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Abstract—We present a new algorithm for computing tensor
decomposition on streaming data that achieves up to 102×
speedup over the state-of-the-art CP-stream algorithm through
lower computational complexity and performance optimization. For
each streaming time slice, our algorithm partitions the factor
matrix rows into those with and without updates and keeps them
in Gram matrix form to significantly reduce the required compu-
tation. We also improve the scalability and performance of the
matricized tensor times Khatri-Rao product (MTTKRP) kernel,
a key performance bottleneck in many tensor decomposition
algorithms, by reducing the synchronization overhead through
the combined use of mutex locks and thread-local memory.

For problems with constraints (e.g., non-negativity), we apply
data blocking and operation fusion to the alternating direc-
tion method of multiplier (ADMM) kernel in the constrained
CP-stream algorithm. By combining this ADMM optimization
with the aforementioned MTTKRP optimization, our improved
algorithm achieves up to 47× speedup over the original. We
evaluate the performance and scalability of our new algorithm
and optimization techniques using a 56-core quad-socket Intel
Xeon system on four representative real-world tensors.

Index Terms—tensor decomposition, streaming, high perfor-
mance, algorithm

I. INTRODUCTION

Sparse tensor decomposition (TD) is a popular method
for analyzing multi-way data in applications such as signal
processing, topic monitoring, and trend analysis [1]. In many
of these areas, data arrives in a streaming fashion over time
(e.g., new updates on social media), and this poses two
significant challenges in using traditional TD algorithms to
analyze the data — the complete data is not available a
priori, and the amount of accumulated data grows linearly
with time. To address these challenges, a number of streaming
TD algorithms have been proposed [2]–[5]. Among these, CP-
stream [2] represents the state-of-the-art in terms of execution
time, fitting error, and scalability on parallel systems. As such,
we use CP-stream as the baseline for comparison against our
work presented in this paper.

First, we analyzed the constrained CP-stream algorithm and
its implementation to identify its key performance bottlenecks.
We determined that (i) the alternating direction method of
multiplier (ADMM) and matricized tensor times Khatri-Rao
product (MTTKRP) kernels together can make up over 99.9%
of the total execution time, and (ii) the time spent in one
kernel may dominate the time spent in the other, depending
on the number of iterations required for convergence for

†These authors were employed by Intel when this research was conducted.

the constrained CP-stream algorithm and the ADMM kernel,
which are in turn influenced by the property of the tensor
being analyzed and the values used to initialize the factor
matrices. Therefore, it is critical that we improve the per
iteration performance of both kernels.

We applied the Roofline model [6] to calculate the arith-
metic intensity for the different computational components of
the ADMM kernel, and determined that every component is
highly memory bandwidth-bound. To address this performance
bottleneck, we block the matrices to increase its reuse in
cache, and fuse the computational components to reduce the
memory traffic that comes from accessing large intermediate
data structures and to reduce the total number of operations.

The MTTKRP kernel suffers from scalability issues due
to thread contention when different threads update the same
factor matrix row. We use a combination of mutex locks
and thread-local memory to minimize thread contention. For
factor matrices with only a few rows, where the probability of
contention is high, we use a thread-local copy of the matrix
to make local updates, and then reduce the results at the end.
We use mutex locks for the remaining modes.

During our study, we discovered that certain real-world
tensors have skewed distribution of non-zero elements across
different time slices, resulting in these elements updating only
a small subset of factor matrix rows. To address this issue,
we partition the factor matrices into two subsets — one with
rows that are updated during MTTKRP and those that are
not. This resulted in a new algorithmic formulation of non-
constrained CP-stream that greatly reduces the number of
required operations by maintaining the factor matrices in Gram
matrix form, and computing over these smaller matrices.

This paper makes two key contributions to improving the
performance of streaming tensor decomposition:
• Optimized constrained CP-stream, where we use Blocked

& Fused ADMM and Hybrid Lock MTTKRP kernels to
improve the performance of the original constrained CP-
stream algorithm. We achieve up to 47× speedup on our
56-core testbed system on four real-world tensors.

• A new algorithm for non-constrained CP-stream, where
we partition the factor matrix into two non-overlapping
subsets of rows and update them independently. These
subsets are stored and computed in Gram matrix form,
which greatly reduces the required computation. Our new
algorithm achieves up to 102× over the original non-
constrained CP-stream algorithm.



II. RELATED WORK

Streaming tensor decomposition is analogous to streaming
matrix factorization, which have application in recommender
systems [7], [8], dictionary learning [9], [10], and subspace
tracking [11]. Some have similar features, such as forgetful-
ness [7] to control the amount of past information to retain.
However, these algorithms are limited to two-way data.

Computing the canonical polyadic decomposition for
streaming tensors was first studied in signal processing [12],
using the proposed PARAFAC-SDT and PARAFAC-RLST al-
gorithms. However, these algorithms make inefficient use of
memory, limiting their use to small tensors. Mardani et al.
proposed a more memory-efficient algorithm called Online-
SGD [5] which uses the popular stochastic gradient descent
(SGD) method to update the non-streaming factor matrices.
This algorithm suffers from the same problem that SGD suffers
from — finding the optimal learning rate is non-trivial. Online-
CP [4] is another method for decomposing streaming tensors.
However, this algorithm has not been adapted to handle sparse
tensors, making it unsuitable for decomposing many real-
world tensors, such as those found on the FROSTT tensor
repository [13].

This is the first study on systematically analyzing and
optimizing the performance bottlenecks of streaming tensor
decomposition algorithms, to the best of our knowledge. There
have been numerous studies [14]–[16] on optimizing sparse
tensor decomposition algorithms in recent years. However,
these studies focus on improving data access through storage
formats and are limited to non-streaming algorithms.

III. BACKGROUND

In this section, we provide a brief overview of CP-stream
and basic tensor notations. For a more in-depth discussion of
tensor algorithms and its applications, we direct the readers to
the survey by Kolda and Bader [17].

A. Tensor notations

Tensors are higher-order generalization of matrices. An N -
dimensional tensor is referred to as having N modes or a
mode-N tensor. The following notations are used in this paper.

1) Scalars are denoted by lower case letters (e. g., a).
2) Vectors are denoted by bold lower case letters (e. g., a).
3) Matrices are denoted by bold capital letters (e. g., A). A

I1 × I2 matrix A can be denoted as A ∈ RI1×I2 .
4) Higher-order tensors are denoted by bold calligraphic

letters (e. g., X ). A mode-N tensor X with dimensions
I1×I2×· · ·×IN can be denoted as X ∈ RI1×I2×···×IN .

5) Matricization is the process of reordering the elements of
a tensor into a matrix. Mode-n matricization of a tensor
X , denoted as X(n), is a In × În matrix, where În =∏

i 6=n In.
6) Slices are sub-tensors that are formed by fixing one

particular index. For example, we can form a time slice
(i.e., mode-N -1 subtensor) by fixing the time index to a
specific value (e.g., 0 for the first time slice) for a mode-
N tensor.

7) Hadamard product, or the element-wise product between
two matrices, is denoted by ~.

8) Khatri-Rao product, or the column-wise Kronecker prod-
uct between two matrices, is denoted by �. Khatri-Rao
product between two matrices A∈ RI1×K and B∈ RI2×K

yields the matrix C∈ RI1I2×K

B. Canonical Polyadic Decomposition

Canonical polyadic decomposition (CPD) is one of the two
most popular TD algorithms in use today, and it approximates
a mode-N tensor as a summation of K rank-1 tensors, where
each rank-1 tensor is formed by the outer product of N vectors.
K is referred to as the rank of the decomposition, and is
typically a small integer value on the order of 10 or 100. TD
is a low-rank approximation method analogous to the truncated
singular value decomposition (SVD) for matrices.

The K vectors for each mode (that are used to form the
rank-1 tensors) make up the columns of the factor matrices,
with one factor matrix for each mode (i.e., N factor matrices).
The nth mode factor matrix is denoted by A(n) ∈ RIn×K . CPD
can be represented by the following optimization problem:

minimize
{A(n)}

1

2

∥∥∥∥∥X(n) − A(n)

(
�

v 6=n
A(v)

)T
∥∥∥∥∥
2

C. CP-stream

The tensor decomposition problem in a streaming setting
can be defined as finding the rank-K CPD of an (N+1)-way
tensor Y ∈ RI1×I2×···×T , in which N -way tensors arrive over
time in T batches. The time T can be potentially unbounded
(i.e., T → ∞). Finding the solution to this problem can be
described by the following optimization problem:

minimize
{A(n)∈RIn×K}, S∈RT×K

1

2

∥∥∥Y − [[A(1), . . . ,A(N),S ]]
∥∥∥2

(1)
where {A(n)} are the factor matrices for the N -way tensors
that are streamed in, and S is the factor matrix that incorporates
the temporal information. The term [[A(1), . . . ,A(N),S ]] is an
abbreviation of the outer-product formulation for approximat-
ing a tensor using its factor matrices, as described above.
Y can equivalently be modeled as a sequence of

N -way tensors, X1, ...,XT , with each Xt modeled by
[[A(1), . . . ,A(N); st ]], where st ∈ RK . This leads to the
following optimization problem:

minimize
{A(n)∈RIn×K}, {st∈RK}

T∑
t=1

1

2

∥∥∥Xt − [[A(1), . . . ,A(N); st]]
∥∥∥2
(2)

With this formulation, an algorithm that estimates the so-
lution by considering one tensor sample Xt at a time can be
defined. We first solve for st which has a closed-form solution
that depends only on factor matrices from the previous time
slice. Once we obtain st, we then update the factor matrices
for the current time slice. Instead of taking into account all
historical data X1, . . . ,Xt, CP-stream adopts the approach
by Vandescapelle et al. [18], and minimizes an approximate



loss by replacing X1, ...,Xt with the existing factorization
[[A(1)

t−1, . . . ,A
(N)
t−1,St−1]], where St−1 ∈ Rt−1×K is the matrix

with rows s1, . . . , st−1.
The reformulated objective can be written as follows:

minimize
A(n)∈C

1

2

∥∥∥Xt − [[A(1)
t , . . . ,A(N)

t ; st]]
∥∥∥2 +

t−1∑
i=1

µt−i

2

∥∥∥[[A(1)
t−1, . . . ,A

(N)
t−1; si]]− [[A(1)

t , . . . ,A(N)
t ; st]]

∥∥∥2
(3)

where µ ∈ [0, 1] is the forgetting factor that downweighs
the importance of historical data. For problems that require
constraints, constraint C can be applied to the factor matri-
ces A(n). Since the objective still requires all historical si,
the CP-stream algorithm further relaxes this requirement by
introducing a Gram matrix containing all previous temporal
information, Gt−1. The overall CP-stream algorithm is de-
scribed in Algorithm 1 and we direct interested readers to [2]
for more extensive details.

Algorithm 1: CP-stream
Input: A,Φ,Ψ

1 for t = 1, . . ., T do
2 st ← least-squares update
3 repeat
4 for n = 1, . . ., N do

5 Φ(n) ←
(

N
~

v 6=n
A(v)>A(v)

)
~
(
µGt−1 + sts

>
t

)
6 Ψ(n) ←MTTKRP

(
Xt, {A(v)}, n

)
+

A(n)
t−1

((
N
~

v 6=n
A(v)>

t−1 A(v)

)
~ µGt−1

)
7 A(n) ← Ψ(n)

(
Φ(n)

)−1

8 end
9 until convergence

10 end

If we wish to apply constraints to Algorithm 1, the ADMM
kernel can be used in line 7 instead to apply constraints to
the factor matrices, such as non-negativity or sparsity. As this
does not have a closed-form solution, ADMM approximates
the solution in an iterative manner [19]. The inner workings
of ADMM is further explained and analyzed in Section IV-A.

IV. PERFORMANCE ANALYSIS AND OPTIMIZATION

In this section, we present our performance analysis of the
constrained CP-stream algorithm, and propose two optimiza-
tions that significantly improve the performance of the ADMM
and MTTKRP kernels.

A. Blocked and Fused ADMM

In the original algorithm, the authors use the alternating
direction method of multiplier (ADMM) [20] to obtain an
approximate solution to the constrained least squares problem.
The ADMM algorithm is shown in Algorithm 2, and the associ-
ated computational and memory access cost for each operation
are shown in Table I. Notice that the expressions (Φ + ρI)
does not change within ADMM, and therefore is pre-computed

outside and not counted (i.e., only the Cholesky operation for
the inverse is counted). The code is parallelized using OpenMP
for most matrix operations in a fine-grained manner (i.e., one
thread is assigned to each element), and parallelized over the
columns for the column-wise norm calculation.

Algorithm 2: ADMM Algorithm
Input: A,Φ,Ψ

1 U← 0
2 ρ = trace(Φ)/K
3 repeat
4 A0 ← A C init
5 Ã

T ← (Φ + ρI)−1 (Ψ + ρ (A + U))T C solve
6 A← ProjC

(
Ã− U

)
C project

7 U← U + A− Ã C update

8 until
∥∥∥A− Ã

∥∥∥2

F
/ ‖A‖2F < ε and ‖A− A0‖2F / ‖U‖

2
F < ε

C error

As it can be seen from Table I, the arithmetic inten-
sity of most operations in ADMM are < 0.125 (assuming
double-precision 8-byte word), making them highly memory
bandwidth-bound, according to the Roofline model [6]. Ad-
ditionally, many of the operations in Algorithm 2 are either
row-wise or element-wise independent. The only exception
is the project operation which involves column-wise norm
calculation.

TABLE I: Compute and memory costs for different ADMM
operations.

Operation Compute (flops) Memory (words)
(Read) + (Write)

init 0 (IK) + (IK)
solve 3IK + 2IK2 (4IK +K2) + (2IK)

project 3IK + IK (4IK) + (2IK)
update 2IK (3IK) + (IK)
error 10IK (4IK) + (0)
Total 19IK + 2IK2 (16IK +K2) + (6IK)

Therefore, we apply the following optimizations to reduce
memory traffic: (i) data blocking: divide the matrices into
blocks of rows, and then parallelize over these blocks using
OpenMP and vectorize the computation within each block,
(ii) operation fusion: fuse matrix operations using registers
to eliminate the load and store of intermediate results, and
(iii) use parallel reduction to calculate the column-wise norm
across the blocks of rows. Our optimized ADMM algorithm
is shown in Algorithm 3.

In this optimized version, we use OpenMP to parallelize
over the row-blocks (i.e., one OpenMP thread is assigned to
one block) in the for loops on line 5 and line 12. Computation
inside the for loop on line 14 are element-wise independent,
so we vectorize the loop to take advantage of data level
parallelism (DLP) and to improve the data access efficiency
(i.e., fewer load instructions). The sequence of computation
inside the inner-most loop (i.e., the init → solve → project
→ update in the repeat loop in Algorithm 2) was rearranged



Algorithm 3: Optimized ADMM Algorithm
Input: A,Φ,Ψ

1 U← 0
2 ρ = trace(Φ)/K
3 pr, pn, dr, dn← 0 C used for checking convergence
4 A0 ← A C init
5 for each row-block B do
6 ÃT

B ← (ΦB + ρIB)−1 (ΨB + ρ (A0,B + UB))
T C

solve
7 AB ← ÃB − UB

8 Cthr ← accum col norm(AB) C per-thread
9 end

10 CG ← all-reduce(Cthr)
11 repeat
12 for each row-block B do
13 AB = ProjC (AB ,CG) C project
14 for each element E in row-block B do
15 register x← AB [E]

16 register y ← x− ÃB [E]
17 register di← UB [E] + y
18 UB [E]← di C update
19 pr ← pr + y ∗ y C

∥∥∥A− Ã
∥∥∥2

F

20 pn← pn+ x ∗ x C ‖A‖2F
21 register p← x− A0,B [E]
22 dr ← dr + p ∗ p C ‖A− A0‖2F
23 dn← dn+ di ∗ di C ‖U‖2F
24 A0,B [E]← x C init
25 ÃB [E]← (ΨB [E] + ρ (x+ di))
26 end
27 Ã

T
B ← (ΦB + ρIB)−1 Ã

T
B C solve

28 AB ← ÃB − UB

29 Cthr ← accum col norm(AB)
30 end
31 CG ← all-reduce(Cthr)
32 reduce(pr, pn, dr, dn) C OpenMP reduction
33 until pr/pn < ε and dr/dn < ε

to bring the update, error, init, and solve operations closer
together so that registers can be used to hold the intermediate
calculations rather than storing them in memory. Note that the
error operation is interleaved with the other operations inside
the inner loop.

This reduces the overall computational cost to 18IK+2IK2

flops (vs. 19IK+2IK2 flops), and data access to 15IK+K2

bytes (vs. 22IK + K2 bytes), which is more than a 30%
reduction in data access. This is not counting the reduction
in memory traffic due to blocking the matrices, which yields
even more benefit.

Note that lines 7 and 8 (and lines 28 and 29) are also fused
such that the each element of Ã − U is stored in a register
and used to calculate the norm (but we do not show this in
Algorithm 3 to keep it concise). Also, we ignore the memory
traffic associated with the per-thread array used to store the
norms, as they generally tend to be very small in comparison
to the matrices.

B. Hybrid Lock Mechanism

The matricized tensor time Khatri-Rao product (MTTKRP)
is used to calculate the Ψ used in the ADMM kernel, and

is another major performance bottleneck in the CP-stream
algorithm (both constrained and non-constrained). In the
baseline CP-stream implementation, MTTKRP is parallelized
using OpenMP in a fine-grained manner, where each thread is
assigned to a set of non-zero elements in the sparse tensor, and
each element updates a factor matrix row. While this allows
near-perfect load balancing, it introduces a race condition
when more than one thread needs to update the same row
in the factor matrix. To overcome this issue, the baseline
implementation utilizes a pool of mutual exclusion (mutex)
locks to serialize the updates.

This method works well when the number of threads is
much smaller than the number of rows in the matrix (i.e.,
tensors with large mode lengths), as the probability of two
threads updating the same row at the same time is relatively
low. However, when one mode has a particularly small length
(e.g., < 100), this method leads to extreme performance
degradation as threads compete for locks.

One prime example of this is in the streaming (time) mode
— since the CP-stream algorithm processes a single time slice
at a time, the factor matrix for the streaming mode always has
only a single row at any given time. This means that every
thread will be attempting to update the same row, causing the
updates to be not only completely serialized, but also adds a
penalty from using a lock.

To mitigate this bottleneck, we use thread-local memory
to accumulate the updates, and then reduce them after every
thread has completed processing its assigned non-zero ele-
ments. This allows every thread to run completely indepen-
dently until the end, at a small cost of an extra reduction
operation at the end.

V. SPCP-STREAM - A NEW ALGORITHM FOR CP-STREAM

In this section, we provide a detailed description for Sparse
CP-stream (spCP-stream) — our new algorithm for calculating
streaming tensor decomposition.

A. Motivation

During our evaluation, we observed that for certain tensors,
the non-zero elements were clustered around specific index
values for some modes. For example, the Flickr dataset [13]
has 113M non-zero elements and the length of mode 2 is
28M . This translates to 113M tags being made on some of
the 28M total available images. Due to the streaming nature
of this data, only a small subset of images are being tagged
at certain times (e.g., images are never tagged again after the
initial tag and upload). This means that for every time slice,
the mode 2 index values for every non-zero elements can be
limited to a small subset of 28M possible index values. This
is illustrated in Figure 1.

To make data access more efficient, we created a new data
structure for storing the factor matrices, where we divide the
factor matrices into two non-overlapping subsets of rows —
one subset with rows that are updated, and the other with rows
that are never updated during MTTKRP — and update the two
subsets individually as required. Propagating this data structure
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Mode 3Fig. 1: Histogram of non-zero elements for mode-2 of the

Flickr dataset at time slice 500. All of the non-zero elements
occupy a small subset of index values. In contrast, the elements
are more evenly distributed among all index values for all other
modes.

to the rest of the algorithm led to a new algorithm that greatly
reduces the computational complexity of the overall algorithm.

B. spCP-stream Notations

Here are additional notations specific to spCP-stream:

1) For a given time slice X t, the set of mode n index values
for every non-zero element is denoted by nz(n).

2) We use A(n)
nz to denote the matrix formed by “gathering”

the rows of the factor matrix A(n) if the row index is in
nz(n). We also denote this by A(n)

nz ← A(n)
[
nz(n)

]
.

3) We use A(n)
z to denote the matrix formed by taking all

remaining rows of A(n). That is, A(n)
z ← A(n)

[
z(n)

]
,

where Z ← {1, . . . , In}, and z(n) ← Z \ nz(n).
4) We use ⊕ to denote forming a new matrix by “gathering”

the rows from A(n)
z and A(n)

nz . That is, A(n)
nz ⊕A(n)

z ≡
A(n)

[
nz(n) ∪ z(n)

]
.

5) Sparse MTTKRP (spMTTKRP) is our new MTTKRP
implementation that operates only over the non-zero rows
(i.e., over A(n)

nz )

C. spCP-stream Algorithm

To fully utilize the benefit of separating the factor matrix
into two subsets of non-zero rows (i.e., A(n)

z and A(n)
nz ),

we need to formulate an end-to-end computation scheme that
operates over these matrices.

If we collapse the inner-most loop in Algorithm 1 (i.e.,
combine lines 5 through 7), then we have

A(n) =
(
MTTKRP

(
Xt, {A(v)}

)
+

A(n)
t−1

((
©∗
v 6=n

A(v)T
t−1 A(v)

)
©∗ µGt−1

))
·((

N

©∗
v 6=n

A(v)T A(v)

)
©∗
(
µGt−1 + sts

T
t

))−1
(4)

We now separate this out to two parts — one for computing
A(n)

nz and the other for computing A(n)
z . For A(n)

z , MTTKRP

makes no contribution, and thus can be eliminated:

A(n)
z = A(n)

z,t−1

((
©∗
v 6=n

A(v)T
t−1 A(v)

)
©∗ µGt−1

)
︸ ︷︷ ︸

Q(n)

·

((
N

©∗
v 6=n

A(v)T A(v)

)
©∗
(
µGt−1 + sts

T
t

))−1
︸ ︷︷ ︸

(Φ(n))
−1

(5)

Simplifying this equation, we end up with:

A(n)
z = A(n)

z,t−1Q(n)
(
Φ(n)

)−1
(6)

As for A(n)
nz , we can equivalently simplify the equation as

follows:

A(n)
nz =

(
spMTTKRP

(
Xt, {A(v)

nz }
)
+ A(n)

nz,t−1Q(n)
)(

Φ(n)
)−1

(7)
where spMTTKRP is our new MTTKRP implementation that
operates over only the non-zero rows. Notice that both Q(n)

and Φ(n) are small K×K Gram matrices, and Φ(n) is positive
definite.

Also, we define:

C(n) = A(n)T A(n) (8)

H(n) = A(n)T
t−1 A(n) (9)

C(n) and H(n) are also K ×K Gram matrices, and can be
written as the sum of the Gram matrices of A(n)

z and A(n)
nz .

For example,

C(n) = A(n)T A(n)

= A(n)T
z A(n)

z︸ ︷︷ ︸
C(n)

z

+A(n)T
nz A(n)

nz︸ ︷︷ ︸
C(n)

nz

(10)

H(n) decomposes in the same way.
Notice that from Equation 6, we have

A(n)T
z A(n)

z =

(
A(n)

z,t−1Q(n)
(
Φ(n)

)−1)T

A(n)
z,t−1Q(n)

(
Φ(n)

)−1
=
(
Φ(n)

)−T
Q(n)T A(n)T

z,t−1A(n)
z,t−1Q(n)

(
Φ(n)

)−1
=
(
Φ(n)

)−T
Q(n)T C(n)

z,t−1Q(n)
(
Φ(n)

)−1
(11)

Putting it all together, we can calculate C(n) (Equation 10)
by adding the results of Equation 11 to the Gram matrix of
the result of Equation 7 (i.e., A(n)T

nz A(n)
nz ).

Similarly, we can calculate H(n) by calculating

H(n)
nz = A(n)T

nz,t−1︸ ︷︷ ︸
from previous time slice

A(n)
nz︸︷︷︸

Equation 7

(12)



H(n)
z = A(n)T

z,t−1A(n)
z

= A(n)T
z,t−1 A(n)

z,t−1Q(n)
(
Φ(n)

)−1
︸ ︷︷ ︸

Equation 6

= C(n)
z,t−1Q(n)

(
Φ(n)

)−1
(13)

Finally, the calculation for Q(n) and Φ(n) reduces to:

Q(n) =

(
©∗
v 6=n

A(v)T
t−1 A(v)

)
©∗ µGt−1

=

(
©∗
v 6=n

H(v)

)
©∗ µGt−1

Φ(n) =

(
N

©∗
v 6=n

A(v)T A(v)

)
©∗
(
µGt−1 + sts

T
t

)
=

(
N

©∗
v 6=n

C(v)

)
©∗
(
µGt−1 + sts

T
t

)
(14)

In conclusion, by maintaining and updating the small K×K
Gram matrices C(n) and H(n) in the inner loop, we can
reduce the amount of computation required for calculating
Q(n), Φ(n). The overall algorithm is shown in Algorithm 4.

D. Pre- and Post- Operations

To take advantage of the new formulation described in the
previous subsection, some additional housekeeping operations
are required. For instance, when a new time slice arrives, it
is necessary to identify the non-zero rows for every mode
in advance. Also, because the inner iteration relies on the
previous time slice’s factor matrices, C(n)

z,t−1 needs to be
computed prior to the inner iteration.

Once the inner iteration reaches convergence for all modes,
we also need to update the full factor matrices A(n) based
on the final A(n)

nz and A(n)
z . However, these newly introduced

operations have minimal impact on the overall execution time,
as their overhead can be amortized by the inner iterations.

E. Convergence Check

At the end of each iteration, the normalized absolute differ-
ence between A(n) and A(n)

t−1 needs to be calculated to check
for convergence. Since spCP-stream eliminates the need to
construct full factor matrices, we also propose a way to check
for convergence using only the Gram matrices C(n) and H(n).

The termination criteria at time step t is determined by
calculating

δt =

N∑
n=1

∥∥∥A(n) − A(n)
t−1

∥∥∥
F∥∥∥A(n)

∥∥∥
F

(15)

and terminating if |δt − δt−1| < ε where ε is some tolerance.
Using basic linear algebra properties, we can compute the

denominator of Equation 15 using C(n) as follows:∥∥∥A(n)
∥∥∥2
F
= tr

(
A(n)T A(n)

)
= tr(C(n)) (16)

Similarly, the numerator of Equation 15 can be computed
as follows:

∥∥∥A(n) − A(n)
t−1

∥∥∥2
F
= tr

((
A(n) − A(n)

t−1

)T (
A(n) − A(n)

t−1

))
= tr

(
A(n)T A(n) − A(n)T A(n)

t−1

− A(n)T
t−1 A(n) + A(n)T

t−1 A(n)
t−1

)
= tr

(
C(n) −H(n)T −H(n) + C(n)

t−1

)
= tr

(
C(n)

)
+ tr

(
C(n)

t−1

)
− 2 tr

(
H(n)

)
(17)

This yields an equivalent convergence check rule using only
the diagonal elements (i.e., trace) of C(n) and H(n).

VI. PERFORMANCE EVALUATION

A. System

For our evaluation, we use a large-memory node from the
University of Oregon’s Talapas high-performance computing
(HPC) cluster. This is a quad-socket Intel E7-4830v4 system
with a total of 56 cores and 512GB of main memory.

B. Datasets and Execution Parameters

Datasets used for our evaluation are shown in Table II.
We selected these datasets from the FROSTT tensor repos-
itory [13] to have varying number non-zero elements, number
of modes, and dimension sizes.

For each dataset, we used a forgetting factor of 0.99 and
convergence tolerances of 10−5 (Patents and Flickr) and 10−6

(Uber and NIPS). Additionally, we used a Frobenius norm
regularization of 10−2 on the streaming mode for stability.
We used tensor decomposition ranks of {16, 32, 64, 128} and
number of OpenMP threads of {1, 7, 14, 28, 56}. Lastly, for
each decomposition run, random values were used to initialize
the factor matrices.

C. Execution Time, Fit Error, and Convergence Property

The execution times presented in the rest of this section are
per iteration time, as the number of iterations to convergence
for each experimental run vary due to random initialization.
We also use the minimum per iteration execution time from 10
trials, as the thread contention in MTTKRP for the baseline
implementation causes a large standard deviation in its ex-
ecution time. However, the minimum is a more conservative
measure of the speedup achieved by our optimized kernels and
algorithm — if we use the average or the median, the speedup
achieved by our work is significantly higher across all datasets,
as our work shows more consistent execution times.

Our work demonstrates similar fit error and convergence
properties as the original CP-stream algorithm. We omit them
here due to page limit, but interested readers can find our
execution log in our repository1.

1the repository will be shared here if the paper is accepted.



Algorithm 4: New Algorithmic Formulation
Input: X1, ...,XT ; forgetting factor µ

1 initialize A(1)
0 , ...,A(N)

0

2 G0 ← 0
3 for t = 1, ..., T do
4 st ← closed form update
5 /* Extract rows of Ct−1 that matches current tensor Xt’s

nonzero rows */
6 for n = 1, ..., N do
7 if t > 1 then
8 nz(n) ← nonzero slices(Xt, n)

9 Cold ← A(n)[nz(n)
t−1\nz(n)]T A(n)[nz(n)

t−1\nz(n)]

10 Cnew ← A(n)[nz(n)\nz(n)
t−1]

T A(n)[nz(n)\nz(n)
t−1]

11 C(n)
z,t−1+ = Cold − Cnew

12 end
13 end
14 repeat
15 δ ← 0
16 for n = 1, ..., N do

17 Q(n) ←
(
©∗
v 6=n

H(v)

)
©∗ µGt−1

18 Φ(n) ←
(

N
©∗
v 6=n

C(v)

)
©∗
(
µGt−1 + stsTt

)
19 /* Solve for non-zero slices */
20 A(n)

nz ←(
spMTTKRP

(
Xt, {A(v)

nz }
)
+ A(n)

nz,t−1Q(n)
)
·(

Φ(n)
)−1

21 C(n)
nz ← A(n)T

nz A(n)
nz

22 H(n)
nz ← A(n)T

nz,t−1A(n)
nz

23 /* Solve for zero slices */
24 H(n)

z ← C(n)
z,t−1Q(n)

(
Φ(n)

)−1

25 C(n)
z ←

(
Φ(n)

)−T Q(n)T C(n)
z,t−1Q(n)

(
Φ(n)

)−1

26 /* Update C and H */
27 C(n) ← C(n)

z + C(n)
nz

28 H(n) ← H(n)
z + H(n)

nz

29 /* Normalize */
30 normalize (C,H)

31 δt =
∑N

n=1

√
tr

(
C(n)−H(n)T−H(n)+C(n)

t−1

)
tr(C(n))

32 end
33 until convergence;
34 A(n) ← A(n)

z ⊕ A(n)
nz ∀ n ∈ {1, . . . , N}

35 Gt = µGt−1 + sts
T
t

36 end

D. Constrained CP-stream

In this subsection, we illustrate and analyze the performance
of our Blocked & Fused ADMM and Hybrid Lock MTTKRP
kernels, and our optimized CP-stream implementations.

1) Blocked & Fused ADMM: Figure 2 compares the
performance of our Blocked & Fused (BF) ADMM to the
baseline ADMM implementation. As previously determined
by our Roofline analysis (Section IV-A), the ADMM kernel
is memory bandwidth-bound. This is why the execution time
stops scaling for both implementations when the number of
threads exceeds 14 for the NIPS dataset — there is already
enough memory requests to saturate the memory bandwidth.
Our cache blocking and operation fusion optimizations, while

TABLE II: Data sets used in our evaluation. The streaming
mode is in bold for each data set.

Data Dimensions # non-zeros

Patents year × terms × terms 3.5B46 × 239k × 239k

Flickr user × image × tag × date 113M320K × 28M × 1.6M × 731

Uber date × hour × lat. × long. 3.3M183 × 24 × 1.1K × 1.7K

NIPS paper × author × word × year 3.1M2.5K × 2.9K × 14K × 7

still memory bandwidth-bound, reduces the overall memory
traffic, leading to as much as 8.1× speedup with 56 threads
at rank-16. We omit the results for rank-64 and rank-128 as
they show a similar trend as rank-16, with speedup peaking at
7.7× and 4.2×, respectively.

The only anomaly occurs with 56 threads at rank-32, where
we see a significantly higher speedup of 12.3×. This is likely
due to our using the minimum execution time combined with
particular poor execution for all 10 trials for the baseline,
which also explains why the execution time goes up from 28
threads to 56 threads.

Figure 3 shows the speedup achieved by our Blocked &
Fused ADMM for three different datasets using 56 threads. We
see a similar trend as before, except with Uber showing lower
speedup — this is due to the factor matrices fitting in cache
(i.e., small dimension sizes for all modes), and as a result,
the data blocking part of the optimization has no impact. The
observed speedup can be mostly attributed to operation fusion.

2) Hybrid Lock MTTKRP: Figure 4 compares the per-
formance our Hybrid Lock (HL) MTTKRP kernel to the
baseline MTTKRP implementation. We observe both signif-
icant speedup and better scalability with increasing number of
threads, since our implementation reduces thread contention.
In contrast, the baseline performs worse with more threads due
to contention. Using 56 threads, we achieve 30.6× and 24.1×
speedup for rank-16 and rank-128 decomposition, respectively.
We omit the remaining ranks (i.e., rank-32 and rank-64), as
they show a similar trend, with speedup peaking at 26.8× and
24.1×, respectively.

Figure 3 shows the speedup achieved by our Hybrid Lock
MTTKRP for three different datasets using 56 threads. We
observe lower speedups at higher ranks — this is due to the
lower probability of contention at higher ranks, since the same
number of contentions will be spread over a longer execution
time. Uber again shows a significantly lower level of speedup
due to factor matrices fitting in cache — updates occur more
quickly in cache, leading to lower wait time during contention.

3) Optimized Constrained CP-stream: Figure 5 shows the
speedup comparison between our optimized constrained CP-
stream implementation (i.e., using both BF ADMM and HL
MTTKRP) against the baseline using 56 threads. The overall
speedup trend mimics those of ADMM and MTTKRP kernels,
and we achieve significant speedup on datasets with moderate
(e.g., NIPS) to large (e.g., Patents) dimension sizes. Even on
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Fig. 2: Comparison of Blocked & Fused ADMM kernel to the baseline on the NIPS dataset.
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Fig. 3: Speedup achieved by our Blocked & Fused ADMM
and Hybrid Lock MTTKRP over the baseline for three datasets
using 56 threads.

extremely small tensors whose factor matrices fit in cache
(e.g., Uber), we achieve at least 3× to 5× speedup.

Note that, depending on the tensor property and initial val-
ues, the number of iterations to convergence for ADMM will
vary. This may lead to ADMM making up a smaller percentage
of the overall execution time compared to MTTKRP, and the
overall speedup may be closer to that of MTTKRP (e.g., 47.0×
for Patents at rank-16), or vice versa.

E. Non-constrained CP-stream

In many real-world problems, applying constraints to the
factor matrices is unnecessary, and the non-constrained CP-
stream can be used (i.e., ADMM is replaced with a di-
rect solver such as Cholesky), as it performs faster than its
constrained counterpart. In this subsection, we present the
performance of our new spCP-stream algorithm, and compare
it against the baseline non-constrained CP-stream, and our op-
timized implementation that uses our Hybrid Lock MTTKRP.

1) Sparse MTTKRP (spMTTKRP): First, we demonstrate
the effectiveness of dividing the factor matrices into two
subsets of non-zero rows (i.e., A(n)

nz ) and zero-rows (i.e., A(n)
z )

on the MTTKRP kernel. Our spMTTKRP kernel achieves as

much as 121.1× speedup against the baseline MTTKRP kernel,
and as much as 6.4× speedup against our own Hybrid Lock
MTTKRP kernel.

Much of this speedup comes from more efficient memory
access, as the accesses are spread over a much smaller memory
footprint (e.g., accessing 10 rows in a 10-row matrix vs.
accessing 10 rows in a 1000-row matrix), leading to fewer
TLB misses and better pre-fetching performance.

However, it should be noted that identifying the non-zero
rows and creating the required data structures do not come
for free. They add an extra overhead to our new formulation,
and needs to be amortized effectively. Therefore, we do not
present any direct comparison between our Sparse MTTKRP
kernel and others. Instead, we present results that compare the
performance of the overall algorithm, including the overhead.

2) spCP-Stream: In this subsection, we present the per-
formance of our new spCP-stream algorithm and compare
it against the baseline and optimized non-constrained CP-
stream implementations. Our optimized implementation uses
our Hybrid Lock MTTKRP. Figure 6 shows the per iteration
execution time for the NIPS dataset.

For rank-16 decomposition, our optimized implementation
achieves 18.8× speedup on 56 threads, whereas our new
algorithmic formulation achieves 31.9× speedup. For rank-
128 decomposition, the optimized implementation and spCP-
stream achieved 10.4× and 12.0×, respectively. The smaller
gap between the two speedups at higher ranks is due to spCP-
stream using Gram matrices — as the rank goes up, the
computation scales exponentially (i.e., K × K), whereas the
original algorithm scales linearly with rank (i.e., In × K).
We omit the remaining ranks, as they show a similar trend to
the rank-16 decomposition, with their speedup sitting between
those of rank-16 and rank-128.

Figure 7 shows how spCP-stream and our optimized imple-
mentation compare to the baseline on the remaining datasets.
First, for the Patents dataset, our algorithms scale well up to 28
threads. However, the baseline execution time increases with
the number of threads due to thread contention in MTTKRP,
leading to 102.2× and 54.2× speedup at 56 threads for spCP-
stream and optimized, respectively.
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Fig. 4: Comparison of Hybrid Lock (HL) MTTKRP kernel over the baseline on the NIPS dataset.

For the Uber dataset, in contrast, the execution time actually
goes up slightly for all three implementations. This is because
the number of non-zero elements and the dimension sizes are
both extremely small, and there is not enough work to keep
the system fully occupied.

The Flickr dataset shows a very different trend. With the
other two datasets, spCP-stream achieves from 1.5× to 2.7×
speedup over our optimized implementation. However, with
the Flickr dataset, this goes up to 5.6× to 17.9×. This is
due to the extremely sparse nature of the second mode of the
Flickr dataset (Section V-A), where approximately 99% of the
rows are zero rows. This causes our row-sparse MTTKRP to
perform significantly better than our Hybrid Lock MTTKRP,
leading to such high speedups for the overall algorithm.
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Fig. 5: Overall speedup for our optimized constrained CP-
stream compared to the baseline using 56 threads.

3) Execution Time Breakdown: Another reason why spCP-
stream performs so well on Flickr lies in how the other compu-
tations are also reduced. Figure 8 shows a breakdown of where
time is spent in each iteration of the three implementations. As
it can be seen, our Hybrid Lock MTTKRP significantly reduces
the time spent in MTTKRP (i.e., baseline vs. Optimized).
However, calculating the Historical information (Line 5 in
Algorithm 1) still takes up a significant amount of time,
as it involves multiple matrix-matrix multiplications between
extremely large factor matrices (e.g., 28M ×K for mode 2).
Since we replace this with Hadamard product between Gram

matrices (i.e., K×K), the computational complexity is greatly
reduced, and spCP-stream achieves significant speedup against
even our own optimized implementation. This behavior should
occur in any tensors with very large dimension sizes.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose spCP-stream, a novel streaming
TD algorithm which lowers the overall computational com-
plexity and yields significant performance speedup against
state-of-the-art CP-stream for non-constrained problems. We
demonstrate its effectiveness on four real-world tensors, where
it outperforms CP-stream by a factor of up to 102×. For
constrained problems, we present optimized CP-stream, which
improves ADMM and MTTKRP to achieve up to 47× speedup.

Despite the better performance, our current spCP-stream
algorithm can only be applied to non-constrained problems
due to its incompatibility with ADMM. In future work, we
will focus on integrating ADMM into spCP-stream to further
improve its performance.
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