
A CPU–GPU Hybrid Implementation and Model-Driven
Scheduling of the Fast Multipole Method

Jee Choi

1
, Aparna Chandramowlishwaran

3
, Kamesh Madduri

4
, Richard Vuduc

2

1Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
2Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA

3CSAIL, Massachusetts Institute of Technology, Cambridge, MA
4Computer Science and Engineering, Pennsylvania State University, University Park, PA

ABSTRACT
This paper presents an optimized CPU–GPU hybrid imple-
mentation and a GPU performance model for the kernel-
independent fast multipole method (FMM). We implement
an optimized kernel-independent FMM for GPUs, and com-
bine it with our previous CPU implementation to create
a hybrid CPU+GPU FMM kernel. When compared to an-
other highly optimized GPU implementation, our implemen-
tation achieves as much as a 1.9⇥ speedup. We then extend
our previous lower bound analyses of FMM for CPUs to
include GPUs. This yields a model for predicting the ex-
ecution times of the di↵erent phases of FMM. Using this
information, we estimate the execution times of a set of
static hybrid schedules on a given system, which allows us
to automatically choose the schedule that yields the best
performance. In the best case, we achieve a speedup of
1.5⇥ compared to our GPU-only implementation, despite
the large di↵erence in computational powers of CPUs and
GPUs. We comment on one consequence of having such per-
formance models, which is to enable speculative predictions
about FMM scalability on future systems.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—
Heterogeneous (hybrid) systems ; C.4 [Computer Systems
Organization]: Performance of Systems—Modeling tech-
niques; G.4 [Mathematics of Computing]: Mathemati-
cal Software—Parallel and vector implementations

General Terms
Performance, Experimentation, Algorithms

Keywords
fast multipole method, performance model, GPU, multicore,
hybrid, exascale

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

GPGPU-7, March 01 2014, Salt Lake City, UT, USA

http://dx.doi.org/10.1145/2576779.2576787

Copyright 2014 ACM 978-1-4503-2766-4/14/03 ...$15.00.

1. INTRODUCTION
This paper presents a new hybrid implementation and

a performance model of the fast multipole method, which
is an asymptotically optimal algorithm for approximately
computing pairwise interactions with a guaranteed level of
accuracy [13]. The FMM is among the most important al-
gorithms for a variety of scientific simulations used to study
electromagnetic, fluid, and gravitational phenomena, among
others [5]. Furthermore, it has been hypothesized to be of
increasing importance on exascale systems [27]. Such sys-
tems are likely to include GPU co-processors; therefore, it is
natural to ask how one might exploit GPUs for the FMM.

Contributions and findings. The FMM itself has mul-
tiple phases, each having di↵erent compute and memory
characteristics (section 2). We previously analyzed the two
most expensive phases of FMM: the near field interaction (U
list step), and the far field interaction (V list step) [6]. In
this paper, we extend this analysis for GPUs. More specifi-
cally, we claim two technical contributions in this paper.

(I) We implement a highly optimized kernel-independent
FMM for GPUs. Our implementation improves upon earlier
work [19].1 Specifically, it has GPU implementations of the
upward and downward phases; uses shared memory more ag-
gressively; and uses dynamic thread-to-work mappings that
amortize the cost of kernel overheads on all phases of the
FMM. It performs close to the realistic peak performance
of the given hardware. It also performs at least 1.9⇥ faster
than another highly optimized GPU implementation.

Futhermore, we have combined our GPU implementation
with our earlier CPU version [8] into a hybrid implementa-
tion, where di↵erent phases of the FMM can be assigned to
either the CPU or the GPU for asynchronous execution.

(II) We adapt our previous lower bounds on cache com-
plexity to model the performance of the kernel-independent
FMM on GPUs (section 4). As with our previous CPU
model [6], we can accurately estimate the execution times
of various phases of the FMM. The combined CPU+GPU
model allows us to estimate the execution times of various
static schedules, where we map di↵erent phases to the CPU
and GPU for simultaneous execution, and therefore predict
which schedule will perform the best (section 5). The study
in this paper is admittedly limited to a small number of
hand-picked schedules. However, since our model accurately
predicts the time it takes to do various phases of the FMM
on both CPUs and GPUs, it still allows a comprehensive
exploration of the scheduling space.

1Our source code is publicly available at: https://github.com/

jeewhanchoi/kifmm--hybrid--double-only

One consequence of such a performance model is that it
becomes possible to estimate performance of FMM on hy-
pothetical future systems. Though we do not fully explore
this idea, we o↵er a suggestive illustration in section 6.

2. THE FAST MULTIPOLE METHOD
Given a system of N source particles, with positions given

by {y1, . . . , yN}, and N targets with positions {x1, . . . , xN

},
we wish to compute the N sums,

f(x
i

) =
NX

j=1

K(x
i

, y
i

) · s(y
j

), i = 1, . . . , N (1)

where f(x) is the desired potential at target point x; s(y) is
the density at source point y; and K(x, y) is an interaction
kernel that specifies “the physics” of the problem. For in-
stance, the single-layer Laplace kernel, K(x, y) = 1

4⇡
1

||x�y|| ,
might model electrostatic or gravitational interactions.

Evaluating these sums appears to require O(N2) opera-
tions. The FMM instead computes approximations of all of
these sums in optimal O(N) time with a guaranteed user-
specified accuracy ✏, where the desired accuracy changes the
complexity constant [13]. The FMM is based on two key
ideas:

• organizing the points in a spatial tree; and
• using fast approximate evaluations, in which we com-

pute summaries at each node using a constant number
of tree traversals with constant work per node.

We model and implement the kernel-independent variant
of the FMM, or KIFMM [26]. KIFMM has the same struc-
ture as the classical FMM [13]. Its main advantage is that it
avoids the mathematically challenging analytic expansion of
the kernel, instead requiring only the ability to evaluate the
kernel. This feature of the KIFMM allows one to leverage
our optimizations and techniques and apply them to new
kernels and problems.

Tree construction: Given the input points and a user-
defined parameter q, we construct an octree T (or quad-tree
in 2D) by starting with a single box representing all the
points and recursively subdividing each box if it contains
more than q points. Each box (octant in 3D or quadrant in
2D) becomes a tree node whose children are its immediate
sub-boxes. During construction, we associate with each node
one or more neighbor lists. Each list has bounded constant
length and contains (logical) pointers to a subset of other
tree nodes. These are canonically known as the U , V , W ,
and X lists. For example, every leaf box B has a U list,
U(B), which is the list of all leaves adjacent to B. Figure 1
shows a quad-tree example, where neighborhood list nodes
for B are labeled accordingly.
Tree construction has O(N logN) complexity, and the

O(N) optimality of FMM refers to the evaluation phase (be-
low). However, tree construction is typically a small fraction
of the total time; moreover, many applications build the tree
periodically, thereby enabling amortization of this cost over
several evaluations.
Evaluation: Given the tree T , evaluating the sums con-

sists of six distinct computational phases: there is one phase
for each of the U , V , W , and X lists, as well as upward
(up) and downward (down) phases. These phases involve
traversals of T or subsets of T . Rather than describe each

B

X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W

W

U
U

U U

U

U
U

Figure 1: U , V , W , and X lists of a tree node B for
an adaptive quadtree.

phase in detail, we refer the readers to the following publi-
cations [13,25,26].

There are multiple levels of concurrency during evalua-
tion: across phases (e.g., the upward and U-list phases can
be executed independently), within a phase (e.g., each leaf
box can be evaluated independently during the U-list phase),
and within the per-octant computation (e.g., vectorizing
each direct evaluation).

3. PRIOR STUDIES AND RELATED WORK
There is extensive literature on the FMM and its par-

allelization, from fast shared memory implementations to
highly scalable distributed memory codes, to GPU-based ac-
celerated implementations [2,4,10,12,14–21,24,25]. Within-
node, the current state-of-the-art FMM implementation is
our own prior multicore code [7, 8, 19, 22]. Therefore, we
take this implementation as the baseline CPU code for our
study.

For hybrid-FMM on CPU-GPU systems, Hu et al. [17]
discuss a work partitioning scheme where all computation
on the leaf nodes is done on the GPU and everything else is
handled by the CPU. Moreover, this partitioning scheme is
fixed for all input sizes and desired accuracy. To our knowl-
edge, our paper is the first to discuss a systematic model-
based work division, which may result in optimal scheduling
decisions that run counter to the Hu et al. scheme.

One promising alternative to our scheduling approach is
to use generic task runtimes, such as StarPU [1, 3]. In par-
ticular, adding an accurate performance model for each ar-
chitecture on a heterogeneous system greatly improves load
balancing on StarPU [3]. However, the model we present al-
lows the spatial tree data structure itself to be tuned via q,
which may be outside the scope of a generic task scheduler.
Nevertheless, combining these approaches is a promising av-
enue for future work.

4. GPU MODELING
This section presents a performance model of the FMM

when running on a GPU, building on the analysis method
described in our previous work for CPUs [6].

4.1 Adapting for GPUs
Unfortunately, our earlier model does not directly trans-

late to the GPU case without modification, due to significant
architectural di↵erences. The most important is that the ef-
fective value of the fast memory size parameter, Z, will be
smaller on GPUs due to their relatively smaller caches and
local stores. As a result, data blocking is inherently more
di�cult on GPUs.

To adapt the earlier model, we need to consider the U list,
V list, and Up and Down phases in turn.

First, consider the U list phase. In our previous work,
we modeled the time it takes to do computation (T

comp,u

)
and the times it takes to move data (T

mem,u

) for the U list
computation on CPUs [6]. For our GPU implementation,
optimistically assuming asynchronous execution of compu-
tation and data movement, we use the equation for T

comp,u

to model the total execution time, since the computation
is compute-bound and both the CPU and the GPU do the
same number of floating point operations. That is,

T
u,gpu

=
C

u,gpu

(3b1/3 � 2)3q2

C
peak,gpu

, (2)

where b is the number of leaf boxes, q is the number of
points in each box, C

u,gpu

is a kernel- and implementation-
dependent constant, and C

peak,gpu

is the e↵ective compu-
tational peak of the GPU (section 4.2.2). Basically, we are
taking the total number of floating point operations, as de-
fined by b and q, and dividing it by the system’s expected
performance to get the theoretical execution time, and then
multiplying it by C

u,gpu

to take into account any kernel- and
implementation-dependent factors.

Next, consider the V list phase. In contrast to the U
list, the V list computation is memory-bound and therefore
must be modeled using memory costs. However, we cannot
directly apply the equation used for CPUs to predict time
for GPUs because the CPU model assumes that all of the
translation operators are re-used in the fast memory. GPUs,
unfortunately, do not have enough fast memory to do the
same. Thus, we instead use a data streaming model for the
GPU implementation of V list where all data is assumed to
be coming from the main memory, and that there is little or
no caching. That is,

T
v,gpu

=
C

v,gpu

(3bp3/2)189
�
mem,gpu

, (3)

where p is a parameter related to the user’s desired level of
accuracy, 189 is the maximum number of neighbors in the
V list, C

v,gpu

is a kernel- and implementation-dependent
constant, and �

mem,gpu

is the achievable memory bandwidth
of the GPU (section 4.2.1).

Lastly, consider the Up and Down phases. Like the V list,
these phases are memory-bound and we may therefore use a
data streaming model. Since we did not have a CPU model
to base the GPU model upon, we simply calculate an upper-
bound on data movement based on the data structures used
in our implementation.

These bounds are, in particular,

T
up,gpu

=
C

up,gpu

(4N + 2bf1(p) (f2(p) + 1))
�
mem

, (4)

T
down,gpu

=
C

down,gpu

�
N + 2bf2

1 (p) + 2bf1(p)
�

�
mem

, (5)

where N is the total number of points and f1 and f2 are
some functions of the accuracy, p. C

up,gpu

and C
down,gpu

are
again the kernel- and implementation-dependent factors.

4.2 Estimating effective peak for GPUs
Our goal is to accurately estimate time, and our model

needs a value for peak throughput. Rather than relying
on a vendor’s theoretical peak, we use computation-specific
microbenchmarks to measure a more realistic e↵ective peak
throughput, separately for compute and memory.

4.2.1 Effective peak memory throughput

Our microbenchmark for estimating e↵ective �
mem

is sim-
ilar to the bandwidthTest included in NVIDIA’s software de-
velopment kit. The main di↵erence is that we tune it more
carefully than the SDK version, using standard techniques
and some autotuning [9].

4.2.2 Effective peak compute throughput

Coming up with a realistic peak computation throughput
requires specializing the benchmark to the target computa-
tion of interest.

Consider that for GPUs, theoretical peak assumes that the
maximum number of fused multiply-add (FMA) is being is-
sued every cycle, which accounts for two FLOPs for every
instruction issued. For the U list, the inner-most loop exe-
cutes 3 subtracts, 4 multiply-adds, and a reciprocal square
root. Since only half of our instructions are FMAs, the per-
formance that our FMM implementation can achieve will be
lower than the theoretical peak. Moreover, although GPUs
provide hardware support for computing single-precision re-
ciprocal square root, there is no indication of such hardware
for double-precision, which we need in our GPU implemen-
tation.

Using another highly-tuned microbenchmark, we were able
to deduce that a reciprocal square root in double-precision
has a latency of approximately 14 cycles of non-pipelined
execution, or equivalently, 14 pipelined instructions. There-
fore, we may estimate that it would take approximately
7 + 14 = 21 instructions to execute one iteration of the
inner loop in the U list. Thus, an estimate of e↵ective peak
compute throughput is,

C
peak,gpu

=
11 FLOPs
21 instrs

⇥ freq⇥ proc, (6)

where freq and proc are processor frequency and count, re-
spectively. Note that equation (6) has units of cycles per
second; and that it also optimistically assumes that there is
enough thread-level parallelism to hide all instruction laten-
cies and ignores loop overhead.

4.3 Deriving the constants
Now that we have our model and a way to calculate the

peak throughputs for the GPU, we can derive the constants
to predict the execution time and to see how close to the
peak our implementation gets.

For a given phase, we measure the execution times for
varying values for N , q, and p, and then use linear regres-
sion to derive the constant terms. Table 1 shows our peak
throughput estimates and constants for the di↵erent phases
of FMM on our two systems. We discuss the implications of
the constant values in Section 5.

Tesla M2090 GTX Titan

P
comp

(GFLOP/s) 174.3 392.9

P
mem

(GB/s) 129.4 237.2

C
up,gpu

2.99 4.16

C
u,gpu

1.56 2.09

C
v,gpu

0.95 1.40

C
down,gpu

7.61 6.83

Table 1: Peak throughputs and constants for di↵er-
ent FMM phases on our GPU test platforms.

5. PERFORMANCE ANALYSIS
In this section, we first analyze the performance of the dif-

ferent phases of the FMM based on the performance model
and the constants we derived in the previous section. We
then discuss how closely our model predicts the execution
times of the various phases as well as those of the di↵erent
hand-picked hybrid schedules. We also compare the perfor-
mance of our FMM implementation across di↵erent hard-
ware architectures shown in Table 2. We briefly compare
the performance of our implementation against that of an-
other highly optimized GPU implementation [17]. Finally,
we project our analysis to predict the performance of FMM
on future systems.

Name Type

CPU–1 Intel Xeon X5650 “Westmere-EP”

CPU–2 Intel Xeon E5-2603 “Sandy Bridge-EP”

GPU–1 NVIDIA Tesla M2090 “Fermi”

GPU–2 NVIDIA GTX Titan “Kepler”

Hybrid–1 CPU–1 + GPU–1

Hybrid–2 CPU–2 + GPU–2

Table 2: Experimental testbeds.

We consider two di↵erent particle distributions, namely a
uniform random distribution and an elliptical (non-uniform)
distribution. The uniform case distributes particles uni-
formly within a unit cube (see Figure 2). The elliptical case
distributes particles on the surface on an ellipsoid with an as-
pect ratio of 1:1:4. The former leads to a relatively uniform
(regular) tree, whereas the latter leads to a highly adaptive
(and therefore more irregular) tree.

We use the analytical performance model to estimate the
optimal scheduling of the di↵erent phases of FMM for only
the uniform case, where an analytic model is known. An an-
alytical model for general non-uniform distributions is more
complex and is part of our future work. As such, results
for the elliptical case serve to evaluate our implementation,
rather than the model.

5.1 GPU Constants
The GPU constant values measured and reported in Ta-

ble 1 warrant some comment.
The values of C

u,gpu

and C
v,gpu

are relatively close to the
desired value of 1 on both platforms, indicating that our
implementation is e�cient. The values of C

u,gpu

are slightly

larger than C
v,gpu

, likely due to significant loop overheads
which cannot be hidden for compute-bound kernels. The
value of C

v,gpu

on the Tesla M2090 is slightly below 1. This
observation may reflect a data caching e↵ect in L1 that is
present in Fermi GPUs and not in Kepler GPUs.

The constants for both the U list and V list are smaller on
the Tesla M2090 than on the other platform. This is most
likely due to the fact that Kepler GPUs require a higher
degree of thread-, instruction-, and memory-level parallelism
to fully utilize the system. In both cases, however, variations
are still small enough that predicted times are not severely
a↵ected.

The Up and Down phases have higher constant values
and show a strong dependence on precision on both plat-
forms. Indeed, our GPU implementation for Up and Down
is suboptimal in the following sense. It traverses and pro-
cesses the tree synchronously, level-by-level; going from one
level to the other changes the amount of work logarithmi-
cally, meaning some levels may have less available work than
needed to saturate the GPU. Moreover, at lower precision,
some of the translation matrices involved can be re-used via
the L2 cache. As we will see in the next section, our model
predictions for Up and Down phases are less accurate than
for the U and V lists. However, this e↵ect does not signifi-
cantly impact the accuracy of the overall model because Up
and Down phases only take up a small percentage of the
total execution time.

5.2 Predicting performance and scheduling
The directed acyclic graph (DAG) of Figure 3 reveals the

dependencies between the various phases of FMM.

Up
(leaf)

Up
(non-leaf)

XU

V W

Down
(non-leaf)

Down
(leaf)

GPU CPU

Hybrid1

Hybrid2

Hybrid (elliptical distribution)Hybrid (elliptical distribution)
CPU GPU
up u-list

synchronize + memcpysynchronize + memcpy
v-list x-list
synchronize + memcpysynchronize + memcpy
down w-list
synchronize + memcpysynchronize + memcpy

Figure 3: Directed Acyclic Graph for FMM.

The DAG for the uniform distribution is identical, with
the X and W phases removed. Figure 3 also shows the dis-
tribution of work between CPU and GPU for various hybrid
scheduling strategies, for both uniform and non-uniform dis-
tributions.

For the uniform distribution there are, heuristically, two
scheduling strategies, which we label hybrid1 and hybrid2.
The DAG in the uniform case has two independent paths:
the U list path and the Up ! V list ! Down path, with no
communication between the two paths until the very end.
The hybrid1 scheme runs the compute-intensive U list step
on the GPU and the other data-intensive path on the CPU.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

 0
.0

 0
.5

 1
.0

-1.0

-0.5

 0.0

 0.5

 1.0

x

y

z

(a)

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

 0
.0

 0
.5

 1
.0

-1.0

-0.5

 0.0

 0.5

 1.0

x

y

z

(b)

Figure 2: Distribution of particles inside a unit cube. Left: uniform random distribution. Right: ellipsoidal
distribution with an aspect ratio of 1:1:4.

The hybrid2 scheme reverses these assignments. There is
also an extra cost at the end when the result from the GPU
is sent back to the host over PCIe, which we include in our
overall execution time. Although these are not the only
possible schedules for the given DAG, they are reasonable
heuristics in that U list and V list account for approximately
90% of the overall execution time. Using our CPU and GPU
performance models, we can analytically predict which of
the two schedules will yield the best performance.

Our model accurately predicts execution time, as Fig-
ure 4(a) shows in the uniform case. All errors listed be-
low were taken over a range of values for the total number
of points N , the number of points per leaf box q, and the
accuracy, p. For the GPU-only cases, the model predicts
time with median errors of 7.5% and 6.9% for Tesla M2090
and GTX Titan respectively. For the CPU-only cases, the
median errors are 2.2% and 2.0% for X5650 and E5-2603 re-
spectively. For Hybrid–1 and Hybrid–2 systems, the median
errors were 8.6% and 7.1% respectively for hybrid1 schedul-
ing, and 2.8% and 2.0% respectively for hybrid2 scheduling.
In terms of choosing the best schedule amongst hybrid1, hy-
brid2, CPU–only, and GPU–only for the two hybrid systems,
the model always chose the best schedule on both systems.

We omit performance results for Hybrid–2. Our model
can predict this case, but the results are not interesting due
to a large di↵erence in performance of the two processors:
we use a low-end CPU with a high-end GPU for Hybrid–2.
In particular, the GPU outperforms the CPU by a larger
factor and hybrid implementation is barely, if at all, better
than the GPU-only implementation.

For a non-uniform distribution, there are a larger num-
ber of possible paths from which to choose. First, there
are more ways to schedule the DAG itself, which makes the
search space for the best schedule larger. Secondly, we can
tune the number of points per box, q, which allows us to
vary the execution time for the di↵erent phases of FMM
to achieve maximum overlap. Doing so might improve re-
source utilization. However, we would no longer solely tune
for U list and V list phases, since they may no longer be
the dominant part of the computation. Furthermore, mod-
eling non-uniform distributions in general is a hard problem.
We present one chosen scheduling strategy which works rel-
atively well for the given architecture and implementation.
There is definitely a strong need for a model-driven hybrid

scheduling framework for non-uniform distributions, which
will be part of our future work.

5.3 Performance of CPU vs GPU vs Hybrid
To compare the performance of the FMM on CPU–1 and

GPU–1 systems, for both uniform and elliptical distribu-
tions, see Figure 5. Time is broken down into di↵erent
phases for N = 4 million particles with � set to yield 6 digits
of accuracy. For the uniform case, the majority of the time
is spent in the U list and V list steps. For the elliptical case,
time is more spread out over the di↵erent phases. Neverthe-
less, in both cases the GPU achieves an overall performance
improvement of 1.7⇥ over the CPU.

To see the impact of hybrid scheduling, we vary � and
Figure 4 shows the performance of the three variants. Hy-
brid scheduling performs the best and the improvement over
GPU increases as we move to larger accuracy requirements.

5.4 Comparing to other GPU implementations
The closest “alternative” implementation is Hu et al. [17].

Unfortunately, it is not possible to carry out a fair compar-
ison due to several critical di↵erences.

For instance, we implement the kernel-independent method,
whereas Hu et al. uses the classical one; our implementation
is only in double-precision and for 3, 4, and 6 digits of ac-
curacy, whereas their implementation uses both single- and
double-precision for 4, 8, 12 and 16 digits of accuracy; and
the evaluation platforms di↵er: both e↵orts use Fermi-based
GPUs, but Hu et al. uses a Tesla C2050 with a peak of 515.2
GFLOP/s whereas we use the Tesla M2090 having a peak
of 666.1 GFLOP/s, both of which are “Fermi” GPUs.

Nevertheless, to get a sense of the relative performance,
consider the following comparison. The Hu et al. GPU
implementation takes 1.36 seconds for N = 1048576 and
p = 4, whereas our GPU implementation only takes 0.71
seconds for the same value of N and � = 4, achieving a
near 2⇥ speedup. Although the platforms used di↵er, even
accounting for the 30% di↵erences in hardware computing
power, our implementation is measurably faster.

The Hu et al. study does parallelize tree construction for
the GPU, whereas we perform tree construction on the CPU
only and have excluded it from the results. However, as Hu
et al. note, this cost is very small and can be amortized
over multiple kernel executions [17]. Their approach could

Uniform Elliptical

●

●

●

●

●

●

Best hybrid
Best hybrid

GPU
GPU

CPU

CPU

●

●

●

Best hybrid

GPU

CPU

2

3

4

5

6

3 4 5 6 7 3 4 5 6 7
Accuracy

Ti
m

e

Measured Model

Figure 4: Comparison of run time and modeled time on Hybrid–1 for N = 4M for uniform and elliptical
distributions for varying �.

Upward U-list step V-list step W-list step X-list step Downward

0

2

4

6

8

GPU CPU

Se
co

nd
s

Uniform distribution

0

2

4

6

8

GPU CPU

Se
co

nd
s

Elliptical distribution

Figure 5: Breakdown of running time for a Laplace kernel potential calculation and uniform and elliptical
particle distributions (N = 4M , � = 6, double precision) on CPU–1 and GPU–1.

be simply “dropped in” to our implementation since tree
construction is a distinct preprocessing step.

6. CONCLUSIONS AND DISCUSSION
The main aims of this paper are (i) to develop a well-tuned

CPU+GPU implementation of the KIFMM algorithm, and
then (ii) solve the CPU/GPU work-division problem for this

implementation using a model-driven approach. The model
is primarily analytical, with machine parameters exposed.
However, such a model also has utility beyond scheduling.

In particular, we can consider how future architectures
with di↵erent machine parameters might perform and scale.
As a suggestive example, consider the following back-of-the-
envelope projection that our model makes possible.

2010 2015 2020 2025
0

20

40

60

80

100

Year

T
im

e
(%

)

T
comp

T
mem

(a) CPU

2010 2015 2020 2025
0

20

40

60

80

100

Year

T
im

e
(%

)

T
comp

T
mem

(b) GPU

2010 2015 2020 2025
0

20

40

60

80

100

Year

T
im

e
(%

)

T
comp

T
mem

(c) Hybrid

Figure 6: Projected optimistic run time on extrap-
olated architectures. The problem size N starts at
4 million points in 2010, and is scaled at the same
rate as the cache size Z.

Using the analytic expression for execution time and the
optimal choice of q [6], we can estimate the execution time
on possible future CPU–, GPU–, and hybrid–based exascale
systems, for a problem instance that is large relative to the
last-level cache. For the values of the machine parameters
of these hypothetical systems, suppose we use previously
published values that were based on extrapolating historical
technology trends [23]. For the purpose of the projections,
we use the theoretical throughputs for both compute and
memory, as well as for the fast memory size Z. We also op-
timistically assume implementation-dependent constant val-
ues of 1, hoping that future implementations will be free of
ine�ciencies or overheads. For each technology scaling step,
we compute the expected execution times for U and V on
the CPU, GPU and hybrid systems for a problem size that
also scales with the size of the fast memory Z.

Figure 6 shows the execution time split into computa-
tional (blue) and memory access (red) time for three di↵er-
ent systems namely, (a) CPU-based system, (b) GPU-based
system, and (c) a hybrid CPU-GPU system. We observe
that the crossover point when the memory access time T

mem

matches the compute time T
comp

occurs at di↵erent time
frames for each of these system configurations. This implies
that the more imbalanced the system, the sooner we will
observe the crossover. That is, in a power-constrained fu-
ture [11] where we will only have a limited amount of power
(and therefore performance) to allocate to both compute
and memory, we will need to carefully balance these two pa-
rameters in order to allow FMM to scale further into the
future.

Acknowledgments
This work was supported in part by the National Science
Foundation (NSF) under CAREER award number 0953100
and ACI award number 1253881. Additional support pro-
vided by the U.S. Dept. of Energy (DOE), O�ce of Science,
Advanced Scientific Computing Research through the X-
Stack 1.0 program under award DE-FC02-10ER26006/DE-
SC0004915. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect those of NSF or DOE.

7. REFERENCES
[1] E. Agullo, B. Bramas, O. Coulaud, E. Darve,

M. Messner, and T. Takahashi. Task-Based FMM for
Multicore Architectures. Technical Report
hal-00911856, Inria, 2013.

[2] P. Ajmera, R. Goradia, S. Chandran, and S. Aluru.
Fast, parallel, GPU-based construction of space filling
curves and octrees. In Proc. Symp. Interactive 3D
Graphics (I3D), Redwood City, CA, USA, 2008.
(poster).

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and
Experience, 23(2):187–198, 2011.

[4] L. A. Barba and R. Yokota. How will the fast
multipole method fare in the exascale era? SIAM
News, 46(6), 2013.

[5] J. Board and K. Schulten. The fast multipole
algorithm. Computing in Science and Engineering,
2(1):76–79, January/February 2000.

[6] A. Chandramowlishwaran, J. W. Choi, K. Madduri,
and R. Vuduc. Towards a communication optimal fast
multipole method and its implications for exascale. In
Proc. ACM Symp. Parallel Algorithms and
Architectures (SPAA), Pittsburgh, PA, USA, June
2012. Brief announcement.

[7] A. Chandramowlishwaran, K. Madduri, and R. Vuduc.
Diagnosis, tuning, and redesign for multicore
performance: A case study of the fast multipole
method. In Proc. ACM/IEEE Conf. Supercomputing
(SC), New Orleans, LA, USA, November 2010.

[8] A. Chandramowlishwaran, S. Williams, L. Oliker,
I. Lashuk, G. Biros, and R. Vuduc. Optimizing and
tuning the fast multipole method for state-of-the-art
multicore architectures. In Proc. IEEE Int’l. Parallel
and Distributed Processing Symp. (IPDPS), Atlanta,
GA, USA, April 2010.

[9] J. Choi, R. Vuduc, R. Fowler, and D. Bendard. A
roofline model of energy. In In Proceedings of the 27th
IEEE International Parallel and Distributed
Processing Symposium (IPDPS 13), 2013.

[10] F. A. Cruz, M. G. Knepley, and L. A. Barba.
PetFMM-A dynamically load-balancing parallel fast
multipole library. International Journal for Numerical
Methods in Engineering, 85(4):403–428, Jan. 2011.

[11] K. Czechowski and R. Vuduc. A theoretical framework
for algorithm-architecture co-design. In Parallel
Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, pages 791–802, 2013.

[12] W. Fong and E. Darve. The black-box fast multipole
method. J. Comp. Phys., 228(23):8712–8725,
December 2009.

[13] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. J. Comp. Phys., 73:325–348,
1987.

[14] N. A. Gumerov and R. Duraiswami. Fast multipole
methods on graphics processors. J. Comp. Phys.,
227:8290–8313, 2008.

[15] T. Hamada, T. Narumi, R. Yokota, K. Y. K. Nitadori,
and M. Taiji. 42 TFlops hierarchical n-body
simulations on GPUs with applications in both
astrophysics and turbulence. In Proc. ACM/IEEE
Conf. Supercomputing (SC), Portland, OR, USA,
November 2009.

[16] B. Hariharan and S. Aluru. E�cient parallel
algorithms and software for compressed octrees with
applications to hierarchical methods. Parallel
Computing (ParCo), 31(3–4):311–331, March–April
2005.

[17] Q. Hu, N. A. Gumerov, and R. Duraiswami. Scalable
fast multipole methods on distributed heterogeneous
architectures. In Proc. ACM/IEEE Conf.
Supercomputing (SC), Seattle, WA, USA, November
2011.

[18] J. Kurzak and B. M. Pettitt. Massively parallel
implementation of a fast multipole method for
distributed memory machines. J. Parallel Distrib.
Comput., 65:870–881, July 2005.

[19] I. Lashuk, A. Chandramowlishwaran, H. Langston,
T.-A. Nguyen, R. Sampath, A. Shringarpure,
R. Vuduc, L. Ying, D. Zorin, and G. Biros. A
massively parallel adaptive Fast Multipole Method on

heterogeneous architectures. In Proc. ACM/IEEE
Conf. Supercomputing (SC), Portland, OR, USA,
November 2009. Finalist, Best Paper.

[20] S. Ogata, T. J. Campbell, R. K. Kalia, A. Nakano,
P. Vashishta, and S. Vemparala. Scalable and portable
implementation of the fast multipole method on
parallel computers. Computer Phys. Comm.,
153(3):445–461, July 2003.

[21] J. C. Phillips, J. E. Stone, and K. Schulten. Adapting
a message-driven parallel application to
GPU-accelerated clusters. In Proc. ACM/IEEE Conf.
Supercomputing (SC), Austin, TX, USA, November
2008.

[22] A. Rahimian, I. Lashuk, D. Malhotra,
A. Chandramowlishwaran, L. Moon, R. Sampath,
A. Shringarpure, S. Veerapaneni, J. Vetter, R. Vuduc,
D. Zorin, and G. Biros. Petascale direct numerical
simulation of blood flow on 200k cores and
heterogeneous architectures. In Proc. ACM/IEEE
Conf. Supercomputing (SC), New Orleans, LA, USA,
November 2010.

[23] R. Vuduc and K. Czechowski. What GPU computing
means for high-end systems. IEEE Micro,
July/August 2011.

[24] M. S. Warren and J. K. Salmon. A parallel hashed
oct-tree n-body algorithm. In Proc. ACM/IEEE Conf.
Supercomputing (SC), pages 12–21, Portland, OR,
USA, November 1993.

[25] L. Ying, G. Biros, D. Zorin, and H. Langston. A new
parallel kernel-independent fast multipole method. In
Proc. ACM/IEEE Conf. Supercomputing (SC),
Phoenix, AZ, USA, November 2003.

[26] L. Ying, D. Zorin, and G. Biros. A kernel-independent
adaptive fast multipole method in two and three
dimensions. J. Comp. Phys., 196:591–626, May 2004.

[27] R. Yokota and L. A. Barba. A tuned and scalable fast
multipole method as a preeminent algorithm for
exascale systems. Int. J. High-perf. Comput., 2011.

