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Do we need to design algorithms differently if our goal is to save energy, rather than 
time or space? This article presents a simple and speculative thought experiment that 
suggests when and why the answer could be "yes."

By Jee Whan Choi and Richard W. Vuduc 
DOI: 10.1145/2425676.2425691

I n 1985 at MIT, a brilliant young iconoclast, named Danny Hillis,1 concluded his doctoral 
dissertation with a provocative claim: The design of computer algorithms had gone too far 
in abstracting away the physical realities of a machine; if not corrected, computer science 
theory would become irrelevant to designing new architectures [1]. 

This accusation raises a natural question. What would it mean to design an algorithm 
or write code in a way that incorporates physical costs? Although we learn in a typical 
computer science class to minimize abstract measures related to time and space, the most 

interesting and tangible cost on a mod-
ern computing platform is a very physi-
cal one, namely, energy [2]. When a cell 
phone battery runs out, we have used 
too much energy; when the electricity 
bill is high, we have used too much en-
ergy. What might an energy cost model 
for algorithms look like, and could it 
tell us anything about how to design 
new machines and new algorithms?

Neither of us, the authors, claims 
to know the answer. But perhaps 
we can glean some insight through 

a thought experiment that tries to 
relate time (e.g., seconds), energy 
(e.g., Joules), and power (e.g., Watts = 
Joules/second). Let’s start with an ab-
stract model of an algorithm running 
on a machine and translate the model 
into execution time (see Figure 1); we 
then ask what an energy model might 
look like and try to relate the two. (For 
details, see our technical report [3].)

Suppose an algorithm executes W 
floating-point operations (or “flops” 
for short) and moves Q bytes of data 
between the processor and memory. 
A natural cost model for time is to say 
the machine can perform a flop in tf 
units of time and can move a byte in 
time tm. In the best case, we may over-
lap flops and memory operations, 

How Much (Execution) 
Time and Energy Does 
My Algorithm Cost?

figure 1. an algorithm running on this 
abstract von Neumann architecture 
must explicitly move data between 
main and local memory, and perform 
operations only on data in local memory.
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1 By titling his concluding chapter “New Com-
puter Architectures and Their Relationship 
to Physics, or, Why Computer Science is No 
Good,” W. D. Hillis’ 1985 dissertation boldly 
proclaimed the irrelevance of computer science 
theory to the design of practical machines. 
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the top subplot of Figure 2 suggests 
for a modern consumer-grade GPU. 
We show performance, or W

T  nor-
malized to the GPU’s peak flops per 
second (FLOP/s), as we vary I. If W is 
fixed, then the plot is effectively in-
verse time such that higher is better. 
The solid “roofline” [6] is the model. 
The points are actual measurements 
for a microbenchmark that streams a 
large array while performing I inde-
pendent flops per byte. The dashed 
vertical line indicates the time-bal-
ance point BT, which marks the inten-
sity at which an algorithm transitions 
from being “memory-bound” in time 
(left of BT) to being “compute-bound” 
(right of BT).

A reasonable first hypothesis is 
that an energy cost model will look 
similar. However, we cannot overlap 
energy the way we can with time; we 
must therefore always pay the sum of 
energy for flops and communication. 
In addition, today’s physical systems 
expend energy even when no opera-
tions are performed; we may posit a 
constant energy cost that is, say, lin-
early proportional to the total run-
ning time T. Thus, total energy be-
comes E = Wef + Qem + pconstT, where 
ef is the energy cost (Joules) per flops 
and em the cost to move each byte; 
and pconst is the constant energy per 
unit time, which we will call “con-
stant power.” To reveal the relation-
ship between E and T more directly, 
rewrite E as:

E = Wef (1 + ( B̃E(I)
I ),

where ẽ f = ef + pconst tf ef = ef + pidle tf is the 
effective energy per flops including 
idle energy, and B̃E(I) suitably defined 
is the effective energy balance.

This energy equation is easy to in-
terpret by direct analogy to time: The 
product Wef is the minimum energy 
(including constant energy) needed 
to perform the flops; and B̃E(I)

I  is the 
energy penalty for data movement. 
When B̃E(I) < I, an algorithm expends 
less energy moving data than per-
forming flops; this scenario implies 
a notion of being compute-bound 
versus memory-bound with respect 
to energy, and furthermore yields a 
balance principle for energy. Most 
importantly, this model captures real 

such that the running time is bound-
ed from below by:

T ≥ max (Wtf,Qtm) = Wtf max(1, BT

I ),

where Wtf  is the minimum time to ex-
ecute just the flops, BT ≡ tm

tf
 is the time-

balance of the machine, I ≡ W
Q  is the 

intensity of the algorithm [4]. 
To minimize time, we seek high-

intensity algorithms (large I) and/or 
machines such that BT < I. These de-
siderata express balance principles of 
algorithm design [5].

This simple model captures key 
first-order performance behavior, as 

figure 2. examples of time and energy cost models for algorithms. the model  
appears as a solid line; experimental data for double-precision flops as markers.  
today, time-balance dominates energy-balance (1.0 > 0.79 and 2.1 > 1.1 double-
precision flops per byte). for algorithms and software, this may explain why race-to-
halt saves energy. In the future, this situation may change—if cores become leaner 
and constant energy goes to zero, energy-balance could instead come to dominate 
time-balance. the energy-balance of 2.4 flops per byte when, hypothetically,  
constant power is zero, actually exceeds the time-balance of 1.0 flops per byte.
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figure 3. modeled power (solid lines) appears against measurement (markers) for 
the system of figure 2. distinct intensity regimes show where a program might 
use lower or higher power.
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exercise ignores numerous details of 
the memory hierarchy, communica-
tion costs (latency versus bandwidth), 
scheduling of computation, and oth-
er aspects of data movement such as 
internode communication. There are 
a number of promising approaches 
[9, 10] with broad implications for 
the design of algorithms for single 
processor systems, clusters, and data 
centers. We believe now is an excel-
lent time to revisit algorithms and ar-
chitecture research and ask whether 
a notion of physically constrained co-
design might be fruitful.
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behavior: The bottom two subplots of 
Figure 2 show that this simple energy 
model (solid line) can match mea-
sured energy data (markers).

Even simple models like this one 
have surprising ramifications both 
for algorithms and architectures. For 
example, consider the balance gap 
between time-balance BT and energy- 
balance B̃E = B̃E(I) at the value of I where 
energy for flops and data are equal. 
When these values are equal, time-
efficiency and energy-efficiency are 
essentially the same, implying that 
so-called “race-to-halt” strategies for 
saving energy—by running as fast as 
possible and then shutting down—
will work well [7]. Suppose instead that 
BT < B̃E. Then, energy-efficiency would 
tend to imply time-efficiency but the 
converse would not hold. Designers of 
algorithms and software might then 
choose to focus on optimizing energy 
rather than time. While the current 
literature suggests BT < B̃E should hold 
[8], Figure 2 suggests the opposite on 
today’s systems, B̃E < BT, appears to be 
true instead. The model explains why: 
If we hypothetically set pconst = 0, then 
energy-balance would exceed time-
balance! (Compare the hypothetical 
2.4 flops per byte to the actual 1.0 
flops per byte). That is, with energy-
efficient cores, constant energy and 
constant power mask any balance-
gap effect that would cause energy-ef-
ficiency to dominate time-efficiency. 
This raises a hardware and architec-
tural question, which is to identify or 
change the trajectory of evolution for 
BT andB̃E.

Let’s close by considering two more 
examples. One example concerns sys-
tems’ physics and the other involves 
algorithms.

Regarding system physics, consider 
that time and energy models make it 
possible to reason directly about al-
gorithms and power. Figure 3 shows 
average instantaneous power for the 
preceding model, E

 T, compared to mea-
surements, (observed E)/(observed T). 
There are distinct intensity regimes in 
which an algorithm will require rela-
tively more or less power. For instance, 
memory-bound algorithms (I < BT) need 
more power up to the time-balance 
point, after which power decreases  
to its “ideal” value, namely, when the 

algorithm is dominated by flops. One 
question is whether direct knowledge 
of these regimes might enable smarter 
power throttling.

Regarding algorithms, we believe 
families of algorithms exhibiting 
work-communication trade-offs will 
be among the most interesting to con-
sider. That is, suppose we start with 
the same baseline algorithm that exe-
cutes W flops and moves Q bytes. Next, 
suppose we can decrease communica-
tion by a factor of m > 1 to Q

 m at the cost 
of increasing flops by a factor f > 1 to 
Wf. One can derive general conditions 
on f and m under which we can hope 
for a speedup (decrease in time) and/
or a “greenup” (decrease in energy) 
relative to the baseline. For instance, 
when pconst = 0 a greenup will occur if  
f < 1 + m–1

 m  B̃E

I . If the baseline algo-
rithm was already compute-bound in 
time (i.e., I ≥ BT) and m → ∞ (no com-
munication), this condition becomes  
f < 1 + B̃E

BT
 ; meaning a work-communi-

cation trade-off will save energy only 
if the extra work is bounded by rough-
ly the balance gap.

CONCLUSION
The time, energy, and power mod-
eling exercise in this article is just 
one example of what may be pos-
sible in connecting algorithm attri-
butes directly to machine parameters 
through a cost model that reflects the 
realities of physical machines. This 

Although we learn  
in a typical computer 
science class to 
minimize abstract 
measures related  
to time and space,  
the most interesting 
and tangible cost  
on a modern 
computing platform 
is a very physical one,  
namely, energy.


