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A B S T R A C T

We describe an energy-based analogue of the time-based roofline model
of Williams, Waterman, and Patterson (Comm. ACM, 2009). Our goal is
to explain—in simple, analytic terms accessible to algorithm designers
and performance tuners—how the time, energy, and power to execute
an algorithm relate. The model considers an algorithm in terms of op-
erations, concurrency, and memory traffic; and a machine in terms of
the time and energy costs per operation or per word of communica-
tion. We confirm the basic form of the model experimentally. From
this model, we suggest under what conditions we ought to expect an
algorithmic time-energy trade-off, and show how algorithm properties
may help inform power management.

Subject area: High-Performance Computing

Keywords: performance analysis; power and energy modeling; compu-
tational intensity; machine balance; roofline model
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1 introduction 1

1 introduction

The overarching goal of this paper is to develop a simple explana-
tion, aimed at algorithm designers and performance tuners, about the
relationships among time, energy, and power. For that audience, a use-
ful model would directly connect properties of an algorithm—such as
concurrency and locality—with architectural time and energy costs.
It would explain whether there is any difference in optimizing an al-
gorithm for time versus optimizing for energy, why such differences
exist, and what properties of the architecture might lead to non-trivial
time-energy trade-offs. We have studied similar kinds of models in
some of our prior work [12, 13, 48], but thus far have not considered
energy in a formal way.

Our analysis is inspired by a similar set of thought experiments
based on “Amdahl” analysis, written by and for architects [24, 50, 52].
(We review this work and numerous other related studies in § 7.) Such
analyses offer architectural insights, but abstract away essential prop-
erties of an algorithm. By contrast, our analysis more explicitly con-
nects algorithmic and architectural parameters. However, for clarity
we pose and study an intentionally simple—but not overly so—model,
with some initial experimental tests to confirm its basic form.

Below, we summarize what our model implies. These claims both
reflect familiar intuition and also yield new or alternative explanations
about time, energy, and power relationships.

First, when analyzing time, the usual first-order analytic tool is to
assess the balance of the processing system [9, 25, 26, 35, 39, 49]. Re-
call that balance is the ratio of work the system can perform per unit
of data transfer. To this notion of time-balance, we define an energy-
balance analogue, which measures the ratio of “useful” compute oper-
ations and bytes per unit-energy (e.g., Joules). We compare balancing
computations in time against balancing in energy. [§ 2]

Secondly, we use energy-balance to develop an energy-based ana-
logue of the time-based roofline model [49]. Because time can be over-
lapped while energy cannot, the energy-based “roofline” is actually
a smooth “arch line” (see fig. 2a). Interestingly, if time-balance differs
from energy-balance, then there are distinct notions of being “compute-
bound” versus “memory-bound,” depending on whether the optimiza-
tion goal is to minimize time or to minimize energy. We can measure
this difference as a time-energy balance gap. We also posit an analogous
“powerline” model for power. [§ 2, § 3]

Thirdly, when a balance gap exists and energy-balance exceeds time-
balance, the arch line predicts that optimizing for energy may be
fundamentally more difficult than optimizing for time. It further sug-
gests that high algorithmic energy-efficiency may imply time-efficiency,
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2 a basic model and its interpretation 2

while the converse—that time-efficiency implies energy-efficiency—is
not true. [§ 2, § 4]

Fourthly, we test the basic form of the model using experiments on
real CPU and graphics co-processor (GPU) platforms. Using our model
and these data, we show that the hypothetical balance gap above does
not yet really exist, which consequently explains why on today’s plat-
forms race-to-halt is likely to work well [4]. This raises the question for
architects and hardware designers about what the fundamental trends
in the balance gap will be: if energy-balance will eventually overtake
time-balance, race-to-halt could break. We further use the experiments
to highlight both the strengths and the limitations of our model and
analysis. [§ 4, § 5, § 8]

Lastly, we ask under what general conditions we should expect an al-
gorithmic time-energy trade-off. “Algorithmic” here stands in contrast
to “architectural.” Architecturally, for instance, increasing frequency
reduces time but increases energy, due to the non-linear relationship
between frequency and power. What is the story for algorithms? We
consider one scenario. Suppose it is possible algorithmically to trade
more compute operations for less communication. One may derive
a general necessary condition under which such a trade-off will im-
prove energy-efficiency. Furthermore, we show what improvements in
energy-efficiency may or may not require a slowdown, and by how
much. Again, these conditions depend fundamentally on how time-
balance compares to energy-balance. [§ 6]

Taken together, we believe these analyses can improve our collective
understanding of the relationship among algorithm properties and
their costs in time, energy, and power.

2 a basic model and its interpretation

Assume the simple architecture shown in fig. 1. This architecture has
a processing element, labeled “xPU”, as well as two levels of memory,
namely, an infinite slow memory and a fast memory of finite capacity.
This system roughly captures everything from a single functional unit
(xPU) attached to registers (fast memory), to a manycore processor
(xPU) attached to a large shared cache (fast memory). Further assume
that the xPU may only perform operations on data present in the fast
memory. As such, an algorithm for this architecture must explicitly
move data between slow and fast memories.

2.1 Algorithm characterization

Let W be the total number of “useful” compute operations that the
algorithm performs and let Q be the total amount of data it trans-
fers between the slow and fast memories. (Table 1 summarizes all
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2 a basic model and its interpretation 3

Slow memory

xPU

Q transfers

W operations

Fast memory
(total size = Z)

Figure 1: A simple von Neumann architecture with a two-level memory hi-
erarchy. In our first analysis, suppose that an algorithm performs
W arithmetic operations and Q memory operations, or “mops,” be-
tween slow and fast memories.

of the parameters of our model.) By useful, we mean in an algorith-
mic sense; for example, we might only count floating-point opera-
tions (flops) when analyzing matrix multiply, or comparisons for sort-
ing, or edges traversed for a graph traversal algorithm. For simplicity,
we will assume W is measured in units of scalar flops. (That is, a
4-way single-instruction multiple data (SIMD) add is 4 scalar flops; a
fused multiply-add (FMA) is two scalar flops.) We will also refer to W
as the total work of the algorithm. Regarding Q, we will for simplicity
not distinguish between loads and stores, though one could do so in
principle. We will refer to Q as memory operations (mops) measured
in some convenient storage unit, such as a word or a byte.

In a typical algorithm analysis, bothW and Qwill of course depend
on characteristics of the input, such as its size n;1 in addition, Q will
depend on the size of the fast memory. We discuss these dependences
momentarily.

For performance analysis and tuning, we may measure the algo-
rithm’s computational intensity, which is defined as I ≡W/Q. Intensity
has units of operations per unit storage, such as flops per word or flops
per byte. Generally speaking, a higher value of I implies a more “scal-
able” algorithm. That is, it will have more work than mops; therefore,
it is more likely to improve as the architecture’s compute throughput
increases, which happens as cores increase or SIMD lanes widen.

1 That is, imagine a W(n) = O(n) style of analysis. However, unlike the traditional
forms of such analysis, we will also want to characterize constants and costs much
more precisely whenever possible.
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2 a basic model and its interpretation 4

Variable Description

W # of useful compute operations, e.g., # of flops

Q # of main memory operations (“mops”)

I ≡W/Q or intensity, e.g., flops per byte

τflop Time per work (arithmetic) operation, e.g., time per flop

τmem Time per mop

Bτ ≡ τmem/τflop or balance in time, e.g., flops per byte

εflop Energy per arithmetic operation

εmem Energy per mop

Bε ≡ εmem/εflop or balance in energy, e.g., flops per Joule

πflop ≡ εflop/τflop or baseline power per flop

πmop ≡ εmem/τmem or baseline power per mop

π0 Constant power, e.g., Joule per second = Watts

ε0 ≡ π0 · τflop or constant energy per flop

ε̂flop ≡ εflop + ε0 is the actual energy to execute one flop

ηflop ≡ εflop
εflop+ε0

or constant-flop energy efficiency

B̂ε(I) Effective energy-balance, eq. (6)

Tflops Total time to perform arithmetic

Tmem Total time to perform mops

T Total time

Eflops Total energy of arithmetic

Emem Total energy of mops

E0 Total “constant” energy

E Total energy

P Average power

Z Fast memory size (e.g., words, bytes)

Table 1: Summary of model parameters

[ December 30, 2012 at 21:24 – classicthesis version 4.1 ]



2 a basic model and its interpretation 5

What should we expect about the value of I? Recall that Q depends
on fast memory capacity, which we denote by Z units of storage
(words or bytes), as shown in fig. 1. Therefore, intensity will also de-
pend on Z . A well-known result among algorithm designers is that
no algorithm for n× n matrix multiply can have an intensity exceed-
ing I = O

(√
Z
)

[30]. Consequently, if we improve an architecture by
doubling Z , we will improve the inherent algorithmic intensity of a
matrix multiply algorithm by no more than

√
2. Contrast this scenario

to that of just summing all of the elements of an array. Intuitively, we
expect this computation to be memory bandwidth-bound if the array
is very large. Indeed, it has an intensity of I = O(1), that is, a constant
independent of problem size or Z . Thus, increasing Z has no effect on
the intensity of this kind of reduction. In short, the concept of intensity
measures the inherent locality of an algorithm.

2.2 Time and energy costs

Next, we translate the abstractW and Q into concrete time and energy
costs. We will distinguish between the costs of performing work ver-
sus that of data transfer. Furthermore, our model of energy cost will
have two significant differences from our model of time cost, namely,
(i) time costs may be overlapped whereas energy may not; and (ii) we
must burn constant energy, which is an additional minimum baseline
energy on top of operation and data movement costs. These distinc-
tions are critical, and together determine whether or not one should
expect an algorithmic time-energy trade-off (see § 6).

More formally, suppose Tflops and Tmem are the total time (seconds)
to execute all work operations and all mops, respectively. Further as-
sume, optimistically, that overlap is possible. Then, the total time T is

T ≡ max
(
Tflops, Tmem

)
. (1)

Similarly, suppose that Eflops and Emem are the total energy (Joules) for
work and mops. In addition, let E0(T) be the constant energy of the
computation. Constant energy is the energy that must be expended
for the duration of the computation, which we will further assume is
a fixed cost independent of the type of operations being performed.
(see § 3 for a more detailed description of the constant term). Then,
our model of energy cost is

E ≡ Eflops + Emem + E0(T). (2)

Consider the component costs, beginning with time. Suppose each
operation has a fixed time cost. That is, let τflop be the time per work
operation and τmem be the time per mop. We will for the moment tac-
itly assume throughput-based values for these constants, rather than
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(b) A “power-line” chart shows how average power (y-axis, normalized to
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).

Figure 2: Rooflines in time, arch lines in energy, and power lines. Machine
parameters appear in table 2, for an NVIDIA Fermi-class GPU as-
suming constant power is 0. Dashed vertical lines show time- and
energy-balance points.
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2 a basic model and its interpretation 7

Table 2: Sample values for model parameters, based
on best case (peak) capabilities of currently
available systems. See table 1 for a summary
of the definitions of these parameters.

Representative values

Variable NVIDIA “Fermi” GPU [48]

τflop (515 Gflop/s)−1 ≈ 1.9 ps per flopa

τmem (144 GB/s)−1 ≈ 6.9 ps per byteb

Bτ 6.9/1.9 ≈ 3.6 flops per byte

εflop ≈ 25 pJ per flopc

εmem ≈ 360 pJ per byte

Bε 360/25 ≈ 14.4 flops per Joule
a Based on peak double-precision floating-point

throughput.
b Based on peak memory bandwidth.
c Based on 50 pJ per double-precision fused

multiply-add.

latency-based values. (See table 2 for sample parameters.) This as-
sumption will yield a best-case analysis,2 which is only valid when an
algorithm has a sufficient degree of concurrency; we discuss a more
refined model based on work-depth in prior work [12]. From these
basic costs, we then define the component times as Tflops ≡ Wτflop and
Tmem ≡ Qτmem. Then, under the optimistic assumption of perfect over-
lap, the algorithm’s running time becomes

T = max
(
Wτflop,Qτmem

)
=Wτflop ·max

(
1,
Bτ

I

)
, (3)

where we have defined Bτ ≡ τmem/τflop. This quantity is the classical
time-balance point, or simply time-balance [9, 25, 26, 35, 39, 49]. Time-
balance is the architectural analogue of algorithmic intensity and has
the same units thereof, e.g., flops per byte. Furthermore, if we regard
Wτflop as the ideal running time in the absence of any communication,
then we may interpret BτI as the communication penalty when it exceeds
1. We refer to this condition, I > Bτ, as a balance principle [12]. Our
algorithmic design goal is to create algorithms that minimize time
and have high intensity relative to machine’s time-balance.

We might hypothesize that a reasonable cost model of energy is
similar to that of time. Suppose each work operation has a fixed energy
cost, εflop, and for each mop a fixed cost, εmem. Additionally, suppose

2 Additionally, assuming throughput values for τmem implies that a memory-bound
computation is really memory bandwidth bound.
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2 a basic model and its interpretation 8

the constant energy cost is linear in T , with a fixed constant power of π0
units of energy per unit time. (This notion of constant power differs
from leakage power; see § 2.5.) Then,

E =Wεflop +Qεmem + π0T

=Wεflop ·
(
1+

Bε

I
+
π0
εflop

T

W

)
, (4)

where Bε ≡ εmem/εflop is the energy-balance point, by direct analogy to
time-balance. When π0 is zero, Bε is the intensity value at which flops
and mops consume equal amounts of energy.

Let us refine eq. (4) so that its structure more closely parallels eq. (3),
which in turn will simplify its interpretation. Let ε0 ≡ π0 · τflop be
the constant energy per flop, that is, the energy due to constant power
that burns in the time it takes to perform one flop. Moreover, ε̂flop ≡
εflop +ε0 becomes the actual amount of energy required to execute one
flop, given non-zero constant power. Next, let ηflop ≡ εflop/ε̂flop be the
constant flop energy-efficiency. This machine parameter equals one in
the best case, when the machine requires no constant power (π0 = 0).
Then, substituting eq. (3) into eq. (4) yields

E =W · ε̂flop ·

(
1+

B̂ε(I)

I

)
, (5)

where B̂ε(I) is the effective energy-balance,

B̂ε(I) ≡ ηflopBε + (1− ηflop)max (0,Bτ − I) . (6)

The ideal energy is that of just the flops, Wε̂flop. On top of this
ideal, we must pay an effective energy communication penalty, which
B̂ε(I)/I captures. Therefore, similar to the case of execution time, our
algorithmic design goal with respect to energy is to create work-optimal
algorithms with an intensity that is high relative to machine’s effective
energy-balance. That is, just like time there is a balance principle for
energy, B̂ε(I)� I.

When Bτ = B̂ε(I), optimizing for time and energy are most likely
the same process. The interesting scenario is when they are unequal.

2.3 Rooflines in time and energy

We can visualize the balance principles of eqs. (3) and (5) using a
roofline diagram [26, 49]. A roofline diagram is a line plot that shows
how performance on some system varies with intensity. Figure 2a de-
picts the simplest form of the roofline, using the values for τflop, τmem,
εflop, and εmem shown in table 2. Keckler et al. presented these values
for an NVIDIA Fermi-class GPU [33]; but since they did not provide es-
timates for constant power, for now assume π0 = 0. The x-axis shows
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2 a basic model and its interpretation 9

intensity I. The y-axis shows performance, normalized either by the
maximum possible speed (flops per unit time) or by the maximum
possible energy-efficiency (flops per unit energy). That is, the roofline
with respect to time is the curve given by Wτflop/T = min(1, I/Bτ) plot-
ted against I. Similarly, the curve for energy is given by Wε̂flop/E =

1/(1 + B̂ε(I)/I). In both cases, the best possible performance is the
time or energy required by the flops alone.

The roofline for speed is the red line of fig. 2a. Since the component
times may overlap, the roofline has a sharp inflection at the critical
point of I = Bτ. When I < Bτ, the computation is memory-bound
in time, whereas I > Bτ means the computation is compute-bound
in time. Assuming that all possible implementations have the same
number of operations, the algorithm designer or code tuner should
minimize time by maximizing intensity according to the balance prin-
ciple.

There is also a “roofline” for energy-efficiency, shown by the smooth
blue curve in fig. 2a. It is smooth since we cannot hide memory energy
and since π0 = 0. As such, we may more appropriately refer to it as
an “arch line.” The energy-balance point I = Bε is the intensity at
which energy-efficiency is half of its best possible value.3 Put another
way, suppose W is fixed and we increase I by reducing Q. Then, Bε
is the point at which mops no longer dominate the total energy. In
this sense, an algorithm may be compute-bound or memory-bound in
energy, which will differ from time when Bτ 6= Bε.

2.4 The balance gap

The aim of rooflines and arches is to guide optimization. Roughly
speaking, an algorithm or code designer starts with some baseline
having a particular intensity (x-axis value). A roofline or arch line pro-
vides two pieces of information: (a) it suggests the target performance
tuning goal, which is the corresponding y-axis value; and (b) it sug-
gests by how much intensity must increase to improve performance by
a desired amount. Furthermore, it also suggests that the optimization
strategies may differ depending on whether the goal is to minimize
time or minimize energy.

The balance points tell part of the story. Ignoring constant power,
we expect Bτ < Bε. The reason is that wire length is not expected to
scale with feature size [33]. An algorithm with Bτ < I < Bε is simulta-
neously compute-bound in time while being memory-bound in energy.
Furthermore, assume that increasing intensity is the hard part about
designing new algorithms or tuning code. Then, Bτ < Bε suggests
that energy-efficiency is even harder to achieve than time-efficiency.
The balance gap, or ratio Bε/Bτ, measures the difficulty.

3 This relationship follows from a+ b 6 2max(a,b).
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2 a basic model and its interpretation 10

Having said that, a nice corollary is that energy-efficiency may im-
ply time-efficiency. That is, I > Bε implies that I > Bτ as well. How-
ever, the converse—that time-efficiency implies energy-efficiency—would
not in general hold. Of course, roofs and arches are only bounds, so
these high-level claims are only guidelines, rather than guaranteed re-
lationships. Nevertheless, it may suggest that if we were to choose one
metric for optimization, energy is the nobler goal.

If, on the other hand, Bτ > Bε, then time-efficiency would tend
to imply energy-efficiency. Under this condition, so-called race-to-halt
strategies for saving energy will tend to be effective [4].4

Lastly, the analogous conditions hold when π0 > 0, but with B̂ε(I)
in place of Bε. Higher constant power means lower ηflop; consequently,
referring to eq. (6), it would cause B̂ε(I) to be lower than Bε.

2.5 Interpreting constant power

Constant power in our model differs from conventional notions of
static (or leakage) power and dynamic power [3]. Static power is power
dissipated when current leaks through transistors, even when the tran-
sistors are switched off; dynamic power is power due to switching
(charging and discharging gate capacitance). These terms refer primar-
ily to the device physics behind processor hardware, whereas constant
power in our model represents a more abstract concept that depends
on hardware and the algorithm or software that runs atop it.

With respect to hardware, constant power includes everything that
is required to operate the device on top of leakage power. For exam-
ple, constant power on a GPU will also include chips and circuitry on
the printed circuit board, cooling fan, and other parts of the microar-
chitecture. These components may or may not be directly involved in
computing or fetching data but would need to be on for the GPU to
run at all.

Our constant power model does not explictly express the concept
of dynamic power, which may lead to measurable inaccuracy. How-
ever, hardware designers are aggressively implementing techniques
that can, for instance, turn off unused cores or aggressively gate clocks.
These and other techniques tend to significantly reduce the impact of
dynamic power.

With respect to software, our model of constant power can also cap-
ture inefficiencies in the algorithm or code. If a program is running
inefficiently due to not having enough threads to saturate the proces-
sors or the memory units, there will be unused cores and/or longer
instruction latencies due to stalls. The model includes such inefficien-

4 The race-to-halt strategy says that the best way to save energy is to run as fast as
possible and then turn everything off.
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cies through by charging an constant energy cost that depends on
constant power and the total running time T .

3 what the basic model implies about power

Assuming our time and energy models are reasonable, we can also
make analytic statements about the average power of a computation,
P ≡ E/T .

Let πflop ≡ εflop/τflop be the power per flop. This definition excludes
constant power. Then, dividing eq. (5) by eq. (3) yields

P =
πflop

ηflop

[
min(I,Bτ)

Bτ
+

B̂ε(I)

max(I,Bτ)

]
. (7)

The “power-line” diagram of fig. 2b depicts the most interesting
features of eq. (7), again using the parameters of table 2 with π0 = 0

(ηflop = 1). If the computation is severely memory-bound (I→ 0), then
P > πflop

Bε
Bτ

. If it is instead very compute-bound (I → ∞), P decreases
to its lower-limit of πflop. Power P achieves its maximum value when
I = Bτ. From these limits, we conclude that

πflop
Bε

Bτ
6 P 6 πflop

(
1+

Bε

Bτ

)
. (8)

Relative to πflop, we pay an extra factor related to the balance gap. The
larger this gap, the larger average power will be.

4 an experiment

The model of § 2 is an hypothesis about the relationships among in-
tensity, time, and energy. This section tests our model on real systems.

4.1 Experimental Setup

hardware Table 3 shows our experimental platforms, which in-
clude an Intel quad-core Nehalem CPU and two high-end consumer-
class GPUs (Fermi and Kepler). We use two tools to measure power.
The first is PowerMon 2, a fine-grained integrated power measure-
ment device for measuring CPU and host component power [6]. The
second is a custom in-house PCIe interposer for measuring GPU power.
At the time of this writing, our consumer-grade NVIDIA GPU hard-
ware did not support fine-grained power measurement via NVML,
NVIDIA’s Application Programmer Interface (API) [40].

Figure 3 shows how the measurement equipment connects to the
system. PowerMon 2 sits between the power supply unit and various
devices in the system. It measures direct current and voltage on up
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Peak

performance Peak

Single memory

(Double) bandwidth TDP

Device Model GFLOP/s GB/s Watts

CPU Intel Core 106.56 25.6 130

i7-950 (Nehalem) (53.28)

GPU 1 NVIDIA GeForce 1581.06 192.4 244

GTX 580 (Fermi) (197.63)

GPU 2 NVIDIA GeForce 3532.8 192.2 190

GTX 680 (Kepler) (147.2)

Table 3: Platforms – TDP is Thermal design power.

to eight individual channels using digital power monitor integrated
circuits. It can sample at 1024 Hz per channel, with an aggregate fre-
quency of up to 3072 Hz. PowerMon 2 reports formatted and time-
stamped measurements without the need for additional software, and
fits in a 3.5 inch internal hard drive bay.

Modern high-performance GPUs have high power requirements. Typ-
ically, they draw power from multiple sources, including the mother-
board via the PCIe connector. In order to measure the power coming
from the motherboard we use a PCIe interposer that sits between the
GPU and the motherboard’s PCIe connector. The interposer intercepts
the signals coming from the pins that provide power to the GPU.

measurement method The GPU used in our study draws power
from two 12 Volt connectors (8-pin and 6-pin) that come directly from
the ATX power supply unit (PSU), and from the motherboard via the
PCIe interface, which supply 12 V and 3.3 V connectors. When bench-
marking the GPU, PowerMon 2 measures the current and voltage
from these four sources at a regular interval. For each sample, we
compute the instantaneous power by multiplying the measured cur-
rent and voltage at each source and then sum over all sources. We
can then compute the average power by averaging the instantaneous
power over all samples. Finally, we compute the total energy by multi-
plying average power by total time. In this setup, we are able to largely
isolate GPU power from the rest of the system (e.g., host CPU).

The PSU provides power to our CPU system using a 20-pin con-
nector that provides 3.3 V, 5 V and 12 V sources and a 4-pin 12 V
connector. As with the GPU, PowerMon 2 measures current and volt-
age from these four sources; we compute the average power and total
energy in the same manner as above. For our CPU measurements, we

[ December 30, 2012 at 21:24 – classicthesis version 4.1 ]



4 an experiment 13

ATX PSU

PowerMon2

PCIe 
Interposer

GPU

CPU

Motherboard

Input

Output

Figure 3: Placement of the measurement probes, PowerMon 2 [6] and our
custom PCIe interposer

physically remove the GPU and other unnecessary peripherals so as
to minimize variability in power measurements.

In the experiments below, we executed the benchmarks 100 times
each and took power samples every 7.8125 ms (128 Hz) on each chan-
nel.

4.2 Intensity microbenchmarks

We created microbenchmarks that allow us to vary intensity, and tuned
them to achieve very high fractions of the peak FLOP/s or band-
width that the roofline predicts. We then compared measured time
and power against our model. The results for double-precision and
single-precision appear in fig. 4 and fig. 5 respectively, with measured
data (shown as dots) compared to our model (shown as a solid line).
We describe these benchmarks and how we instantiated the model
below.5

The GPU microbenchmark streams a multi-gigabyte array and, for
each element, executes a mix of independent FMA operations. We auto-
tuned this microbenchmark to maximize performance on the GPU by
tuning kernel parameters such as number of threads, thread block size,
and number of memory requests per thread. The GPU kernel is fully
unrolled. To verify the implementation, we inspected the PTX code
and compared the computed results against an equivalent CPU ker-
nel. The CPU microbenchmark evaluates a polynomial and is written
in assembly, tuned specifically to maximize instruction throughput on
a Nehalem core. Changing the degree of the polynomial effectively

5 Pending review of this paper, we will release the benchmarks publicly.
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NVIDIA GTX 580 NVIDIA GTX 680 Intel i7−950
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Figure 4: Measured time and energy for a double-precision synthetic bench-
mark corroborates eqs. (3) and (5). The impact of constant energy
can be profound: GPUs have B̂ε < Bτ < Bε (see vertical dashed
lines). In other words, time-efficiency implies energy-efficiency be-
cause of constant power, which further suggests that “race-to-halt”
is a reasonable energy-saving strategy; were π0 → 0, the situation
could reverse.
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Figure 5: Same as fig. 4, but for single-precision. In this case, all platforms
have B̂ε 6 Bε < Bτ.
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varies the computation’s intensity. The kernel is parallelized using
OpenMP to run on all 4 cores. Although the CPU and GPU bench-
marks differ, their intent is simply to permit varying of intensity and
achieving performance as close to the roofline as possible. As such,
what they compute is not as important as being highly-tuned and hav-
ing controllable intensity.

Figures 4 and 5 show that both microbenchmarks perform close
to the roofline in most cases. Refer specifically to the “Time” sub-
plots, where the roofline is drawn using peak GFLOP/s and band-
width numbers from table 3. For instance, on the GTX 580 the double-
precision version of the GPU benchmark achieves up to 170 GB/s, or
88.3% of system peak when it is bandwidth bound, and as much as
196 GFLOP/s, or 99.3% of system peak when it is compute bound. For
single-precision, the kernel performs up to 168 GB/s and 1.4 TFLOP/s
respectively. However, performance does not always match the roofline.
Again on the NVIDIA GTX 580, we see the largest gap near the time-
balance point; this gap is much smaller on the GTX 680. We revisit this
phenomenon in light of our model in § 5.2.

Percentage of system peak performance observed on GTX 680 was
somewhat lower than that of GTX 580 and it took slightly more ef-
fort and tuning to achieve it. The maximum observed bandwidth was
147 GB/s, or 76.6% of system peak in both single-precision and double-
precision. The maximum observed performance when the benchmark
was compute bound was 148 GFLOP/s, or 101% of system peak in
double-precision and 3 TFLOP/s, or 85.6% of system peak in single-
precision. These percentages are based on the 1150 MHz “Boost Clock”
specification. We speculate that these variations (even exceeding 100%)
are due to the aggressive DVFS employed on Kepler GPUs which al-
lows over-clocking from the “Base Clock” of 1006 MHz as long as the
GPU remains under its Thermal design power (TDP), even exceeding
the Boost Clock.6

The CPU microbenchmark achieves up to 18.7 GB/s and 99.4 GFLOP/s,
or 73.1% and 93.3% of peak in single-precision performance. The achieved
bandwidth is similar to that of the STREAM benchmark7 and the
lower fraction of peak bandwidth observed is typical for CPU systems.
Double-precision performance is 18.9 GB/s (73.8%) and 49.7 GFLOP/s
(93.3%), respectively.

model instantiation To instantiate eq. (3), we estimate time
per flop and time per mop using the inverse of the peak manufac-
turer’s claimed throughput values as shown in table 3. For the energy
costs in eq. (5), such specifications do not exist. Therefore, we esti-

6 http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.

pdf

7 streambench.org
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NVIDIA GTX 680 NVIDIA GTX 580 Intel Core i7-950

εs 43.2 pJ /FLOP 99.7 pJ / FLOP 371 pJ / FLOP

εd 262.9 pJ / FLOP 212 pJ / FLOP 670 pJ / FLOP

εmem 437.5 pJ / Byte 513 pJ / Byte 795 pJ / Byte

π0 66.37 Watts 122 Watts 122 Watts

Table 4: Fitted energy coefficients. Note that εmem is given in units of pico-
Joules per Byte. As it happens, the π0 coefficients turned out to be
identical to three digits on GTX 580 and i7-950 which are built on
40 nm and 45 nm technologies respectively, whereas GTX 680 is built
on a significantly lower technology of 28 nm.

mated them using linear regression on our experimental data.8 In par-
ticular, the data points are a series of 4-tuples (W,Q, T ,R), where we
chooseW andQwhen running the microbenchmark, T is the measured
execution time, and R is a binary variable set to 0 for single-precision
and 1 for double-precision. We use linear regression to find the coeffi-
cients of the model,

E

W
= εs + εmem

Q

W
+ π0

T

W
+∆εdR, (9)

which yields the energy per single-precision flop, εs; energy per single-
precision word, εmem; constant power, π0; and ∆εd, which is the addi-
tional energy required for a double-precision flop over a single-precision
flop.9 That is, the energy per double-precision flop is εd ≡ εs +∆εd. We
summarize the fitted parameters in table 4. We then plug these coeffi-
cients into eq. (5) to produce the model energy curves shown in fig. 5

and fig. 4. These curves visually confirm that the fitted model captures
the general trend in the data. We analyze these curves in § 5.

4.3 Cache microbenchmarks

Exploiting data locality is the main algorithmic tool for controlling I,
though so far we have ignored the cost of explicit cache access. Let
Qcache be the number of cache accesses (measured in words) that our
computation incurs, which are distinct from the Q that we may as-
sume all go to main memory. We may modify eq. (4) to account for
Qcache as follows, assuming a per-cache access energy cost of εcache:

E =Wεflop +Qεmem +Qcacheεcache + π0T . (10)

This equation assumes the two-level memory hierarchy of fig. 1. It
would be straightforward to add terms for a memory hierarchy with
more than two levels.

8 We use the standard regression routine in R, r-project.org.
9 Normalizing the regressors by W produces high-quality fits, with R2 (residual) coef-

ficient near unity at p-values below 10−14.
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NVIDIA GTX 580 NVIDIA GTX 680 Intel i7−950

●

● ●

●

●
●

●
●

●

● ●

1.0
2.4 (const=0)0.79

120 W

160 W

220 W

260 W

●

● ●
●

●
●●●

●

●
●

●
●

0.77
1.7 (const=0)0.67

66 W

110 W

150 W

190 W

●
●

●
●

●
●

●
●

●●●● ● ● ●●●●●●●●

2.1
1.2 (const=0)1.1

120 W

140 W
160 W

180 W

0

25

50

75

100

125

150

175

200

225

250

275

P
ow

er

1/4 1/2 1 2 4 8 16 32 64 1/4 1/2 1 2 4 8 16 32 64 1/4 1/2 1 2 4 8 16 32 64
Intensity (FLOP : Byte)

W
at

ts

Figure 6: Measured power for the double-precision microbenchmark corrob-
orates the “powerline” model. On the GTX 580 platform, NVIDIA
reports a limit of 244 Watts, which explains the discrepancy be-
tween the observed data and the predicted powerline in the single-
precision GTX 580 case.
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Figure 7: Measured power for the single-precision microbenchmark .
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We created a pointer-chasing microbenchmark for the GPU to help
measure cache access energy. First, consider the last-level L2 cache on
Fermi- and Kepler-class GPUs. Our benchmark computes k = A[k],
where initially k == A[k] == the local thread ID. As such, the first
thread block to access the array will fetch data from main memory into
cache; threads from other thread blocks with the same local thread
ID effectively fetch that same element over and over from cache. The
number of threads is limited so that the entire array fits in cache. We
compile the microbenchmark with -Xptxas -dlcm=cg, which forces
the compiler to generate code that caches data in the L2 cache only.
Let εL2

be the L2 cache energy access cost; using our previously fitted
values of εmem and π0, we can compute εL2

via

εL2
=
E−Wεflop −Qεmem − π0T

QL2

(11)

where we use performance counters to estimate the number of L2

accesses, QL2
.

We can adjust then reuse this microbenchmark to estimate L1 cache
energy cost. First, recall that the GPU L1 caches are private to each
multiprocessor. When L1 caching is enabled, the very first thread block
to fetch a particular array element will load the corresponding cache
line into both the L2 cache and the L1 cache of the multiprocessor in
which it resides. Then, all subsequent and first thread blocks in each
multiprocessor will fetch the array from the L2 cache into their respec-
tive L1 caches. After that, subsequent thread blocks will then access
this array from their own L1 caches. Since we have already calculated
the cost of fetching data from the L2 cache (εL2

), the energy cost εL1
of

fetching data from the L1 cache can be computed using

εL1
=
E−Wεflop −Qεmem − π0T −QL2

εL2

QL1

. (12)

This scheme works for NVIDIA Fermi-class GPUs, but we must
modify it for those based on Kepler. There, the L1 cache is reserved
exclusively for spilling local data.10 Therefore, we instead estimate the
energy cost of fetching data from the explicitly-programmed scratch-
pad memory, or “shared memory” in NVIDIA CUDA parlance. How-
ever, doing so will have two consequences. First, we may observe more
L2 cache accesses than we would if we used L1. The reason is that a
copy of the array is required per thread block, rather than per multiproces-
sor). Secondly, we may observe different effective energy costs, since
the shared memory and L1 cache hardware implementations differ.
The reader should, therefore, interpret “L1” energy cost estimates on
Kepler accordingly.

The estimated costs of fetching data from L1 and L2 caches on Fermi
and Kepler-class GPUs appear in table 5, where εL1

is the L1 (or shared

10 See: http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
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NVIDIA GTX 680 NVIDIA GTX 580

εL1
51 pJ /Byte (shared memory) 149 pJ / Byte

εL2
195 pJ / Byte 257 pJ / Byte

Table 5: Estimated energy costs of explicitly fetching data from L1 and
L2 caches on GTX 580, and from shared memory and L2 on the
GTX 680.

memory) access cost, and εL2
is the L2 cost. The median relative resid-

uals between the fitted model and the measured microbenchmark data
were less than 4.5% on the GTX 680, and less than 4% on the GTX 580.

As expected, the costs of fetching data from L1 and L2 caches is
much smaller on the Kepler-class GPU. Note that Kepler-based GPUs
use a better process technology than Fermi (28 nm vs. 40 nm on Fermi).
We will analyze these estimates in § 5.1.

5 discussion, application, and refinement

5.1 The fitted parameters

We may compare the fitted parameters of table 4 against those that
Keckler et al. provide [33]. Since they only discuss Fermi-class GPUs,
giving estimates for only 45 nm and 10 nm process technologies, we
will limit the following discussions of our energy cost estimates to the
GTX 580.

First, Keckler et al. state that the energy cost of the floating-point
unit that performs one double-precision FMA is about 50 pJ, or 25 pJ
per flop; our estimate in table 4 is about eight times larger. This discrep-
ancy arises because the 50 pJ FMA cost excludes various instruction
issue and microarchitectural overheads (e.g., registers, component in-
terconnects), which our measurement implicitly includes. Based on
our estimates, these overheads account for roughly 187 pJ/flop.

Secondly, the discussion of Keckler et al. on memory access costs
suggests a baseline memory-energy cost of 253–389 pJ per Byte. This
cost includes dynamic random access memory (DRAM) access costs,
interface costs, and wire transfer. However, this estimate ignores in-
struction overheads and possible overheads due to cache. Recall that
we estimated the instruction overhead for a floating point instruc-
tion to be roughly 187 pJ, or approximately 47 pJ/Byte in single-
precision. Adding this number to the baseline produces an estimate
of 300-436 pJ/Byte. We also have to account for the costs of storing
and reading the data from the L1 and L2 caches as it travels up the
memory hierarchy. From Keckler et al.’s paper, we can estimate this
cost to be approximately 1.75 pJ/Byte per read/write for both L1 and
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L2 (assuming they are both implemented using static random access
memory (SRAM)), or a total of 7 pJ/Byte for both L1 and L2 read and
write traffic. This brings the total cost estimate to 307–443 pJ/Byte.
Our estimate of εmem is larger, which may reflect additional overheads
for cache management, such as tag matching.

Another point of note is the cost of fetching data from the L1 and
L2 caches. Since the cost of reading the data from SRAM is only
1.75 pJ/Byte and the cost of transferring the data over the wire is
roughly 10–20 pJ/Byte, instruction overhead accounts for most of the
cost. Streamlining the microarchitecture to reduce this overhead is an
opportunity for future work.

There is no information provided to check our constant power es-
timate. For reference, we measured true GPU idle power—when the
GPU is on but not running anything—to be approximately 40 Watts.
Thus, what we estimate as constant power is not the same as idle
power.

The estimates of CPU energy costs for both flops and memory are
higher than their GPU counterparts. This observation is not surpris-
ing since a CPU processing core is widely regarded as being more
complex than its GPU counterpart. Similarly, memory energy costs
are higher in the CPU system than the GPU system. A likely explana-
tion is that GPU memory sits closer to the GPU processor than CPU
memory does to the CPU processor. All of these characteristics have a
profound impact on the balance gap, discussed next.

5.2 Balance gaps and power caps

Consider the rooflines and arch lines of fig. 4 and fig. 5. In all cases,
the time-balance point exceeds the y=1/2 energy-balance point, which
means that time-efficiency will tend to imply energy-efficiency. That
is, once the microbenchmark is compute-bound in time (I > Bτ), it is
also within a factor of two of the optimal energy-efficiency. We believe
this observation explains why race-to-halt can be such an effective
energy-saving strategy in practice on today’s systems [4].

If instead it were possible to drive π0 → 0, then the situation could
reverse. In the two bottom-left subplots of fig. 4, we show this scenario
using the hypothetical energy-balance lines labeled, “const=0.” How-
ever, also observe that having π0 = 0 does not invert the balance gap
on the Intel platform. As table 4 suggests, εflop and εmem on the Intel
platform are much closer than they are on the NVIDIA platform. Re-
flecting on these two types of systems, one question is to what extent
π0 will go toward 0 and to what extent microarchitectural inefficiences
will reduce.

As noted previously, the single-precision NVIDIA GTX 580 perfor-
mance in fig. 5 does not track the roofline closely in the neighbor-
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hood of Bτ. The reason is that our model does not include explicit
power caps. To see this effect, refer to the powerlines of fig. 6 and
fig. 7 and the theory of fig. 2b. Our model demands that power in-
crease sharply as I approaches Bτ (see § 3). For instance, on the GPU
in single-precision, our model says we will need 387 Watts on the
GPU as shown in fig. 7. This demand would in reality cause excessive
thermal issues. Indeed, the GTX 580 has a maximum power rating
of 244 Watts, which our microbenchmark already begins to exceed at
high intensities. Thus, incorporating power caps will be an important
extension for future work.

5.3 Applying and refining the model: FMMU on the GPU

To see how well we can estimate time and energy using our model, we
apply it to the fast multipole method (FMM). The FMM is an O(n) ap-
proximation method for n-body computations that would otherwise
scale as O(n2) [23]. We specifically consider the most expensive phase
of the FMM, called the U-list phase (FMMU). For this exercise, we con-
sider just a GPU version of FMMU.

Algorithm 5.1 The FMMU algorithm

1: for each target leaf node, B do
2: for each target point t ∈ B do
3: for each neighboring source node, S ∈ U(B) do
4: for each source point s ∈ S do
5: (δx, δy, δz) = (tx − sx, ty − sy, tz − sz)
6: r = δ2x + δ

2
y + δ

2
z

7: w = rsqrtf(r) {Reciprocal square-root}
8: φt+ = ds ∗w {ds and φt are scalars}

algorithm sketch The FMMU phase appears as pseudocode in
Algorithm 5.1. The n points are arranged into a spatial tree, with leaf
nodes of the tree containing a subset of the points. For every leaf node
B, FMMU iterates over its neighboring leaf nodes. The list of neigh-
bors is called the “U-list,” denoted as U(B). The node B is the target
node, and each neighbor S ∈ U(B) is a source node. For each pair
(B,S), FMMU iterates over all pairs of points (t ∈ B, s ∈ S) and updates
φt, a value associated with the target point t. According to lines 5-8,
each pair of points involves 11 scalar flops, where we count “recipro-
cal square-root” (1/

√
r) as one flop. Furthermore, each leaf contains

O(q) points for some user-selected q; the number of flops is therefore
O(q2) for every O(q) points of data, with q typically on the order of
hundreds or thousands. Thus, the FMMU phase is compute-bound.
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In prior work, we generated approximately 390 different code im-
plementations of this benchmark [11]. These variants use a variety of
performance optimization techniques and tuning parameter values.

fitting We use the values in table 4 and table 5 to estimate the total
energy cost of each FMMU implementation on the NVIDIA GTX 680.
All implementations are in single-precision. We derive the number
of flops from the input data and the number of bytes read from the
DRAM and caches using hardware counters provided by NVIDIA’s
Compute Visual Profiler. The average error for estimated energy con-
sumption as compared to measured was 32%, which is much worse
than our cache microbenchmark.

There are two culprints. First, we count only flops, thereby ignor-
ing the overhead of integer instructions, branches, and other non-flop
operations. Secondly, our method of estimating flop energy does not
distinguish between types of flops. Recall that our flop energy esti-
mate is half the cost of a FMA instruction. Our simple estimate will
usually underestimate the true energy consumption of multiplies, di-
visions, and (reciprocal) square roots, for instance. For the 390 FMMU
implementations, we always underestimated total energy.

5.4 Refining the performance estimate

Though compute-bound, the FMMU instruction mix is more complex
than a series of FMAs. As such, we should evaluate time and energy
with respect to a refined notion of peak that accounts for the instruc-
tion mix. Below, we show how to do so for the GTX 580 (Fermi). A
similar line of reasoning is possible for the GTX 680 (Kepler).

The intrinsic operations that the FMMU must perform are as fol-
lows. There are 11 scalar flops, where reciprocal square root counts
as 1 flop. These flops occur over 8 operations: 1 transcendental (recip-
rocal square root), 3 FMAs, and 4 individual floating-point add and
subtract operations.

To achieve peak on the GTX 580 (Fermi), consider its microarchitec-
ture. The GPU processor has 512 clusters of functional units, called
“CUDA cores,” spread among 16 streaming multiprocessor (SM) units.
Each of these cores runs at 1.54 GHz. Thus, the processor can perform
(512 scalar instructions) times (1.54 GHz) = 788 billion instructions per
second. If each instruction is a scalar FMA, the peak performance is
1.58 TFLOP/s. However, there is a restriction owing to the dual-warp
schedulers in each SM. A warp is a group of 32 threads that execute
instructions in lock-step.11 An SM may select 1 instruction each from
2 independent warps in a cycle. That is, to achieve peak there must be

11 This style of execution is sometimes called single-instruction multiple thread (SIMT)
execution.
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at least 2 independent warps each with a ready FMA in every cycle.
Otherwise, achieving peak is impossible.

For transcendental instructions like reciprocal square root, there are
more limits. Only 1 of the two warp schedulers in an SM may issue
a transcendental operation each cycle. Furthermore, there are only 4

special function units (SFUs) capable of executing such operations on
each SM. Therefore, to issue a transcendental operation for a warp
requires (32 threads) divided by (4 SFUs per cycle) = 8 cycles.

The key to deriving a refined estimate of peak, given the architec-
ture and instruction mix, lies with the instruction issue rate and the
dual-warp scheduler. The FMMU instruction mix requires at least 3 cy-
cles (for the FMAs) + 4 cycles (adds and subtracts) + 8 cycles (recip-
rocal square root) = 15 cycles. However, the issue rate varies during
these 15 cycles: when issuing FMAs and other floating point instruc-
tions, if there is at least 1 other warp available to issue the same type
of instructions, the SM will issue a total of 32 instructions. However,
when issuing reciprocal square roots, no more than 4+16=20 instruc-
tions may issue if there is at least one other warp available that can
issue FMAs or floating point instructions. Therefore, the average issue
rate is (7× 32+ 8× 20)/15 = 25.6 scalar instructions per cycle. How-
ever, this does not differentiate FMAs and floating point instructions.
As such, we can redefine issue rate in terms of flops/cycle. In this case,
the average issue rate is (3× 64+ 4× 32+ 8× 20)/15 = 32 flops/cycle.
Then the maximum performance is (32 flops/cycle/SM) × (16 SMs) ×
(1.54 GHz) = 788 GFLOP/s.

To verify this estimate, we wrote a synthetic benchmark where each
thread executes many independent copies of this particular floating-
point instruction mix in a fully unrolled loop. The performance levels
off at approximately 785 GFLOP/s as we increase the size of the loop.
Unfortunately, we cannot completely unroll our loops in FMMU since
we do not have any prior knowledge on the number of neighbors in
the U-list, or the number of points in each neighbor. When we put our
instruction mix in a loop (i.e., not unrolled), the performance drops to
approximately 512 GFLOP/s. We believe this performance is the true
peak that we should expect from the ideal FMMU kernel. In fact, the
best performance observed among our 390 kernels was 467 GFLOP/s,
or 91% of this refined peak.

5.5 Constant power

The constant power and energy terms exhibit a large impact on en-
ergy consumption. When we ran our microbenchmark in compute-
only mode, it spent 55% of its energy on flops on the GTX 580 and
69% on the GTX 680. The flop energy for FMMU, as a result, was even
worse. The FMMU spent just 23% to 50% of its energy on flops when
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running on the GTX 580, and 40% to 70.27% on the GTX 680. These
relatively low fractions suggest that significant energy savings are still
possible.

Additionally, the wide range of energy for flops observed for the
FMMU stress the importance of algorithmic and software-level tech-
niques. Otherwise, we could end up wasting as much as 80% of the
total energy judging by the 23% of energy for flops observed on the
GTX 580. Beyond algorithms and software, for FMMU specifically there
is also a strong case for even more specialized function units.

6 algorithmic trade-offs

With the background of § 2, we may now ask what the consequences
for algorithm design may be. One interesting case is that of a family of
algorithms that exhibit a work-communication trade-off. Such a trade-off
is one in which we can reduce memory communication at the cost of
increasing computation. Below, we state when a work-communication
trade-off improves time or energy, or both or neither.

The most interesting scenario will be when there exists a balance
gap. As such, we will in this section assume π0 = 0. The same analysis
for π0 > 0 appears in appendix A.

6.1 Notation and key definitions

Denote an abstract algorithm that executesW flops andQmops by the
pair, (W,Q). A “new” algorithm (fW, Qm) exhibits a work-communication
trade-off with respect to the baseline (W,Q) if f > 1 and m > 1. From
§ 2, the time and energy of this algorithm are

Tf,m =Wτflop max
(
f,
1

m

Bτ

I

)
(13)

and Ef,m =Wεflop

(
f+

1

m

Bε

I

)
, (14)

respectively. The intensity I ≡W/Q is that of the baseline algorithm.
Higher intensity does not mean less time. The new algorithm’s in-

tensity is fmI by definition. Though this value is higher than that of
the baseline, the new algorithm takes less time only if 1 < f < Bτ

I , i.e.,
the baseline was initially memory-bound.

Instead, the best way to compare times is to do so directly. As such,
our analysis will also use the usual measure of speedup, denoted by
∆T and measured relative to the baseline:

∆T ≡ T1,1

Tf,m
=

max
(
1, BτI

)
max

(
f, 1m

Bτ
I

) . (15)
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The algorithm exhibits a speedup if ∆T > 1 and a slowdown if ∆T < 1.
Similarly, we may ask whether the algorithm uses less energy than

the baseline. In the same way that eq. (15) measures time-efficiency,
we may measure energy-efficiency, or “greenup” ∆E, as

∆E ≡ E1,1

Ef,m
=

1+ Bε
I

f+ 1
m
Bε
I

. (16)

The new algorithm is more energy-efficient than the baseline if ∆E > 1.

6.2 A general “greenup” condition

Equation (16) implies that a (fW, Qm) algorithm decreases energy rela-
tive to the baseline when ∆E > 1, or (after algebraic rearrangement)

f < 1+
m− 1

m

Bε

I
. (17)

Equation (17) is a general necessary condition for a work-communication
trade-off to reduce energy.

Acccording to eq. (17), a work-communication trade-off may in-
crease intensity but only up to a limit. Reducing communication (in-
creasing m) increases the slack that permits extra work (higher f) to
still pay-off. But the energy communication penalty imposes a hard
upper-limit. In particular, even if we can eliminate communication en-
tirely (m→∞), the amount of extra work is bounded by f < 1+ Bε

I .
To get a feeling for what this might mean, suppose we have a base-

line computation that is compute-bound in time, and furthermore is
maximally tuned. In the language of the roofline of fig. 2a, “compute-
bound in time” means I > Bτ, lying at or to the right of the sharp
inflection; and “maximally tuned” means minimum time (or, equiva-
lently, maximum performance), which occurs at y-values that are on
the roofline itself. Equation (17) says that a new algorithm exhibiting
a work-communication trade-off may reduce energy even if it requires
increasing flops. However, there is a limit: even if we eliminate com-
munication, we must have f < 1+ Bε

I 6 1+ Bε
Bτ

. For the NVIDIA Fermi
GPU architecture of table 2, this upper-bound is about five, meaning
we should not increase the flops by more than a factor of five.12 The
relative gap between Bτ and Bε determines the slack for extra work.

6.3 Time and energy relationships

Equation (15) suggests that we consider three cases in relating speedup
∆T and greenup ∆E:

1. Both the baseline algorithm and the new algorithm are memory-
bound in time.

12 This factor does not depend asymptotically on the input size, n.
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2. The baseline algorithm is memory-bound in time but the new
algorithm is compute-bound in time.

3. Both the baseline algorithm and the new algorithm are compute-
bound in time.

(The fourth logical case, that the baseline is compute-bound in time
while the new algorithm is memory-bound in time, is impossible since
we only consider f,m > 1.) In each of these cases, we will calculate
∆T and then ask what the resulting lower- and upper-bounds on ∆E
may be. From this analysis, we will see when a speedup, a greenup,
or both may be possible.

case 1 : baseline and new algorithms are memory-bound

in time If the baseline and new algorithms are memory-bound in
time, then I < Bτ and f < 1

m
Bτ
I . We may conclude from eq. (15) that

∆T = m > 1, where the inequality follows from assumption. In this
case, we should always expect a speedup.

We can get a lower-bound on ∆E using eq. (16) and upper-bounds
on f and 1

m . The only upper-bound on f is 1
m
Bτ
I . The only upper-

bound on 1
m is 1. Substituting these inequalities into eq. (16), we have

∆E >
1+ Bε

I
Bτ
I + Bε

I

=
1+ I

Bε

1+ Bτ
Bε

. (18)

Since both the numerator and denominator are greater than one but
I < Bτ, this lower-bound will generally be slightly less than 1, mean-
ing a small loss in energy-efficiency can occur.

To get an upper-bound on ∆E, we need lower-bounds on f or 1
m or

both. By definition, we have f > 1. By memory boundedness, we also
have 1

m > f IBτ . Thus,

∆E <
1+ Bε

I

1+ Bε
Bτ

. (19)

By memory-boundedness of the baseline algorithm, I < Bτ and so the
value of the upper-bound of eq. (19) will be greater than 1, but limited
by the balance gap.

Equations (18) and (19) exhibit a natural symmetry and, further-
more, are independent of m and f.

case 2 : baseline is memory-bound and new algorithm is

compute-bound If the baseline is memory-bound in time but the
new algorithm is compute-bound, then I < Bτ, 1m

Bτ
I < f, and ∆T =

1
f
Bτ
I . The expression for speedup says that we only expect a speedup

if the increase in flops is not too large relative to the communication
time penalty.
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To get a lower-bound on greenup using eq. (16), we need upper-
bounds on f, 1

m , or both. The only such bounds are 1
m < 1, by defi-

nition, and 1
m < f IBτ , by compute-boundedness of the new algorithm.

Which of these is smaller depends on specific values of the various
parameters; however, since both must hold we may conservatively as-
sume either. Choosing the latter, we find

∆E >
1

f
·
1+ Bε

I

1+ Bε
Bτ

= ∆T ·
1+ I

Bε

1+ Bτ
Bε

. (20)

The rightmost factor is less than 1 since I < Bτ, by assumption. Thus,
eq. (20) makes it clear that whatever speedup (or slowdown) we achieve
by exploiting the work-communication trade-off, the energy-efficiency
can be slightly lower.

To get an upper-bound on ∆E, we need lower-bounds on f, 1
m , or

both. For f, we have two: f > 1 and f > 1
m
Bτ
I . The latter is more

general, though it will be pessimistic when m� Bτ
I . With that caveat,

we obtain

∆E < m ·
1+ I

Bε

1+ Bτ
Bε

. (21)

Equation (21) emphasizes the critical role that reducing communica-
tion plays in increasing energy-efficiency.

case 3 : baseline and new algorithms are compute-bound

in time If both the baseline and new algorithms are compute-bound
in time, then we may deduce that I > Bτ and ∆T = 1

f < 1. That is, we
should generally expect a slowdown because flops already dominate;
increasing flops only increases work without the possibility of saving
any time.

We can obtain a lower-bound on ∆E by invoking upper-bounds on
1
m or on f. Our choices are 1

m < 1, by definition; and 1
m < f IBτ , which

follows from the new algorithm being compute-bound. The tightest of
these is first; thus,

∆E >
1+ Bε

I

f+ Bε
I

= ∆T
1+ Bε

I

1+ 1
f
Bε
I

> ∆T . (22)

Substituting ∆T for 1f leads to the final equality and inequality. Equa-
tion (22) says that the greenup will be no worse than the speedup.
However, in this case ∆T < 1, which means that a loss in energy-
efficiency is possible.

We can get an upper-bound on ∆E using eq. (16) with a lower-bound
on f. The two choices are f > 1 and f > 1

m
Bτ
I . Since the baseline was

also compute-bound in time, meaning Bτ
I 6 1, the latter lower-bound
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is strictly less than the trivial lower-bound. Thus, the tighter upper-
bound is

∆E =
1+ Bε

I

f+ 1
m
Bε
I

<
1+ Bε

I

1+ 1
m
Bε
I

< 1+
Bε

I
, (23)

where the last inequality shows the limit of the new algorithm hav-
ing no communication (m → ∞). We may conclude that even though
in this case we will always slowdown in time, a greenup may be pos-
sible, albeit bounded by roughly the energy communication penalty.

6.4 Summary of the three cases

We summarize the 3 cases as follows.

case 1 Baseline and new algorithms are memory-bound in time:

I < Bτ

1 <∆T= m
1+ I

Bε

1+ Bτ
Bε

<∆E<
1+ Bε

I

1+ Bε
Bτ

.

case 2 Baseline is memory-bound in time while the new algorithm
is compute-bound:

I < Bτ

∆T=
1

f

Bτ

I

∆T ·
1+ I

Bε

1+ Bτ
Bε

<∆E< m ·
1+ I

Bε

1+ Bτ
Bε

.

case 3 Baseline and the new algorithm are compute-bound in time:

Bτ < I
1

f
=∆T< 1

∆T ·
1+ Bε

I

1+ 1
f
Bε
I

<∆E<
1+ Bε

I

1+ 1
m
Bε
I

.

illustration To illustrate the preceding bounds, consider fig. 8.
There, we compute the speedups, greenups, and their lower and up-
per bounds, for a variety of intensity values I ∈ [Bτ/4,Bε]. Figure 8

shows modeled speedups and greenups as points; the minimum and
maximum bounds are shown as horizontal and vertical lines. Figure 8

clarifies how it is unlikely that one will improve time (∆T > 1) while in-
curring a loss in energy-efficiency (∆E < 1). However, there are many
opportunities for the converse, particularly in either Case 2 or Case 3.
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Case 1 Case 2 Case 3
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Figure 8: Illustration of the speedup and greenup bounds summarized in
§ 6.4. Points correspond to (∆T ,∆E) pairs at particular values of I,
f, and m; horizontal and vertical lines indicate the corresponding
minimum lower bounds and maximum upper bounds on speedup
and greenup, taken over all values of I, f, and m in each case.

7 related work

The perspective of this paper is algorithms, rather than architecture,
systems, or embedded software, where time, power, and energy are
traditionally studied (see the survey of Kaxiras et al. [32].) Our model
is perhaps most similar to a recent technical report by Demmel et
al. [14]. However, our model is more parsimonious and, as such, clar-
ifies a number of issues such as the notion of a balance gap or why
race-to-halt works on current systems. At a more technical level, we
also differ in that we assume computation-communication overlap
and have furthermore tried to validate the basic form of our model
with experiments.

additional algorithmic theory work The algorithms com-
munity has also considered the impact of energy constraints, particu-
larly with respect to exploiting scheduling slack and there have been
numerous other attempts to directly explore the impact of energy con-
straints on algorithms. These include new complexity models, includ-
ing new energy-aware Turing machine models [8, 29, 38, 47]; this body
of work addresses fundamental theoretical issues but is hard to opera-
tionalize for practical algorithm design and tuning. Other algorithmic
work takes up issues of frequency scaling and scheduling [1, 2, 34].
Such models are particularly useful for exploiting slack to reduce en-
ergy by, for instance, reducing frequency of non-critical path nodes.

systems-focused frequency scaling In more practical software-
hardware settings, the emphasis is usually on reducing energy us-
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age through dynamic frequency and voltage scaling (DVFS). DVFS at-
tempts to minimize energy consumption with little or no impact in
performance by scaling down the frequency (and therefore the volt-
age) when processor speed does not limit performance [18–20, 31, 43].
In contrast to our paper, the work on DVFS looks at a different time-
energy trade-off that comes from the superlinear scaling of power and
energy with frequency.

Among these, Song et al. propose a particulary notable iso-energy-
efficiency model for determining the problem size and clock frequency
to achieve a desired level of energy-efficiency on a system of a particu-
lar size (number of processors or nodes) [43]. It is, however, not explicit
about algorithmic features such as intensity.

Like some of the theory work, much of this DVFS research focuses
on predicting slack in the application which allows cores to be clocked
down to save power. The perspective is systems-centric, and is not in-
tended for direct use by end-user programmers or algorithm design-
ers.

profiling and observation-based studies There are a num-
ber of empirical studies of time, power, and energy in a variety of
computational contexts, such as linear algebra and signal process-
ing [10, 15–17, 21, 37]. One notable example is the work of Dongarra
et al., which observes the energy benefits of mixed-precision [15]. Our
work tries to generalize beyond specific domains through the abstrac-
tion of intensity and balance.

Esmaeilzadeh et al. measure chip power for a variety of applications,
with a key high-level finding being the highly application-dependent
behavior of power consumption [16]. They create abstract profiles to
capture the differing characteristics of these applications. However, be-
cause of the diverse array of full applications they consider, they do
not ascribe specific analytic properties of a computation in a way that
programmers or algorithm designers can directly use to understand
and re-shape time-energy behavior.

tools Although we adopted PowerMon 2 as our measurement in-
frastructure, there are numerous other possibilities. Perhaps the most
sophisticated alternative is PowerPack [21], a hardware-software “kit”
for power and energy profiling. However, the infrastructure is rela-
tively elaborate and expensive to acquire, in contrast to PowerMon 2.
In future studies, we expect to be able to use even simpler measure-
ment methods based on vendor-provided hardware support. These
include Intel hardware counters for power [41] and NVIDIA’s Man-
agement Library for power measurement [40]. However, unlike Intel’s
tool, NVML only provides power consumption for the entire GPU, in-
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cluding the memory. NVML provides readings in milliwatts and is
accurate to within ±5 watts.

other modeling approaches The direct inspiration for this pa-
per comes from studies of architecture-cognizant extensions to Am-
dahl’s Law, balance, and the time-based roofline [9, 12, 24–26, 35, 39,
49, 50, 52].

However, there are numerous other approaches. For instance, nu-
merous recent studies have developed detailed GPU-specific models [5,
27, 51]; though these models are capable of directly predicting time,
they require very detailed characterizations of the input program or
intimate knowledge of the GPU microarchitecture. As such, it is non-
trivial to translate the output of these models into actionable algorith-
mic or software changes. There are also numerous models that try to
incorporate power and energy [19, 28, 36, 43–45]. However, like the
time-based models, much of this work is systems-centric, abstracting
away algorithmic properties.

metrics Our models reason directly about the basic measures of
time, energy, and power. When considering trade-offs and multiob-
jective optimization, other metrics may be better suited. These include
the energy delay product (EDP) and its generalizations [7, 22], FLOP/s
per Watt (i.e., flops per Joule) [42], and The Green Index [46].

8 conclusions and future directions

In our view, the most interesting outcome of our analysis is the balance
gap, or the difference between the classical notion of time-balance, Bτ,
and its energy analogue, Bε. We believe balance gaps have important
consequences for algorithms as we have shown in § 6. Today, Bτ > Bε,
due largely to idle power and other microarchitectural inefficiencies;
consequently, race-to-halt strategies will be the most reasonable first-
order technique to save energy. Will this conclusion change signifi-
cantly in the future?

Our study reinforces three relevant trends that suggest the balance
gap will shift. First, we observed that the newer Kepler-class GPU,
based on a 28 nm process technology, had a significantly lower con-
stant power compared to the 40 nm Fermi-class GPU: 66 W for the
Kepler-based GTX 680 vs. 122 W for the Fermi-based GTX 580. Sec-
ondly, GPUs in general exemplify simpler core microarchitecture de-
sign when compared to general-purpose CPU platforms. The balance
gap did not appear possible on the CPU system in our study, even
with no constant power; however, it did emerge on the GPU platforms
in an hypothetical π0 = 0 scenario. Thirdly, although the cost ratio
between reading data from memory and computing on data is ex-
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pected to remain constant [33], wire capacitance will not scale. Conse-
quently, the cost of moving data will stay the same. Unless the distance
between off-chip memory and the processing cores decreases signifi-
cantly (e.g., via memory-die stacking), the balance gap will increase.

limitations Our model is just a first-cut at bridging algorithm
and architecture analysis. Regarding its limitations, these are the most
important in our view.

First, we have suppressed latency costs, under the assumption of
sufficient concurrency; we have done so in prior work [12] and plan
to extend it for energy.

Secondly, we consider the best-case scenario of flops-centric (and on
GPUs, FMA-centric) computation. In order for our model to estimate
energy consumption more accurately, a more nuanced accounting of
the instruction mix is necessary.

Thirdly, we ignored power caps, which can cause our analysis to
overestimate power consumption and performance (§ 5). Having said
that, at least the predictions appear empirically to give upper-bounds
on power and lower-bounds on time.

In spite of these limitations, we hope algorithm designers, perfor-
mance tuners, and architects will find our basic model an interesting
starting point for identifying potential new directions lying at the in-
tersection of algorithms and architecture.
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a time and energy trade-offs under constant power

This appendix generalizes the work-communication trade-off of § 6 to
the case of π0 > 0.

a.1 Total energy, Ef,m

Equation (5) expresses total energy E(W, I) as a function of W and I.
Therefore, we may write Ef,m as

Ef,m = E(fW, fmI) (24)

= fWε̂flop ·

(
1+

B̂ε(fmI)

fmI

)
=Wε̂flop ·

(
f+

1

m

B̂ε(fmI)

I

)
. (25)

a.2 Effective energy balance, B̂ε(I)

When analyzing work-communication trade-offs, we will make use of
the following relationship between B̂ε(I) and B̂ε(fmI).

Lemma A.1. Let f,m > 1. Then, B̂ε(I) > B̂ε(fmI).

Proof. This fact follows simply from the definition of B̂ε(I).

B̂ε(I) ≡ ηflopBε + (1− ηflop)max (0,Bτ − I)

> ηflopBε + (1− ηflop)max (0,Bτ − fmI)

= B̂ε(fmI).

a.3 Greenup, ∆E

By the definition of greenup, eq. (16),

∆E =
1+

B̂ε(I)
I

f
(
1+

B̂ε(fmI)
fmI

) =
1+

B̂ε(I)
I

f+
B̂ε(fmI)
mI

. (26)

a.4 General necessary condition for greenup

We derive a general necessary condition for an actual greenup, or
∆E > 1. Let I be the intensity of the baseline algorithm. Suppose
the new algorithm increases flops by f > 1 while reducing memory
operations by a factor of m > 1. By eq. (26), the condition ∆E > 1

implies

f < 1+
B̂ε(I)

I
−
1

m

B̂ε(fmI)

I
< 1+

B̂ε(I)

I
, (27)
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where the last inequality follows from lemma A.1. This upper-bound
on f also holds in the limit that we eliminate communication entirely
(m→∞). From here, there are two interesting cases to consider.

compute-bound limit. Suppose the baseline algorithm is compute-
bound, so that I > Bτ. Then,

f < 1+
B̂ε(I)

I
= 1+ ηflop

Bε

I
6 1+ ηflop

Bε

Bτ
. (28)

In the limit that π0 → 0, ηflop → 1 and the bound matches that of § 6.2.

memory-bound limit. Suppose instead that the baseline is memory-
bound, so that I < Bτ. Then,

f < 1+
B̂ε(I)

I

= 1+ ηflop
Bε

I
+ (1− ηflop)

(
Bτ

I
− 1

)
= ηflop +

ηflopBε + (1− ηflop)Bτ
I

. (29)

That is, the upper-limit on the extra flop factor f is related to a weighted
average of the time- and energy-balance constants.

a.5 ∆E bounds for case 1: New algorithm is memory-bound in time

lower bound Suppose fmI < Bτ and 1
m < 1. Then,

∆E =
1+

B̂ε(I)
I

f+ 1
m
B̂ε(fmI)

I

=
1+

ηflopBε+(1−ηflop)·max(0,Bτ−I)
I

f+ 1
m

ηflopBε+(1−ηflop)·max(0,Bτ−fmI)
I

=
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

f+ 1
m

ηflopBε+(1−ηflop)·(Bτ−fmI)
I

. (30)

Applying f < 1
m
Bτ
I and 1

m < 1 yields

∆E >
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

Bτ
I +

ηflopBε+(1−ηflop)·(Bτ−Bτ)
I

=

I+ηflopBε+(1−ηflop)·(Bτ−I)
I

Bτ+ηflopBε
I

=
I+ ηflopBε +

(
1− ηflop

)
· (Bτ − I)

Bτ + ηflopBε

=
Bτ ·

(
1− ηflop

)
+ ηflop · (Bε + I)

Bτ + ηflopBε
. (31)
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When π0 = 0, we recover eq. (18). Otherwise, whether there is a
greenup depends on ηflop, since Bτ ·

(
1− ηflop

)
< Bτ but ηflop · (Bε + I) >

ηflopBε.

upper bound To derive an upper-bound on ∆E, consider the con-
ditions 1 < m < Bτ

fI or f IBτ <
1
m < 1 and f > 1. From these,

∆E =
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

f+ 1
m

ηflopBε+(1−ηflop)·(Bτ−fmI)
I

.

Applying the lower bounds on f, 1m ,m, we get

∆E <
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

1+ I
Bτ

ηflopBε+(1−ηflop)·(Bτ−I)
I

,

=
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

1+
ηflopBε+(1−ηflop)·(Bτ−I)

Bτ

.

Again, π0 = 0 recovers eq. (19). Since Bτ > I, the right hand side will
always be greater than 1, meaning that a greenup is always possible.
However, the balance gap and the intensity of the original algorithm
will limit it.

a.6 ∆E bounds for case 2: baseline is memory-bound but new algorithm is
compute-bound in time

lower bound To derive a lower bound, consider the conditions
I < Bτ, fmI > Bτ, and ∆T = 1

f
Bτ
I . From these,

∆E =
1+

B̂ε(I)
I

f+ 1
m
B̂ε(fmI)

I

=
1+

ηflopBε+(1−ηflop)·max(0,Bτ−I)
I

f+ 1
m

ηflopBε+(1−ηflop)·max(0,Bτ−fmI)
I

=
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

f+ 1
m

ηflopBε+(1−ηflop)·(0)
I

=
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

f+ 1
m

ηflopBε
I

.
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Applying the upper bound 1
m < f IBτ yields,

∆E >
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

f+ f IBτ
ηflopBε
I

=
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

f+ f
ηflopBε
Bτ

=
1

f
·
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

1+
ηflopBε
Bτ

= ∆T ·
I+ ηflopBε +

(
1− ηflop

)
· (Bτ − I)

I

Bτ

Bτ + ηflopBε

I

Bτ

= ∆T ·
I+ ηflopBε +

(
1− ηflop

)
· (Bτ − I)

Bτ + ηflopBε

= ∆T ·
ηflopBε +Bτ − ηflopBτ + ηflopI

Bτ + ηflopBε

= ∆T ·
Bτ
(
1− ηflop

)
+ ηflop (Bε + I)

Bτ + ηflopBε
.

If π0 = 0, this equation yields eq. (20).
Since Bτ

(
1− ηflop

)
< Bτ and ηflop (Bε + I) > ηflopBε, we cannot de-

termine if this lower-bound on ∆E will be greater or less than the
speedup.

upper bound To derive an upper-bound, consider the conditions
I < Bτ and fmI > Bτ. From these,

∆E =
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

f+ 1
m

ηflopBε
I

.

Applying the lower bound f > 1
m
Bτ
I ,

∆E <
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

1
m
Bτ
I + 1

m

ηflopBε
I

,

= m ·
1+

ηflopBε+(1−ηflop)·(Bτ−I)
I

Bτ
I +

ηflopBε
I

,

= m ·
I+ηflopBε+(1−ηflop)·(Bτ−I)

I
Bτ+ηflopBε

I

,

= m ·
I+ ηflopBε +

(
1− ηflop

)
· (Bτ − I)

Bτ + ηflopBε
,

= m ·
Bτ − ηflopBτ + ηflopBε + ηflopI

Bτ + ηflopBε
,

= m ·
Bτ
(
1− ηflop

)
+ ηflop (Bε + I)

Bτ + ηflopBε
.
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When π0 = 0, this inequality recovers eq. (21). As with the lower
bound, the equation cannot tell us if the right hand side will be greater
than or less than m, but does stresses its importance.

a.7 ∆E bounds for case 3: baseline is compute-bound in time

lower bound To derive a lower bound on ∆E, consider the condi-
tions I > Bτ, fmI > Bτ, 1m < 1, and ∆T = 1

f . From these,

∆E =
1+

B̂ε(I)
I

f+ 1
m
B̂ε(fmI)

I

=
1+

ηflopBε+(1−ηflop)·0
I

f+ 1
m

ηflopBε+(1−ηflop)·0
I

=
1+

ηflopBε
I

f+ 1
m

ηflopBε
I

.

Applying the tighter upper bound of 1
m < 1 (rather than fmI > Bτ)

yields,

∆E >
1+

ηflopBε
I

f+
ηflopBε
I

=
1

f
·
1+

ηflopBε
I

1+ 1
f

ηflopBε
I

= ∆T ·
1+

ηflopBε
I

1+ 1
f

ηflopBε
I

> ∆T .

In this case, greenup will be at least as good as the speedup, at least
in theory. In reality, performance will tend to decrease so that a loss in
energy-efficiency is also likely.

upper bound To derive an upper bound on ∆E, consider the con-
ditions I > Bτ, fmI > Bτ, 1m < 1, and ∆T = 1

f . From these,

∆E =
1+

ηflopBε
I

f+ 1
m

ηflopBε
I

.

Using the trivial lower-bound f > 1 (rather than f > 1
m
Bτ
I ),

∆E <
1+

ηflopBε
I

1+ 1
m

ηflopBε
I

,
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In the limit of eliminating communication, (m→∞),

∆E <
1+

ηflopBε
I

1+ 1
m

ηflopBε
I

< 1+
ηflopBε

I
.

Recall that the condition ∆T = 1
f implies there will always be a slow-

down in time. However, eq. (32) implies that a greenup may neverthe-
less be possible. The upper limit on any such greenup will be roughly
the energy communication penalty.

a.8 Summary

Relative to § 6.2, the fact of constant power (π0 > 0) removes any guar-
antee on whether we will see a greenup. However, greenups are nev-
ertheless possible, albeit at a reduced amount related to the efficiency
factor ηflop. It then becomes critical to understand the architectural and
hardware trends most likely to effect π0 (and therefore also ηflop).

b critical points

Section 2 alludes to two critical points, where we expect to see an
inflection in some behavior in the model. We summarize and derive
these critical points below.

First, there is a critical intensity, Îcrit, at which the archline reaches half
its maximum possible value. (Equivalently, the critical intensity marks
the point at which energy-efficiency is half its best possible value, as-
suming constant work.) The dashed vertical lines in Figures 4–7 show
these critical points, which we alternately refer to as the “effective en-
ergy balance” points when π0 > 0. Intuitively, a computation whose
intensity I > Îcrit is compute-bound in energy, and thus more energy-
scalable.

Secondly, there is a critical constant power, π̂crit(I), below which Bτ 6
B̂ε(I). Below this bound, the effective energy balance of the system
exceeds the time balance. If in the future constant power falls below
π̂crit(I), then interesting time-energy trade-offs will emerge.

b.1 Critical intensity, Îcrit

The critical intensity Îcrit is the point at which B̂ε(Îcrit) = Îcrit. When
this condition holds, eq. (5) is within a factor of two of its minimum
possible value, W · ε̂flop. Having an algorithm with intensity I > Îcrit is
desirable, as the condition suggests energy-scalability.

From the other analyses in our report, we may conclude that con-
stant power π0 is critical to the balance gap. Therefore, a specific goal
of this section is to derive Îcrit as a function of π0.
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First consider eq. (6) when Îcrit > Bτ:

Îcrit = B̂ε(Îcrit) = ηflop ×Bε (32)

=
εflop

εflop + ε0
× εmem

εflop
(33)

=
εmem

εflop + π0τflop
, (34)

where we have applied the definitions of ηflop and Bε to get an explicit
function of π0. Furthermore, observe that the condition Îcrit > Bτ is,
from eq. (34), equivalent to

εmem

εflop + π0τflop
>
τmem

τflop
, (35)

⇐⇒ πmop > πflop + π0. (36)

Next, consider Îcrit < Bτ. Then eq. (6) becomes

Îcrit = ηflopBε + (1− ηflop)(Bτ − Îcrit), (37)

(2− ηflop)Îcrit = ηflopBε + (1− ηflop)Bτ, (38)

and Îcrit =
ηflopBε + (1− ηflop)Bτ

2− ηflop
. (39)

Expanding the parameters to elicit π0 yields

Îcrit =
εmem + π0τmem

εflop + 2π0τflop
. (40)

The initial condition of Îcrit < Bτ is in this case equivalent to πmop <

πflop + π0.
In fact, eqs. (34) and (40) form a piecewise continuous function in

π0 around the difference between πmop and πflop:

Îcrit(π0) =


εmem

εflop+π0τflop
if π0 < πmop − πflop

Bτ if π0 = πmop − πflop

εmem+π0τmem
εflop+2π0τflop

if π0 > πmop − πflop

(41)

The limits of both eqs. (34) and (40) as π0 approaches πmop − πflop have
the same value of Bτ, thereby establishing continuity. Furthermore,
observe that Îcrit(0) = Bε and lim

π0→∞ Îcrit(π0) = Bτ/2.

b.2 Critical constant power, π̂crit(I)

Section 5.2 notes that time-balance dominates effective energy-balance
at the critical intensity (§ B.1). We may sometimes attribute this to the
fact of a sufficiently high constant power, π0 > 0. This suggests a nat-
ural question: for what values of π0 will B̂ε(I) > Bτ? The maximum
value at which this condition holds is the critical constant power, π̂crit(I).
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Its value suggests to architects what the maximum π0 would need to
be to see the work-communication trade-offs of § 6.

To determine π̂crit(I), simply impose the condition:

Bτ 6 B̂ε(I) (42)

≡ ηflopBε + (1− ηflop)max (0,Bτ − I) (43)

= ηflop [Bε − max (0,Bτ − I)] + max (0,Bτ − I) . (44)

By its definition (§ 3),

ηflop =
1

1+ π0
πflop

. (45)

Thus,

Bτ 6
Bε − max (0,Bτ − I)

1+ π0
πflop

+ max (0,Bτ − I) , (46)

1+
π0
πflop

6
Bε − max (0,Bτ − I)
Bτ − max (0,Bτ − I)

, (47)

π0 6 πflop

[
Bε − max (0,Bτ − I)
Bτ − max (0,Bτ − I)

− 1

]
. (48)

The right-hand side of eq. (48) defines the critical constant power. After
simplifying it, we arrive at the final result,

π̂crit(I) ≡ πflop ×
Bε −Bτ

min (Bτ, I)
. (49)

Observe that the critical constant power is relative to the power per
flop, πflop. The numerator of the multiplicative factor confirms that crit-
ical constant power only makes sense when energy-balance exceeds
time-balance. The denominator shows that critical constant power de-
pends on the computation, through its intensity. In particular, we are
more likely to see the work-communication trade-offs of § 6 for com-
putations that are highly memory-bound in time (I � Bτ), where a
small intensity will amplify any separation between energy- and time-
balance.
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