 shows a quad-tree example, where neighborhood list
nodes for B are labeled accordingly.

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Fig. 3: U , V , W , and X lists of a tree node B for an adaptive
quadtree.
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B. Evaluation

Given the tree T, evaluating the sums consist of six distinct
computation phases; there is one phase for each of the U , V ,
W , and X lists, as well as upward (UP) and downward (DOWN)
phases. These phases involve the traversals of T or subsets of T.
For a more detailed description of FMM, we refer the readers
to [11].

The most important property of FMM in the context of
this work is the variability of its arithmetic intensity across
different phases. The two most expensive phases of FMM are
the U list and V list computations; U list computation is highly
compute bound (high arithmetic intensity) as it calculates
O(

Q2
)

interactions with the nearest neighbors directly; the
V list, on the other hand, is highly memory bandwidth bound
(low arithmetic intensity) as it approximates interactions with
far neighbors through fast Fourier transforms (FFT) and vector
additions. By changing the input parameter Q, we can also
change the balance of workload between these two phases so
that the FMM’s overall arithmetic intensity can be tailored to
a particular platform to maximize performance.

IV. EXPERIMENTAL RESULT AND ANALYSIS OF FMM

We used our model on our FMM implementation to see
where energy is being consumed and whether we can leverage
the autotuning aspect of our model (section II-E) to choose
optimal processor and memory frequency settings on the
NVIDIA Jetson TK1. We start by evaluating the accuracy
of our model for the FMM kernel by comparing the model’s
predicted energy consumption against real measurements for
a number of different system settings and kernel parameters
(i.e., the total number of points N and the maximum number
of points per box, Q).

A. Basic profile of the FMM

We used the nvprof performance counter monitor (PCM)
to measure instruction counts by type for our FMM imple-
mentation. A summary of these counters appears in table III.
The counter type “E” is a counter event, which corresponds
to a single hardware counter value; and counter type “M”
is a counter metric, which is a characteristic of the running
application and is derived from one or more counter events.

For the number of instructions, we used the readings given
by the corresponding counter event directly. For calculating the
number of bytes coming from different levels of the memory
hierarchy, we either use a counter metric directly, or infer it by
using a combination of different counter metrics and/or events
(e.g., reads from the L2 cache can be calculated by subtracting
the number of bytes read from the DRAM from the total
number of requests to the L2). The breakdown of instructions
and data loaded from different levels of the memory hierarchy
are shown in figure 4.

Using the instruction and data breakdown of the FMM
kernel, and the estimated energy cost of different operations
and data access under different frequency settings, we can now
predict the total energy consumed by the FMM kernel using
equation 9. Since we did not have separate microbenchmarks
for add and multiply operations, we use our estimates for
the FMA instructions instead. We believe that this is a good
estimate, as they all share the same functional units.
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(b) Data breakdown

Fig. 4: Breakdown of the FMM kernel to component instruc-
tions and data access to different levels of the memory
hierarchy

B. Validation

We validate our predictions against real measurements
using eight different frequency settings and eight different set
of input parameters to the FMM kernel, for a total of 64 test
cases. These frequency settings and input parameters to the
kernel are summarized in table IV. Figure 5 shows a summary
of our evaluation results. The label on the x-axis (e.g., “F1”
and “S1”) are IDs that indicate the frequency setting and the
input parameters used for that particular test case. (These IDs
can be found in table IV.)

Over all 64 test cases, we observed a mean error of 6.17%,
with a standard deviation of 4.65%. The error rates also range
from as low as 0.09% to as high as 14.89%. These numbers
closely match the error rates for the 16–fold cross validation
of our microbenchmarks (section II-D).

C. Observations

Figure 6 shows the breakdown of energy by type for in-
structions and data access for different FMM input parameters
when both the processing cores and the memory are running
at maximum frequency (852 MHz for the cores, 924 MHz for
the memory).

a) Integer instructions overhead: When we study fig-
ure 4 and 6 together we observe that integer instructions ac-
count for approximately 60% of total computation instructions
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Type Name Description

M flops dp fma # of double–precision floating point multiply–accumulate operations
M flops dp add # of double–precision floating point add operations
M flops dp mul # of double–precision floating point multiply operations
M inst integer # of integer instructions

E l1 global load hit # of cache lines that hit in L1 cache
E l2 subp0 total read sector queries Total read request for slice 0 of L2 cache
E gld request # of load instructions
E l1 shared load transactions # of shared load transactions
E fb subp0 read sectors # of DRAM read request to sub partition 0
E fb subp1 read sectors # of DRAM read request to sub partition 1
E l2 subp0 read l1 hit sectors # of read requests from L1 that hit in slice 0 of L2 cache
E l2 subp1 read l1 hit sectors # of read requests from L1 that hit in slice 1 of L2 cache
E l2 subp2 read l1 hit sectors # of read requests from L1 that hit in slice 2 of L2 cache
E l2 subp3 read l1 hit sectors # of read requests from L1 that hit in slice 3 of L2 cache

E gst request # of store instructions
E l2 subp0 total write sector queries Total write request to slice 0 of L2 cache
E l1 shared store transactions # of shared store transactions

TABLE III: Summary of counter events and metrics used to create a new of the FMM kernel. Type “E” are events and type
“M” are metrics.
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Fig. 5: Comparison of estimate vs. measured energy for various test cases

System Setting FMM Input

ID
Core Memory

ID N Q
Frequency Frequency

S1 852 MHz 924 MHz F1 262144 128
S2 756 MHz 924 MHz F2 131072 64
S3 180 MHz 924 MHz F3 131072 256
S4 852 MHz 792 MHz F4 131072 512
S5 612 MHz 528 MHz F5 65536 1024
S6 540 MHz 528 MHz F6 65536 512
S7 612 MHz 396 MHz F7 65536 128
S8 852 MHz 204 MHz F8 65536 64

TABLE IV: Summary of DVFS settings and input parameters
used for validation

for all input parameters (instruction count and data access
pattern is mostly independent of system setting). This is not

surprising, as most real applications on modern architectures
require large number of loops and address calculations. In
contrast, the energy dissipation from integer instructions ac-
counts for only about 23% of total energy consumed by
computation instructions, regardless of the core’s frequency
setting. This observation suggests that while most applications
“waste” many processing cycles on not useful and unavoidable
overhead of integer operations, it does not significantly impact
performance or energy consumption. Such a low impact is
expected, since integer operations are typically less complex
and use different resources in the pipeline from floating point
operations.

b) Data access: Although GPUs typically have very
small caches, in the case of our FMM implementation, DRAM
accesses only accounts for approximately 13% of all data
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(a) Instruction energy breakdown
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(b) Data energy breakdown

Fig. 6: Breakdown of the FMM kernel by energy

accesses. However, these accesses still account for up to
50% of the total data access energy. After DRAM, L2 cache
accesses account for 30–40% of total data access energy; and
for L1 cache accesses, 10-20%. Thus, keeping data close to
the core as possible has a large benefit both in terms of
performance and energy-efficiency, and can lead to cutting data
access energy cost by as much as half.

c) Constant power: Figure 7 shows a breakdown of
the total energy dissipation from figure 5. Total energy is
broken down to three parts: “Computation” is the total energy
consumed by integer, add, multiply, and FMA instructions;
“Data” is the total energy consumed by all data access types
(SM, L1, L2, and DRAM); ”Constant power” is the energy
consumed by constant power over the application’s execution
time. The figure also shows the energy consumed by each type
as percentage of the total energy rather than in Joules.

The largest contributor to energy consumption is constant
power, accounting for anywhere from 75% to 95% of the total
energy consumed by the application. For this reason, our model
predicts that the best setting for energy efficiency for our FMM
kernel is also the setting that yields the best performance.
This observation goes against some of the predictions of
section II-E.

We believe the problem may be underutilization of hard-
ware resources. A similar breakdown of the energy consumed
by our microbenchmarks shows that constant power only
accounts for about 30% of the total energy. While the mi-

crobenchmarks utilize close to 100% of the targeted resource,
this is not the case for our FMM kernel. Compared to the
maximum instructions per cycle (IPC) that the system can
deliver, our code delivers less than a quarter of that. At first
glance, this fact suggests that the kernel is not well-optimized.
However, we analyzed the achievable peak given the mix of
instructions for the U list phase in our previous work [9].
Assuming there is enough parallelism in our code to hide
instruction latency, the best that the U list kernel can achieve
is slightly above 1

4 of the peak performance of the system, i.e.,
not all computation in the FMM translate to FMA instructions.
Thus, our implementation does not appear to be far from
the achievable peak. More importantly, it also suggests that
many applications are unlikely to come close to delivering a
system’s peak performance, and therefore, will also waste a
large amount of energy on constant power as they wait for the
necessary data or dependencies to be resolved.

V. RELATED WORK

Frequency scaling and concurrency throttling: Tech-
niques based on DVFS have proven to be effective in mini-
mizing energy consumption with little or no impact on per-
formance [12]–[17]. DVFS scales down the frequency (and
therefore the voltage) when processor speed does not limit
performance, taking advantage of the superlinear scaling of
power and energy with frequency. Among these, the work
by Lively et. al uses principal component analysis (PCA)
method to model execution time and power consumption using
a small set of performance counters, which is then used to
determine the appropriate DVFS and dynamic concurrency
throttling (DCT) settings. DCT is a similar technique [18]–
[20], where the number of threads or cores (concurrency) is
limited to reduce energy consumption when employing an
additional core brings limited performance improvement but
a large power cost. These approaches, however, are system-
centric and not cognizant about algorithmic properties, such
as arithmetic intensity, and therefore, they provide no insight
to algorithm designers and programmers into what they can
do to make programs more energy efficient on their respective
systems.

Modeling time, energy, and power: Other modeling
approaches for time, energy, and power include architecture-
cognizant extensions to Amdah’s Law, balance, and the
time-based roofline [21]–[33]. In particular, the work by
Olschanowsky et al. [34] uses a similar microbenchmarking
technique to exercise specific portions of a system in order
to characterize the energy cost of different operations, and
combine it with an independent energy measurement of ap-
plications to estimate the energy requirements for specific
application-resource pairings. While this technique is similar
to our own, the granularity of the energy estimates are hard-
ware components—rather than software instructions—making
it an inappropriate tool for analyzing algorithms and soft-
ware implementations. There are numerous other approaches.
For instance, there are numerous GPU-specific models [35]–
[37]; although these models are capable of accurately pre-
dicting time, they require detailed parameterization of the
input program and intimate knowledge of the GPU micro
architecture, making it difficult for programmers to translate
their output into actionable algorithmic or software changes.
There are also numerous models that try to incorporate power
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Fig. 7: Breakdown of energy consumption by three types: energy spent on computation (incl. integer operations), data movement
(from all levels of the memory hierarchy), and constant power (or overhead)

and energy [15], [16], [38]–[41], and like the time-based
models, much of this work is system- or architecture-centric,
abstracting away algorithmic properties.

Finally, there are a number of microarchitecture simulators
that model power dissipation [42]–[44] at the transistor level.
Although in theory they may provide the most accurate esti-
mates of power dissipation, they have a number of limitations
that prevents from being used in our work. Firstly, simula-
tors typically make assumptions about the hardware they are
simulating, as no vendor provides a complete transistor-level
schematic of their hardware. Secondly, they do not validate
their results against real systems rigorously enough; sometimes
they only compare their results against the thermal design
power (TDP). Lastly, they do not provide any convenient
means of interfacing with real software or algorithms.

Computing on embedded system-on-chip: Interest in
embedded/mobile SoC for HPC has grown rapidly in recent
years. The most notable and perhaps the largest work is the
Mont Blanc project [45] which attempts to build a supercom-
puter from low-power, low-performance ARM SoCs. However,
they have yet to show definitive results that indicate whether
ARM SoCs are the answer to a more energy efficient design.
Other work in employing mobile SoC for HPC include [46]–
[54], as well as those that use SoC for high-performance
general purpose processing such as computer vision and speech
processing [55]–[57]; these papers tend to focus on presenting
the performance and energy dissipation results rather than
indicating ways of improving them, as we do.

VI. CONCLUSION

In this paper, we presented a new method for deriving
the energy cost of different operations – such as flops and
moving data – for different frequency and voltage settings.

We demonstrated how these values, along with readings from
performance counters, can accurately predict the energy con-
sumption of not only microbenchmarks, but also a proxy
application that is based on the fast multipole method.

We also show that for certain types of applications – those
that are simple and highly regular, like our microbenchmarks
– run more energy efficiently at certain frequencies, and those
settings may not necessarily deliver the best performance, and
that our model can accurately predict (autotune) those settings.
For the FMM, energy is minimized by the same frequency set-
tings that minimize time, due primarily to the large percentage
of total energy being consumed by constant power. We hypoth-
esize that this effect is caused by system underutilization due
to the application’s natural mix of instructions being incapable
of achieving a system’s peak performance. Overcoming such
underutilization would likely require some combination of
aggressive algorithmic rearrangement and microarchitectural
improvements (section IV-C).

More so than the results, we wish to emphasize the method-
ological aspect of this research. Users can easily replicate
our experiments on their own systems and applications using
our publicly available microbenchmark suite that covers a
wide range of systems and use our R scripts for validation
and analysis. One scenarios in which our model could be
useful is in deciding whether to use prefetching. If we could
estimate the ratio between used and unused prefetched data,
we could estimate how much energy could be saved by turning
prefetching off (from not loading unused data) and how that
might impact performance – a performance loss could increase
total energy (from constant power). This type of scenario may
not require high system utilization to see energy savings.
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