
49X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • n o . 3

feature

Do we need to design algorithms differently if our goal is to save energy, rather than
time or space? This article presents a simple and speculative thought experiment that
suggests when and why the answer could be "yes."

By Jee Whan Choi and Richard W. Vuduc
DOI: 10.1145/2425676.2425691

I n 1985 at MIT, a brilliant young iconoclast, named Danny Hillis,1 concluded his doctoral
dissertation with a provocative claim: The design of computer algorithms had gone too far
in abstracting away the physical realities of a machine; if not corrected, computer science
theory would become irrelevant to designing new architectures [1].

This accusation raises a natural question. What would it mean to design an algorithm
or write code in a way that incorporates physical costs? Although we learn in a typical
computer science class to minimize abstract measures related to time and space, the most

interesting and tangible cost on a mod-
ern computing platform is a very physi-
cal one, namely, energy [2]. When a cell
phone battery runs out, we have used
too much energy; when the electricity
bill is high, we have used too much en-
ergy. What might an energy cost model
for algorithms look like, and could it
tell us anything about how to design
new machines and new algorithms?

Neither of us, the authors, claims
to know the answer. But perhaps
we can glean some insight through

a thought experiment that tries to
relate time (e.g., seconds), energy
(e.g., Joules), and power (e.g., Watts =
Joules/second). Let’s start with an ab-
stract model of an algorithm running
on a machine and translate the model
into execution time (see Figure 1); we
then ask what an energy model might
look like and try to relate the two. (For
details, see our technical report [3].)

Suppose an algorithm executes W
floating-point operations (or “flops”
for short) and moves Q bytes of data
between the processor and memory.
A natural cost model for time is to say
the machine can perform a flop in tf
units of time and can move a byte in
time tm. In the best case, we may over-
lap flops and memory operations,

How Much (Execution)
Time and Energy Does
My Algorithm Cost?

figure 1. an algorithm running on this
abstract von Neumann architecture
must explicitly move data between
main and local memory, and perform
operations only on data in local memory.

Main memory

xPU

Local memory

W FLOPs

Q mops

1 By titling his concluding chapter “New Com-
puter Architectures and Their Relationship
to Physics, or, Why Computer Science is No
Good,” W. D. Hillis’ 1985 dissertation boldly
proclaimed the irrelevance of computer science
theory to the design of practical machines.

50

feature

X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • n o . 3

the top subplot of Figure 2 suggests
for a modern consumer-grade GPU.
We show performance, or W

T nor-
malized to the GPU’s peak flops per
second (FLOP/s), as we vary I. If W is
fixed, then the plot is effectively in-
verse time such that higher is better.
The solid “roofline” [6] is the model.
The points are actual measurements
for a microbenchmark that streams a
large array while performing I inde-
pendent flops per byte. The dashed
vertical line indicates the time-bal-
ance point BT, which marks the inten-
sity at which an algorithm transitions
from being “memory-bound” in time
(left of BT) to being “compute-bound”
(right of BT).

A reasonable first hypothesis is
that an energy cost model will look
similar. However, we cannot overlap
energy the way we can with time; we
must therefore always pay the sum of
energy for flops and communication.
In addition, today’s physical systems
expend energy even when no opera-
tions are performed; we may posit a
constant energy cost that is, say, lin-
early proportional to the total run-
ning time T. Thus, total energy be-
comes E = Wef + Qem + pconstT, where
ef is the energy cost (Joules) per flops
and em the cost to move each byte;
and pconst is the constant energy per
unit time, which we will call “con-
stant power.” To reveal the relation-
ship between E and T more directly,
rewrite E as:

E = Wef (1 + (B̃E(I)
I),

where ẽ f = ef + pconst tf ef = ef + pidle tf is the
effective energy per flops including
idle energy, and B̃E(I) suitably defined
is the effective energy balance.

This energy equation is easy to in-
terpret by direct analogy to time: The
product Wef is the minimum energy
(including constant energy) needed
to perform the flops; and B̃E(I)

I is the
energy penalty for data movement.
When B̃E(I) < I, an algorithm expends
less energy moving data than per-
forming flops; this scenario implies
a notion of being compute-bound
versus memory-bound with respect
to energy, and furthermore yields a
balance principle for energy. Most
importantly, this model captures real

such that the running time is bound-
ed from below by:

T ≥ max (Wtf,Qtm) = Wtf max(1, BT

I),

where Wtf is the minimum time to ex-
ecute just the flops, BT ≡ tm

tf
 is the time-

balance of the machine, I ≡ W
Q is the

intensity of the algorithm [4].
To minimize time, we seek high-

intensity algorithms (large I) and/or
machines such that BT < I. These de-
siderata express balance principles of
algorithm design [5].

This simple model captures key
first-order performance behavior, as

figure 2. examples of time and energy cost models for algorithms. the model
appears as a solid line; experimental data for double-precision flops as markers.
today, time-balance dominates energy-balance (1.0 > 0.79 and 2.1 > 1.1 double-
precision flops per byte). for algorithms and software, this may explain why race-to-
halt saves energy. In the future, this situation may change—if cores become leaner
and constant energy goes to zero, energy-balance could instead come to dominate
time-balance. the energy-balance of 2.4 flops per byte when, hypothetically,
constant power is zero, actually exceeds the time-balance of 1.0 flops per byte.

NVIDIA GTX 580

1.0

Peak
= 200 GFLOP/s

�

�

�

�
� � � � � � �

2.4 (const=0)0.79

Peak
= 1.2 GFLOP/J

1/8

1/4

1/2

1

1/8

1/4

1/2

1

Tim
e

Energy

1/4 1/2 1 2 4 8 16

Intensity (FLOP : Byte)

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

�

�

�
� � � � � �

� �

figure 3. modeled power (solid lines) appears against measurement (markers) for
the system of figure 2. distinct intensity regimes show where a program might
use lower or higher power.

NVIDIA GTX 580

�
� �

�

�
�

�
�

�

� �

1.0
2.4 (const=0)0.79

120 W

160 W

220 W

260 W

0

25

50

75

100

125

150

175

200

225

250

275

Pow
er

1/4 1/2 1 2 4 8 16

Intensity (FLOP : Byte)

Po
w

er
 (W

at
ts

)

51X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • n o . 3

exercise ignores numerous details of
the memory hierarchy, communica-
tion costs (latency versus bandwidth),
scheduling of computation, and oth-
er aspects of data movement such as
internode communication. There are
a number of promising approaches
[9, 10] with broad implications for
the design of algorithms for single
processor systems, clusters, and data
centers. We believe now is an excel-
lent time to revisit algorithms and ar-
chitecture research and ask whether
a notion of physically constrained co-
design might be fruitful.

References

[1] Hilis, W. D. The Connection Machine. MIT Press,
Cambridge, 1989.

[2] Esmaeilzadeh, H., Cao, T., yang, X., Blackburn, S.M.,
and McKinley, K.S. looking back and looking forward:
Power, performance, and upheaval. Communications
of the ACM 55, 7 (2012), 105–114.

[3] Choi, J.W. and vuduc, R.W. A roofline model of
energy. Technical Report GT-CSE-2012-01, Georgia
Institute of Technology, Atlanta, GA, USA, 2012.

[4] Kung, H.T. Memory requirements for balanced
computer architectures. Proceedings of the ACM
Int’l. Symp. Computer Architecture (ISCA), (1986).

[5] Czechowski, K., Battaglino, C., Mcclanahan, C.,
Chandramowlishwaran, A., and vuduc, R. Balance
principles for algorithm-architecture co-design.
USEnIX Wkshp. Hot Topics in Parallelism (HotPar),
Usenix Association (2011), 1–5.

[6] Williams, S., Waterman, A., and Patterson, D.
Roofline: An insightful visual performance model
for multicore architectures. Communications of the
ACM 52, 4 (2009), 65.

[7] Awan, M.A. and Petters, S.M. Enhanced Race-
To-Halt: A leakage-Aware Energy Management
Approach for Dynamic Priority Systems. 2011 23rd
Euromicro Conference on Real-Time Systems, IEEE
(2011), 92–101.

[8] Keckler, S.W., Dally, W.J., Khailany, B., Garland,
M., and Glasco, D. GPUs and the Future of Parallel
Computing. IEEE Micro 31, 5 (2011), 7–17.

[9] Bingham, B.D. and Greenstreet, M.R. Computation
with energy-time trade-offs: Models, algorithms and
lower-bounds. 2008 IEEE International Symposium
on Parallel and Distributed Processing with
Applications, (2008), 143–152.

[10] Demmel, J., Gearhart, A., Schwartz, o., and lipschitz,
B. Perfect strong scaling using no additional
energy. Technical Report no. UCB/EECS-2012-126,
University of California, Berkeley, CA, USA, 2012.

biographies

Jee Whan Choi is a fifth year Ph.D. student in the School of
Electrical and Computer Engineering at Georgia Institute
of Technology. His research interests include modeling
for performance and power for multi-core, accelerators
and heterogneous systems. Jee received his B.S. and M.S.
from Georgia Institute of Technology.

Richard (Rich) vuduc is an assistant professor in the
School of Computational Science and Engineering at the
Georgia Institute of Technology. His research lab, The
HPC Garage (visit hpcgarage.org), is interested in high-
performance computing, with an emphasis on parallel
algorithms, performance analysis, and performance
tuning.

© 2013 ACM 1529-4972/13/03 $15.00

behavior: The bottom two subplots of
Figure 2 show that this simple energy
model (solid line) can match mea-
sured energy data (markers).

Even simple models like this one
have surprising ramifications both
for algorithms and architectures. For
example, consider the balance gap
between time-balance BT and energy-
balance B̃E = B̃E(I) at the value of I where
energy for flops and data are equal.
When these values are equal, time-
efficiency and energy-efficiency are
essentially the same, implying that
so-called “race-to-halt” strategies for
saving energy—by running as fast as
possible and then shutting down—
will work well [7]. Suppose instead that
BT < B̃E. Then, energy-efficiency would
tend to imply time-efficiency but the
converse would not hold. Designers of
algorithms and software might then
choose to focus on optimizing energy
rather than time. While the current
literature suggests BT < B̃E should hold
[8], Figure 2 suggests the opposite on
today’s systems, B̃E < BT, appears to be
true instead. The model explains why:
If we hypothetically set pconst = 0, then
energy-balance would exceed time-
balance! (Compare the hypothetical
2.4 flops per byte to the actual 1.0
flops per byte). That is, with energy-
efficient cores, constant energy and
constant power mask any balance-
gap effect that would cause energy-ef-
ficiency to dominate time-efficiency.
This raises a hardware and architec-
tural question, which is to identify or
change the trajectory of evolution for
BT andB̃E.

Let’s close by considering two more
examples. One example concerns sys-
tems’ physics and the other involves
algorithms.

Regarding system physics, consider
that time and energy models make it
possible to reason directly about al-
gorithms and power. Figure 3 shows
average instantaneous power for the
preceding model, E

 T, compared to mea-
surements, (observed E)/(observed T).
There are distinct intensity regimes in
which an algorithm will require rela-
tively more or less power. For instance,
memory-bound algorithms (I < BT) need
more power up to the time-balance
point, after which power decreases
to its “ideal” value, namely, when the

algorithm is dominated by flops. One
question is whether direct knowledge
of these regimes might enable smarter
power throttling.

Regarding algorithms, we believe
families of algorithms exhibiting
work-communication trade-offs will
be among the most interesting to con-
sider. That is, suppose we start with
the same baseline algorithm that exe-
cutes W flops and moves Q bytes. Next,
suppose we can decrease communica-
tion by a factor of m > 1 to Q

 m at the cost
of increasing flops by a factor f > 1 to
Wf. One can derive general conditions
on f and m under which we can hope
for a speedup (decrease in time) and/
or a “greenup” (decrease in energy)
relative to the baseline. For instance,
when pconst = 0 a greenup will occur if
f < 1 + m–1

 m B̃E

I . If the baseline algo-
rithm was already compute-bound in
time (i.e., I ≥ BT) and m → ∞ (no com-
munication), this condition becomes
f < 1 + B̃E

BT
 ; meaning a work-communi-

cation trade-off will save energy only
if the extra work is bounded by rough-
ly the balance gap.

CONCLUSION
The time, energy, and power mod-
eling exercise in this article is just
one example of what may be pos-
sible in connecting algorithm attri-
butes directly to machine parameters
through a cost model that reflects the
realities of physical machines. This

Although we learn
in a typical computer
science class to
minimize abstract
measures related
to time and space,
the most interesting
and tangible cost
on a modern
computing platform
is a very physical one,
namely, energy.

