
Model-Driven Sparse CP Decomposition for
Higher-Order Tensors

Jiajia Li1, Jee Choi2, Ioakeim Perros1, Jimeng Sun1, Richard Vuduc1
1 Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA

2 IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

Email: jiajiali@gatech.edu

Abstract—Given an input tensor, its CANDECOMP/PARAFAC
decomposition (or CPD) is a low-rank representation. CPDs
are of particular interest in data analysis and mining, espe-
cially when the data tensor is sparse and of higher order
(dimension). This paper focuses on the central bottleneck of a
CPD algorithm, which is evaluating a sequence of matricized
tensor times Khatri-Rao products (MTTKRPs). To speed up
the MTTKRP sequence, we propose a novel, adaptive tensor
memoization algorithm, ADATM. Besides removing redundant
computations within the MTTKRP sequence, which potentially
reduces its overall asymptotic complexity, our technique also
allows a user to make a space-time tradeoff by automatically
tuning algorithmic and machine parameters using a model-driven
framework. Our method improves as the tensor order grows,
making its performance more scalable for higher-order data
problems. We show speedups of up to 8× and 820× on real
sparse data tensors with orders as high as 85 over the SPLATT
package and Tensor Toolbox library respectively; and on a full
CPD algorithm (CP-ALS), ADATM can be up to 8× faster than
state-of-the-art method implemented in SPLATT.

I. INTRODUCTION

A tensor of order N is an N -way array, which can provide a

natural input representation of a multiway dataset. This tensor

is sparse if it consists of mostly zero entries.1 There are several

techniques for analyzing and mining a dataset in the tensor

form [1–8], which have been applied in a variety of domains,

including healthcare [9, 10], natural language processing [11],

machine learning [12, 13], and social network analytics [14],

among others. In some domains, tensor decomposition meth-

ods may be used to compress data [15, 16].

This paper concerns performance enhancement techniques

for one of the most popular such methods, the CANDE-

COMP/PARAFAC decomposition (CPD) [3]. A CPD approx-

imates an input tensor by a sum of component rank-one tensors

for a given number of desired components [4, 9, 10, 17, 18].

(It is analogous to computing a truncated singular value

decomposition (SVD) of a matrix.) For example, analysts

have used the CPD successfully in identifying useful medical

concepts, or phenotypes, from raw electronic health records

(EHR), which can then be used by medical professionals to

facilitate diagnosis and treatment [9, 10]. In this problem

example, given a target rank R, CPD provides the top-R
patient phenotypes, where each rank-one component of the

decomposition corresponds to a phenotype.

1For instance, an I × I × I tensor is sparse if its number of non-zero
elements, m, satisfies m� I3. Indeed, one typically expects m = O(I).

The running time of a typical CPD on an N th-order tensor

is dominated by the evaluation of a sequence of N matri-
cized tensor times Khatri-Rao product (MTTKRP) operations

(§ III) [8, 11, 19, 20]. Prior performance studies have focused

on optimizing a single MTTKRP [8, 11, 19, 20]. By contrast,

we look for ways to improve the entire sequence of N
MTTKRPs, which can lead to a much faster implementation,

especially for the higher-order case (i.e., large N). A similar

idea has been proposed by Phan et al. [17]; however, our

method applies to the sparse (rather than dense) case and

exploits the structure of an MTTKRP sequence to preserve

sparsity and thereby reduce space.

Contributions. We propose a novel, adaptive tensor memo-

ization algorithm, which we refer to as ADATM.2 To perform

a rank-R CPD of an N th-order sparse tensor with m non-

zeros, prior implementations require O(
N (1+ε)mR

)
floating-

point operations (flops), where ε ∈ [0, 1] is an implementation-

and input-dependent parameter [8, 11, 19–21]. By contrast, our

proposed method reduces this flop-complexity to O
(
ÑmR

)
,

where Ñ is usually much less than N (1+ε); furthermore,

the user may control the degree of improvement by trading

increased storage for reduced time (smaller Ñ) (§ V).

Our method has several parameters, such as tensor features

(order, size, non-zero distribution), target rank, and memory

capacity. Thus, we develop a model-driven framework to tune

them. By model-driven, we mean the framework includes a

predictive model for pruning the space candidate implemen-

tations, using a user-selectable strategy to prioritize time or

space concerns. We further accelerate ADATM within a node

by multithreading (§ VI).

ADATM’s MTTKRP sequence outperforms the state-of-the-

art SPLATT [8] and Tensor Toolbox [22] by up to 8× and

820×, respectively, on real sparse tensors with orders as high

as 85. Our predictive model effectively selects an optimal

implementation. Compared to previous work [8, 11, 19, 20],

ADATM scales better as the order (N) grows. For CPD,

ADATM achieves up to 8× speedups over SPLATT (§ VII).

II. BACKGROUND

This section introduces some essential tensor notation. Sev-

eral of its examples and definitions come from the overview

2Read, “Ada-Tee-Em,” as in Ada Lovelace.

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.80

1048

by Kolda and Bader [3]. A list of symbols and notation in this

paper is shown in Table I.

TABLE I
LIST OF SYMBOLS AND NOTATION.

Symbols Description

X ,Y,Y(i),Z(i) Sparse or “semi-sparse” tensors
X(n) Matricized tensor X in mode-n

A,A(i), Ã(i) Dense matrices
ar,br, cr,dr Dense vectors

λ Weight vector

×n Tensor-Times-Matrix multiplication (TTM)
⊗ Kronecker product between two matrices
� Khatri-Rao product between two matrices
∗ Hadamard product between two matrices
�n quasi Tensor-Times-Matrix multiplication (q-TTM)

N Tensor order
I, J,K, L, Ii Tensor mode sizes

m #Nonzeros of the input tensor X
R Approximate tensor rank (usually a small value)

ml #Fibers at the lth-level of a CSF tensor tree

TCP Time of CP-ALS
TM Time of a single MTTKRP

np #Memoized MTTKRPs in an MTTKRP sequence
mo Mode order of a sparse tensor
ni #Saved intermediate tensors from a memoized MTTKRP

s Predicted storage size of ADATM
t Predicted running time of ADATM
S Machine space limit

The order N of an N th-order tensor is sometimes also

referred to the number of modes or dimensions. A first-order

(N = 1) tensor is a vector, which we denote by a boldface

lowercase letter, e.g., v; A second-order (N = 2) tensor

is a matrix, which we denote by a boldface capital letter,

e.g., A. Higher-order tensors (N ≥ 3) are denoted by bold

capital calligraphic letters, e.g., X . A scalar element at position

(i, j, k) of a tensor X is xijk. We show an example of a sparse

third-order tensor, X ∈ R
I×J×K , in figure 1(a).

Many tensor algorithms operate on subsets of a tensor. One

such subset is the mode-n fiber, shown in figure 1(b); it is a

vector extracted by fixing the indices of all modes but mode-

n. For example, the mode-1 fiber of a tensor X is denoted by

the vector f:jk = X (:, j, k), where a colon indicates all indices

of the corresponding mode. A slice, shown in figure 1(c), is a

2-dimensional cross-section (i.e., matrix) of a tensor, extracted

by fixing the indices of all modes but two, e.g S::k = X (:, :, k)
.

A tensor algorithm often reshapes a tensor into an equivalent

matrix, a step referred to as matricization or unfolding. The

mode-n matricization of tensor X , denoted by X(n), arranges

all mode-n fibers to be the columns of a matrix. For example,

mode-1 matricization of a tensor X ∈ R
3×4×5 would result

in a matrix X(1) ∈ R
3×20. (Readers may refer to Kolda and

Bader’s survey for more details [3].)

A. Basic Tensor Operations
In a tensor times matrix multiplication (TTM) in mode-

n, also known as the mode-n product, a tensor X ∈
R

I1×···×In×···×IN is multiplied by a matrix U ∈ R
R×In

.
This operation is denoted by Y = X ×n U, where Y ∈
R

I1×···×In−1×R×In+1×···×IN . In the scalar form, a TTM is

yi1···in−1rin+1···iN =

In∑
in=1

xi1i2···iN urin . (1)

i = 1,…,I

j = 1,…,J k =
 1,

…,K

(a) A third-order sparse
tensor

(b) Mode-1 fibers: f:jk =
X (:, j, k) .

(c) Slices: S::k =
X (:, :, k).

Fig. 1. Slices and fibers of a third-order tensor X ∈ R
I×J×K , where a

colon indicates all indices of a mode.

The Kronecker product of two matrices A ∈ R
I×K and

B ∈ R
J×L is denoted by C = A⊗B, where C ∈ R

(IJ)×(KL).

This operation is defined as

C = A⊗B =

⎡
⎢⎣

a11B a12B . . . a1KB
.
.
.

.

.

.
. . .

.

.

.
aI1B aI2B . . . aIKB

⎤
⎥⎦ . (2)

The Khatri-Rao product is a “matching column-wise”

Kronecker product between two matrices. Given matrices

A ∈ R
I×R and B ∈ R

J×R, their Khatri-Rao product is

denoted by C = A�B where C ∈ R
(IJ)×R, or

C = A�B = [a1 ⊗ b1,a2 ⊗ b2, . . . ,aR ⊗ bR] , (3)

where ar and br, r = 1, . . . , R, are columns of A and B.

The Hadamard product C = A ∗ B is the element-wise

product between two equal-sized matrices A and B.

We introduce a simplifying building block, quasi
tensor times matrix multiplication (q-TTM) through

Hadamard product. Given an (N + 1)th-order tensor

X ∈ R
I1×···×In×···×IN×R and a matrix U ∈ R

In×R, the

q-TTM product in mode-n is denoted by Y = X �n U, where

Y ∈ R
I1×···×In−1×In+1×···×IN×R is an N th-order tensor. In

scalar form, q-TTM is

y(i1, . . . , in−1, in+1, . . . , iN , r)

=

In∑
in=1

x(i1, . . . , in−1, in, in+1, . . . , iN , r)u(in, r). (4)

By fixing indices i1, . . . , in−1, in+1, . . . , iN , a Hadamard

product is taken between each slice X(i1, . . . , in−1, :
, in+1, . . . , iN , :) and the matrix U. Every resulting In × R
matrix is sum-reduced along with mode-n for all in.

The core of the CPD (§ II-C) is the matriced tensor times
Khatri-Rao product (MTTKRP). For an N th-order tensor X
and given matrices A(1), . . . ,A(N), the mode-n MTTKRP is
Ã(n) ← X(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
. (5)

In the variant of CPD this paper considers, the output Ã(n) is

used to update the matrix operand A(n) for the next MTTKRP.

B. Special Properties of Sparse Tensors

There is some additional terminology useful when operating

on sparse tensors. When taking a product, TTM or q-TTM, the

mode-n in which the product is performed is called the product
mode; all other modes (e.g., 1, . . . , n−1, n+1, . . . , N) are the

index modes. A mode is dense if all its non-empty fibers are

dense; otherwise, it is sparse. A tensor is called semi-sparse
if it has one or more dense modes.

A sparse tensor can be efficiently stored in coordinate

(COO) ([3]) or Compressed Sparse Fiber (CSF) format ([23]).

Both COO and CSF only store the non-zero entries and their

indices (in different compressed ways) where tensor product

operations (TTM, q-TTM, MTTKRP) perform on.

1049

Some specific properties exist in sparse tensor-dense matrix

products TTM and q-TTM. First, sparse TTM outputs a semi-

sparse tensor whose product mode is dense and index modes

are unchanged. (The details appear elsewhere [6].) Similarly,

the q-TTM of a semi-sparse tensor and a dense matrix yields

another semi-sparse tensor whose index modes are unchanged

while its product mode disappears.

C. CP Decomposition

The CANDECOMP/PARAFAC Decomposition (CPD) [3]

decomposes a tensor into a sum of component rank-one

tensors. For example, CPD of a fourth-order tensor X ∈
R

I×J×K×L, is approximated as

X ≈ �λ;A,B,C,D� ≡
R∑

r=1

λrar ◦ br ◦ cr ◦ dr, (6)

where R is the canonical rank of tensor X , also the number

of component rank-one tensors. In a low-rank approximation,

R is usually chosen to be a small number less than 100. It is

the outer product of the vectors ar,br, cr,dr that produces

rank-one tensors, and A ∈ R
I×R,B ∈ R

J×R,C ∈ R
K×R,

and D ∈ R
L×R are the factor matrices, each one formed by

taking the corresponding vectors as its columns, i.e., A =
[a1 a2 ... ar] [3]. We take these vectors to be normalized to

have unit magnitude. The vector λ = {λ1, . . . , λr} contains

the factor weights.

III. WHY OPTIMIZE THE MTTKRP SEQUENCE?

The most popular algorithm to compute a CPD is arguably

the alternating least squares method, or CP-ALS [3, 24].

Each iteration of CP-ALS loops over all modes and updates

each mode’s factor matrix while keeping the other factors

constant. This process repeats until user-specified conditions

for convergence or maximum iteration counts are met. An

N th-order CP-ALS algorithm appears in algorithm 1. Line 5

is the mode-n MTTKRP. The combined result of all mode-

{1, . . . , N} MTTKRPs is the N th-order MTTKRP sequence.

Algorithm 1 The N th-order CP-ALS algorithm for a hyper-

cubical tensor.
Input: An Nth-order sparse tensor X ∈ RI×···×I and an integer rank R;
Output: Dense factors A(1), . . . ,A(N), A(i) ∈ RI×R and weights λ;
1: Initialize A(1), . . . ,A(N);
2: do
3: for n = 1, . . . , N do
4: V← A(1)†A(1) ∗ · · ·A(n−1)†A(n−1)∗

A(n+1)†A(n+1) ∗ · · · ∗A(N)†A(N)

5: Ã(n) ← X(n)(A
(N) � · · · �A(n+1)�

A(n−1) � · · · �A(1))
6: A(n) ← Ã(n)V†
7: Normalize columns of A(n) and store the norms as λ
8: end for
9: while Fit ceases to improve or maximum iterations exhausted.

10: Return: �λ,A(1), . . . ,A(N)�;

A. MTTKRP is the performance bottleneck of CP-ALS.

Consider an N th-order sparse hypercubical tensor X ∈
RI×···×I with m nonzeros. The number of flops in one
iteration of CP-ALS (algorithm 1) is approximately

TCP ≈ N(N εmR+NIR2) ≈ NTM , (7)

where TM = O(N εmR) is the time for a single MTTKRP [8,

19, 20, 22]. (The NIR2 term will typically be neglible because

in practice IR � m.) Tensor Toolbox [19, 22] has ε = 1,

while SPLATT [8] and DFacTo [20] have ε ≈ 0 for third-order

sparse tensors and ε ∈ (0, 1) for higher-order sparse tensors.3

The value of ε depends on both the implementation and

sparse tensor features, e.g. mode sizes, non-zero distribution.

MTTKRPs dominate the running time of CP-ALS: We ran CP-

ALS using the state-of-the-art SPLATT library [8] on all of

the tensors in table IV (see § VII) and found that MTTKRP

accounted for 69-99% of the total running time. Therefore,

we focus on optimizing the sequence of MTTKRPs.

B. The time of an MTTKRP sequence grows with tensor order.
Researchers have successfully optimized a single MTTKRP

operation through various methods [8, 11, 19, 20], which

reduces the hidden constant of TM . However, the overall time

TCP still grows with the tensor order since CP-ALS executes

a sequence of N MTTKRPs.
Figure 2 shows the runtime of an MTTKRP sequence using

SPLATT on synthetic, hypercubical, sparse tensors generated

from Tensor Toolbox [22]. The tensor orders increase from

10 to 80, while the mode size (1,000), rank size R (16) and

number of nonzeros (100,000) remain fixed. These synthetic

tensors have ε = 1, thus the runtime of an MTTKRP sequence

increases close to quadratically with N , since each MTTKRP

grows with N linearly per equation (7) and the sequence

performs N MTTKRPs. Others have improved an MTTKRP

sequence by saving large Khatri-Rao product results [17, 25].

In this paper, we propose a new time and space efficient

algorithm to solve this problem.

0

5

10

15

20

25

30

8070605040302010
Tensor order

T
im

e
 (

se
c)

Fig. 2. The runtime of SPLATT sequence on synthetic, sparse tensors.

C. An MTTKRP sequence has arithmetic redundancy.
In the N th-order MTTKRP sequence in algorithm 1, each

mode-n MTTKRP shares all but one factor matrix with the

mode-(n−1) MTTKRP. For example, when factoring a fourth-

order tensor, the mode-1 MTTKRP Ã ← X(1)(D � C � B)

and the mode-2 MTTKRP B̃← X(2)(D�C�Ã) redundantly

compute D and C with tensor X . Theoretically, if we could

save all of the intermediate results from the mode-1 MTTKRP,

we could avoid about 1
2N

2 redundant computations. The

number of redundant computations quadratically increases

with the tensor order, which is not scalable. Our proposed

method seeks to memoize these redundant computations.

3SPLATT and DFacTo improve TM of a third-order sparse tensor from
3mR to 2(m + P)R ≈ O(mR) where P is the number of non-empty
mode-n fibers, P � m. However, this P � m does not apply when N is
large, thus ε ∈ (0, 1) instead.

1050

IV. MTTKRP ALGORITHMS AND TENSOR FORMATS

We introduce two standalone MTTKRP algorithms, which

are the building blocks for our memoization scheme. We also

separately consider two formats for storing the tensor, one for

the sparse case and the other for the semi-sparse case.

A. MTTKRP Algorithms

MTTKRP could operate on the nonzeros of a sparse tensor

X without explicitly matricizing. It also avoids explicit Khatri-

Rao products, thereby saving space. For example, consider the

mode-1 MTTKRP of the fourth-order example in § II-C:

Ã = X(1)(D�C�B), (8)

Smith et al. proposed an MTTKRP algorithm, SPLATT [8],

which factors out the inner multiplication with B and C
thereby reducing the number of flops:

Ã(i, r) =

J∑
j=1

B(j, r)

K∑
k=1

C(k, r)

L∑
l=1

X (i, j, k, l)D(l, r). (9)

We define two types of standalone MTTKRP algorithms

to help clarify our memoization approach. A memoized MT-

TKRP is the traditional MTTKRP computed from scratch using

SPLATT [8] and saving its intermediate results, the semi-sparse

tensors (algorithm 2). A partial MTTKRP is the MTTKRP

computed based on the saved intermediate results from a mem-

oized MTTKRP. It generally takes less time than a memoized

MTTKRP. (See its embedded usage in algorithm 3 and 4 in

§ V.)

Algorithm 2 begins with a TTM, yielding a semi-sparse

tensor Y(1) ∈ R
I×J×K×R, where mode-4 is dense. Then, a

q-TTM is performed on Y(1) with C to generate the second

semi-sparse tensor, Y(2), with a dense mode-3; then a second

q-TTM is performed on Y(2) with B to produce the final result

Ã. In this paper, we consider an MTTKRP as the integration of

the two products TTM and q-TTM. For an arbitrary N th-order

tensor, a memoized MTTKRP has O(N εmR) , ε ∈ [0, 1) flops,

while the number of products is (N − 1).

Algorithm 2 Memoized MTTKRP algorithm using SPLATT.

Input: A fourth-order sparse tensor X ∈ R
I×J×K×L, dense factors B ∈

R
J×R,C ∈ R

K×R, D ∈ R
L×R;

Output: Updated dense factor matrix Ã ∈ RI×R;
� Ã← X(1)(D�C�B)

1: Save Y(1): Y(1) ← X ×4 D
2: Save Y(2): Y(2) = Y(1) 	3 C
3: Ã = Y(2) 	2 B
4: return Ã;

B. CSF and vCSF Formats

Besides the algorithms, we need to specify a data structure

for the sparse tensors. The most commonly used format is the

coordinate (COO) format of figure 3(a). More recently, Smith

et al. proposed a Compressed Sparse Fiber (CSF) format,

which is a hierarchical, fiber-centric format that effectively

extends the compressed sparse row (CSR) format of sparse

matrices to sparse tensors, illustrated in figure 3(b) [23]. CSF

is memory-efficient and generally leads to a faster MTTKRP

compared to COO [8, 23]. Therefore, our tensor memoization

algorithm assumes CSF for storing the input sparse tensor; to

store the intermediate semi-sparse tensors, we use a variant of

CSF, which we call vCSF, shown in figure 3(c).

In CSF, each root-to-leaf path corresponds with a coordinate

tuple of a nonzero entry, where replicated indices at the same

level are compressed to reduce storage. When computing a

sparse tensor-dense matrix product (TTM), the output tensor

Y(1) in algorithm 2 has the same i, j, k indices with X and a

dense mode-l (see § II-B). Thus, when storing a semi-sparse

tensor Y(1), we do not need to store indices of all modes

since i, j, k can be reused from X and dense indices l need

not be stored. We refer to this storage scheme as vCSF, as an

auxiliary format of CSF, storing only the nonzero values of an

intermediate semi-sparse tensor.

i j k l

1 1 1 1 1

1 2 1 1 2

1 2 2 1 3

2 2 1 1 4

2 2 1 2 5

2 2 2 2 6

val

(a) COO (b) CSF

1i

1 2

1

1

1

1 1

2

2

2

2

2 2

1

1

j

k

l

1 2 3 5 64val

1i

1 2

1 1 2

2

2

21

j

k

l
val

(c) vCSF

Fig. 3. A sparse tensor X ∈ R
2×2×2×2 in COO and CSF formats, tensor

Y(1) in vCSF format without storing indices.

V. MEMOIZATION FOR THE MTTKRP SEQUENCE

We present two tensor memoization algorithms for the

MTTKRP sequence. To simplify the presentation, we show

them assuming the fourth-order example of § II-C but have

implemented the general algorithm for N th-order tensors.

A. Two Fourth-Order Tensor Memoization Algorithms

1) A Basic Memoization Scheme: A simple memoized

algorithm appears in algorithm 3, shown for simplicity for the

fourth-order case (N = 4). It saves every intermediate semi-

sparse tensor (Y(1) and Y(2)) generated from the mode-1 MT-

TKRP using the memoized MTTKRP algorithm (algorithm 2)

and then reuses them to speedup subsequent MTTKRPs using

the partial MTTKRP algorithm. Note that the mode-3 MTTKRP

has more flops than the mode-2 one. The mode-4 MTTKRP

cannot reuse any saved intermediates, therefore, it is computed

from scratch using SPLATT [8], which directly operates on

the tensor X and does not save any intermediate tensors.

Figure 4(b) illustrates this algorithm.

.(D C B).X
(1)A~

.(D C .X
(2)B

~
A)~

.(D .X
(3)C

~
A)~B~

. .X
(4)D

~
A)~B~(C

~

D C BXA~

Y(1)

Y(2)

B~ Y(2) A~

C~ Y(1) A~B~

XD~ C~ B~ A~

D C BXA~

Y(2)

B~ Y(2) A~

Z(2)

DXC~ A~B~

D~ Z(2) C~

(a) Traditional 4th-order
 MTTKRP sequence

(b) Simple TM algorithm (c) Optimal TM algorithm

Group 2

Group 1

One
Group

TTM
q-TTM

Fig. 4. Graphical process of the simple and optimal tensor memoization
algorithms. “red circle” represents TTM and “blue block” is q-TTM.

1051

Algorithm 3 A simple tensor memoization algorithm of a

fourth-order sparse MTTKRP sequence.

Input: A fourth-order sparse tensor X ∈ RI×J×K×L, dense initial factors
A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R, D ∈ RL×R;

Output: Updated factors Ã, B̃, C̃, D̃;
� Ã← X(1)(D�C�B).

1: Save Y(1): Y(1) ← X ×4 D;
2: Save Y(2): Y(2) ← Y(1) 	3 C;
3: Ã← Y(2) 	2 B;

� B̃← X(2)(D�C� Ã).

4: Reuse Y(2): B̃← Y(2) 	1 Ã
� C̃← X(3)(D� B̃� Ã).

5: Reuse Y(1): C̃← (Y(1) 	2 B̃) 	1 Ã
� D̃← X(4)(C̃� B̃� Ã).

6: SPLATT: D̃← X(4)(C̃� B̃� Ã)

7: Return: Ã, B̃, C̃, D̃;

2) An Optimal Memoized Scheme: The simple method

of algorithm 3, which memoizes all intermediates from one

MTTKRP in sequence, is not the only approach.

For instance, consider algorithm 4. Whereas algorithm 3

memoizes only the mode-1 MTTKRP, algorithm 4 memo-

izes with respect to the mode-1 and mode-3 MTTKRPs. In

particular, it saves only one intermediate tensor Y(2) during

the mode-1 MTTKRP, which is then reused in the mode-2
MTTKRP; then, during the mode-3 MTTKRP it saves Z(2). To

be able to apply Z(2) during the mode-4 MTTKRP, we need to

permute X , which in our scheme creates another sparse tensor

X̃ ∈ R
K×J×I×L. (It is possible to avoid this extra storage

cost but we do not consider that in this paper to pursue better

performance.) Figure 4(c) illustrates this algorithm.

Algorithm 4 An optimal tensor memoization algorithm of a

fourth-order sparse MTTKRP sequence.

Input: A fourth-order sparse tensor X ∈ RI×J×K×L, dense initial factors
A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R, D ∈ RL×R;

Output: Updated factors Ã, B̃, C̃, D̃;
� Ã← X(1)(D�C�B).

1: Save Y(2): Y(2) ← (X ×4 D) 	3 C;
2: Ã← Y(2) 	2 B;

� B̃← X(2)(D�C� Ã).

3: Reuse Y(2): B̃← Y(2) 	1 Ã
� C̃← X(3)(B̃� Ã�D).

// Permute X to X̃ ∈ R
K×L×I×J .

4: Save Z(2): Z(2) ← (X̃ ×4 B̃) 	3 Ã;
5: C̃← Z(2) 	2 D;

� D̃← X(4)(B̃� Ã� C̃).

6: Reuse Z(2): D̃← Z(2) 	1 C̃
7: Return: Ã, B̃, C̃, D̃;

Algorithm 4 needs 8 products counting both TTM and q-

TTM products, which is one less than algorithm 3. However,

the permuted sparse tensor X̃ takes extra space.

For an N th-order tensor, algorithm 3 only memoizes the

mode-1 MTTKRP, and its total number of products of the MT-

TKRP sequence grows like O(
N2

)
; by contrast, algorithm 4

memoizes more MTTKRPs, reducing the number of products

to O(
N1.5

)
(See § V-B). That is, this reduction is asymptotic

in N . As it happens, this choice of memoization strategies

is optimal under certain conditions. However, it also requires

extra space to store intermediate tensors and the permuted

tensor. Thus, choosing a strategy may require trading space

for time. This motivates our proposed scheme, which tries to

find a time-optimal strategy guided by a user-specified space

limit.

B. Memoization Strategy Analysis

To see how the choice of memoization strategy can lead to

asymptotic reductions in operation count, consider a simplified

analysis for the following problem:

Problem: Find the number of memoized MTTKRPs
that minimizes the total number of products (TTM

and q-TTM) in an N th-order MTTKRP sequence.
Though our experiments involve general sparse tensors, for

this analysis suppose the input tensor X ∈ R
I×···×I is

hypercubical and dense. Since each product may consume

different amounts of flops, we assume an average number of

flops per product that is fixed for a given tensor X . We also

assume each partial MTTKRP reuses as many of the memoized

intermediate tensors as possible.

A producer mode is one that uses a memoized MTTKRP

and produces intermediate tensors, while a consumer mode
uses a partial MTTKRP that consumes these intermediates.

One producer mode and some consumer modes constitute an

MTTKRP group, in which all the consumer modes reuse the

intermediate tensors that the producer mode memoized. Let

the number of producer modes and consumer modes be np

and nc, respectively, where nc = N − np; and let the total

number of products in the N th-order MTTKRP sequence be

nO. Thus, np = 1 and nO = O(
N2

)
in algorithm 3 and

np = 2 and nO = O(
N1.5

)
in algorithm 4.

Lemma 5.1: Given np producer modes, the minimum nO

can be achieved by evenly assigning producer modes to

consumer modes for reuse.

Proof: Consider any assignment of ci consumer modes to

the ith producer mode in group-i, where i = 1, ..., np. Then,

np + nc = np +

np∑
i=1

ci = N. (10)

The products in group-i consists of (N − 1) products in

the one memoized MTTKRP plus the products of ci partial

MTTKRPs. From figure 4(b), the number of products of all ci
consumer modes in group-i is 1 + · · · + ci = ci(ci + 1)/2;

thus the number of products in group-i,

Oi = N − 1 +
ci(ci + 1)

2
. (11)

The total number of products of an MTTKRP sequence is

nO =

np∑
i=1

Oi =
1

2

[np∑
i=1

c2i +

np∑
i=1

ci + 2np(N − 1)

]
. (12)

Substituting equation (10) yields

nO =
1

2

[np∑
i=1

c2i + 2npN +N − 3np

]
. (13)

Since np and N are fixed, minimizing nO is equivalent to

minimizing the sum of squares,
∑np

i=1 c
2
i , subject to the con-

straint equation (10). This elementary optimization problem

has a minimum when c1 = · · · = cnp , by applying the Cauchy-

Schwarz inequality. Therefore, the np producer modes should

be evenly assigned to approximately nc

np
consumer modes for

reuse in order to minimize nO. �
Lemma 5.2: n∗p =

√
N/2 minimizes nO for an N th-order

MTTKRP sequence.

1052

Proof: For simplicity, assume np divides N . Then, by

applying lemma 5.1,
ci = N/np − 1, i = 1, . . . , np. (14)

Substituting equation (14) into equation (13),

nO =
1

2

[
N2

np
+ 2(N − 1)np −N

]
, 1 ≤ np ≤ N

2
, (15)

where the largest possible N
2 is choosing all np by memoizing

every other mode.

By taking the derivative of nO with respect to np, the

minimum occurs at

n∗p =
N√

2(N − 1)
≈

√
N

2
. (16)

The minimum nO is n∗O ≈
√
2N1.5. �

We know nO = N(N+1)/2 when np = 1 and nO = N2/2
when np = N/2. The optimal n∗p achieves the minimum

n∗O = O(
N1.5

)
, which is asymptotically better especially

for higher-order tensors. Lemma 5.2 shows that even if we

have infinite storage space to memoize all N/2 MTTKRPs,

that would not actually minimize the number of products.

Intuitively, even though consumer modes benefit from the

saved intermediate tensors, the memoized MTTKRP itself

consumes (N − 1) operations. This analysis shows there is

an optimal balance.

Given an input tensor, we first calculate the optimal number

of memoized MTTKRPs based on these lemmas, and then

design our adaptive tensor memoization algorithm (ADATM)

such as algorithm 4 for fourth-order tensors. As we assumed,

this optimal np is calculated on dense, hypercubical tensors, it

is not accurate for diverse sparse tensors. In § VI, we construct

a model-driven framework to predict the optimal parameters

considering input tensor features and storage efficiency.

VI. ADATM: ADAPTIVE TENSOR MEMOIZATION

Based on the discussion of § V, we are motivated to develop

a framework to choose an optimal memoization strategy. This

section explains our approach, which we refer to as the

adaptive tensor memoization framework, ADATM.

A. Parameter Selection

The memoized algorithm has several natural parameters,

which can be tuned to trade storage for time:

1) np: The number of producer modes (or memoized

MTTKRPs). Lemma 5.2 shows that, in theory, there exists

an optimal choice for np; for hypercubical dense tensors,

n∗p =
√
N/2. Therefore, our adaptive framework heuristically

considers all np ∈ {1, . . . ,
√

N/2}. (In our experiments, we

find that the optimal np is always smaller than n∗p.)

2) mo: The mode order of a sparse tensor. As the dis-

cussion of algorithm 4 suggests, one may choose the order

of modes for each memoized MTTKRP. The two memoized

MTTKRPs in algorithm 4 are X ∈ R
I×J×K×L and X̃ ∈

R
K×L×I×J , with different mode orders in each case. The new

X̃ ∈ R
K×L×I×J is created that mode-4 MTTKRP is able to

reuse the memoized semi-sparse tensor Z(2) ∈ R
K×L×R. In

fact, X̂ ∈ R
K×L×J×I can also generate the same Z(2), so we

heuristically choose to contract long modes first, as originally

suggested in the SPLATT work [8]. Thus, if J > I , we prefer

X̃ ∈ R
K×L×I×J .

3) ni: The number of intermediate semi-sparse tensors

saved from each memoized MTTKRP. For each memoized

MTTKRP, the choice of ni allows us to trade space for time.

The range of ni is {1, . . . , N/np − 1}.
For any choice of preceding parameters, we have a model

that estimates the storage s(np,mo, ni) in bytes and time

t(np,mo, ni) in flops (see below). This capability is what

enables us to quickly search the parameter space. Besides,

armed with this model, we are able to construct a model-driven

framework to find good values of these parameters.

B. A Model-Driven Framework

Our model-driven framework tunes the parameters

(np,mo, ni) and then selects an ADATM implementation, as

illustrated in figure 5. The inputs are the order N of a sparse

tensor, its number of nonzeros m, and the target rank R.

The user may specify a memory limit and preferred strategy,

e.g., maximize performance or minimize storage by a certain

degree. The framework considers a large set of configurations,

then uses a predictive model to estimate each configuration’s

storage and time and prune the candidates that, for instance,

do not meet the memory limit.

M
e

m
o

ry

Li
m

it

C
o

n
fi

g
s

Tensor Order

Rank

Nonzero Dist

S
tr

a
te

g
y

AdaTM

Predictive

Model
P

re
d

ic
te

d

C
o

n
fi

g
s

C
n

a
d

id
a

te

C
o

n
fi

g
s

<np, mo, ni>

Trade-off

<np, mo, ni, s, t>

Fig. 5. The model-driven framework.

C. Predictive Model

The input sparse tensor is stored in the standard coordinate

format, we predict the space s as the sum of np sparse tensors

in CSF format and np×ni semi-sparse tensors in vCSF format

both under the mode order mo. The time t is predicted by

adding the flops of all products, TTMs and q-TTMs. The model

for t need not be accurate in an absolute sense; rather, it need

only be accurate enough to produce a correct relative ranking.

We show the formulas used for the estimates of s and

t in table II. The number of fibers at the lth-level of a

CSF tree is ml for l = 1, . . . , N in figure 3(b), where

m1 ≤ · · · ≤ mN = m. (See [23] for details.) We assume the

sparse and semi-sparse tensors in evaluating TTM and q-TTM

products are both in order-N and have m nonzeros. And since

a CSF tensor is stored hierarchically, mCSF = 16
∑N

l=1 ml.

In q-TTM, the semi-sparse tensor in vCSF format only stores

nonzero values, 8m bytes. One MTTKRP group consists of one

memoized MTTKRP and (N/np − 1) partial MTTKRPs. The

memoized MTTKRP takes 2
∑N

l=2 mlR = O(N εmR) time,

ε ∈ [0, 1), since ml ≤ m, when l < N . The partial MTTKRPs

in the same group, adhered to this memoized MTTKRP, have

different nonzeros for each semi-sparse tensor. Finally, we

1053

add all np MTTKRP groups up and get the time and space

of ADATM algorithm for an MTTKRP sequence. When using

SPLATT [8] to compute an MTTKRP sequence, the space is

smaller than ADATM with the price of slower execution. From

this table we get

s =

np∑
i=1

⎛
⎜⎜⎝mi

CSF + 8

N
np∑

l= N
np
−ni+1

mlR

⎞
⎟⎟⎠ (17)

t = 2

np∑
i=1

⎛
⎜⎝ N∑

l=2

mlR+

N
np
−1∑

l=1

l+1∑
j=2

mj

⎞
⎟⎠R � 2ÑmR. (18)

D. Strategy Guided Trade-off

Having predicted time and space, the framework searches

the implementation under two strategy options: performance-
essential, for the maximum performance; space-efficient, for

the close-to-maximum performance but saving more space.

In particular, for space-efficient strategy ADATM chooses the

configuration with the smallest predicted space while having

predicted performance no worse than some fraction of the

optimal performance of all candidate configurations. (Our

experiments use a fraction of 90%.)

E. Parallelization

Two parallel strategies are employed in ADATM: paralleliz-

ing among one mode and among multiple modes. Multiple-

mode parallelism becomes possible because a partial MTTKRP

can be parallelized among all the fibers of the saved inter-

mediate tensors. For lower-order tensors with long modes,

this strategy may not be attractive because parallelizing only

one mode can expose enough parallelism for relatively small

numbers of cores, as for current multi-core architectures.

Since multiple-mode parallelism is finer-grained than single-

mode parallelism, for higher-order tensors with short modes,

this strategy has performance advantages. Additionally, it

would most likely map better to manycore co-processors (e.g.,

NVIDIA GPUs, Intel Xeon Phi), though we have not explored

this possibility in this paper.

VII. EXPERIMENTS AND ANALYSES

Our experimental evaluation considers (a) reporting the

speedup of ADATM over the state-of-the-art SPLATT and

Tensor Toolbox libraries; (b) analyzing the needed storage to

obtain this speedup; (c) evaluating the space-time tradeoff to

choose the optimal np; (d) assessing thread scalability and

dimension scalability; and (e) verifying our model. Lastly, we

apply our framework to CPD and show its performance.

A. Data Sets and Platforms

This evaluation uses the two platforms shown in table III.

We mainly show the results on the Xeon-based system because

of its larger memory size and more cores, while the Core-

based system is used to verify the portability of our model.

All computations are performed in double-precision and the

rank R is set to 16.

TABLE III
EXPERIMENTAL PLATFORMS CONFIGURATION

Intel Intel
Parameters Xeon E7-4820 Core i7-4770K

Microarchitecture Westmere Haswell
Frequency 2.0 GHz 3.5 GHz

of physical cores 16 4

Memory size 512 GiB 32 GiB
Memory bandwidth 34.2 GB/s 25.6 GB/s

Compiler gcc 4.4.7 gcc 4.7.3

We use two types of data. The first are third-order sparse

tensors from real applications including Never Ending Lan-

guage Learning (NELL) project [26] (“nell1” and “nell2”

with noun-verb-noun) and data crawled from tagging sys-

tems [27] (“deli” with user-item-tag). (Refer FROSTT [28],

the Formidable Repository of Open Sparse Tensors and Tools,

for more details.) The second are higher-order, hyper-sparse

tensors constructed from Electronic Health Records (EHR),

with orders as high as 85. (In domains other than data

analysis, constructing higher-order tensors to do low-rank

approximation has been extensively used to achieve good data

compression [15, 16].) Additional details appear in table IV.

TABLE IV
DESCRIPTION OF SPARSE TENSORS.

Dataset Order Max Mode Size NNZ Density

nell2 3 30K 77M 1.3e-05
nell1 3 25M 144M 3.1e-13
deli 3 17M 140M 6.1e-12

ehr36 36 19 11K 4.7e-26
ehr71 71 21 221K 1.4e-55
ehr85 85 21 920K 7.9e-68

B. Performance

We test the speedups of ADATM over SPLATT [29]

and Tensor Toolbox libraries [22] for an MTTKRP se-

quence in figure 6.4 SPLATT v1.1.1 is tested under

“SPLATT CSF TWOMODE” mode, which is usually the best

case, without preprocessing nor tiling 5 , and Tensor Toolbox

v2.6 is tested in MATLAB R2014a environment. ADATM

achieves a speedup up to 1.7× for the third-order tensors

and up to 8.0× for the higher-order tensors compared to the

best parallel performance of SPLATT. The higher speedups

on higher-order tensors in figure 6(a) show the advantage of

ADATM with respect to the tensor order. Tensor deli merely

show speedup since ADATM in mode-2 has worse thread-

ing scalability than SPLATT. Comparing to Tensor Toolbox,

ADATM obtains 93−820× speedups, because Tensor Toolbox

uses COO format and a less efficient and sequential MTTKRP

algorithm. Tensor nell2 achieves an even higher speedup than

higher-order tensors in figure 6(b) because of its best threading

scalability among all tensors. (Its sequential speedup over

Tensor Toolbox (58×) is much less than that of higher-order

tensors (325−617×).) We mainly use SPLATT to evaluate our

algorithm below.

4We show speedups because the running time of the MTTKRP sequence
varies a lot on these tensors.

5Cache tiling is beneficial cooperatively with tensor reordering in [8], which
requires expensive pre-processing.

1054

TABLE II
THE NUMBER OF FLOPS AND STORAGE SIZE OF PRODUCTS AND ALGORITHMS.

Algorithms #Flops Storage Size (Bytes)

Product
TTM 2mR mCSF

q-TTM 2mR 8m

One MTTKRP group
Memoized MTTKRP 2

∑N
l=2 mlR mCSF + 8

∑ N
np

l= N
np
−ni+1

mlR

Partial MTTKRPs 2
∑ N

np
−1

l=1

∑l+1
j=2 mjR -

MTTKRP sequence
ADATM 2

∑np

i=1

(∑N
l=2 mlR+

∑ N
np
−1

l=1

∑l+1
j=2 mj

)
R

∑np

i=1

(
mi

CSF + 8
∑ N

np

l= N
np
−ni+1

mlR

)
SPLATT [8] 2NmR mCSF

Indices and values use “uint64 t” and “double” respectively. ml is the number of fibers at the lth-level of a CSF tree in figure 3(b), mCSF = 16
∑N

l=1 ml.

0
1
2
3
4
5
6
7
8

ehr85ehr71ehr36delinell1nell2

S
p

e
e

d
u

p

Sparse Tensors

0

200

400

600

800

1000

ehr85ehr71ehr36delinell1nell2

S
p

e
e

d
u

p

Sparse Tensors

(a) SPLATT (b) Tensor Toolbox
Fig. 6. Speedup of ADATM over SPLATT and Tensor Toolbox.

C. Analysis

1) Storage: Table V shows the needed storage for all

tensors, when achieving the best performance in figure 6.

Traditional software (e.g. Tensor Toolbox) uses COO format,

while SPLATT proposed the more efficient CSF format. Since

we use “SPLATT CSF TWOMODE” mode for good SPLATT

performance, two CSF tensors are created (refer to [23] for de-

tails). Thus, some tensors in CSF format need more space than

in COO format. ADATM’s space is shown as “CSF+vCSF” by

summing the space of CSF format for sparse tensors and vCSF

format for semi-sparse tensors. We calculate the ratios of the

ADATM’s space to COO and CSF respectively in the right-

most two columns. ADATM uses 102%-411% space of CSF

and 78%-265% of COO, while achieving up to 8× speedup in

figure 6. We also calculated the space for tensor nell2 using the

“avoid duplicated computation” method in [25], which stores

the large dense matrices generated from Khatri-Rao product

chain, 77952 MBytes extra space is needed. This is much

larger than the storage size of ADATM (2581 MBytes). When

ADATM is guided by “space-efficient” strategy, we can save

some space without harming much performance.

TABLE V
STORAGE SIZE OF SPARSE TENSORS.

Storage Size (MBytes) Ratios

Dataset COO CSF CSF+vCSF /CSF /COO

nell2 2290 2540 2581 102% 113%
nell1 4280 6430 8510 132% 199%
deli 4180 5570 11090 199% 265%

ehr36 3.04 1.94 7.97 411% 262%
ehr71 121 62 205 333% 169%
ehr85 604 200 470 236% 78%

2) Choosing np: Theoretic optimal n∗p = 7 is calculated

from lemma 5.2 for tensor ehr85, figure 7 shows the relation

between time and space for np in the range [1, 7]. np = 0
is the time and space of SPLATT. ADATM gets the shortest

execution time on np = 2, when np > 2 the running time of

ADATM increases as well as its space. Because of this relation,

ADATM can adapt the output configuration according to user-

defined tradeoff strategy. Though the space on np = 2 is 236%

of SPLATT’s, ADATM achieves 6.4× speedup.

0

2

4

6

8

10 space

time

76543210

T
im

e
 (

se
c)

 o
r

S
p

a
ce

 (
G

B
yt

e
s)

np

Fig. 7. Time and space relation for ehr85.

3) Scalability: We analyze thread scalability and dimension

scalability. Figure 8 shows the thread scalability of ADATM

and SPLATT on tensors nell2 and ehr85. The numbers above

the bars are the speedup of ADATM over SPLATT when using

the same number of threads. ADATM and SPLATT both obtain

good scalability on nell2. However, SPLATT doesn’t scale at

all on ehr85, while ADATM gets the highest performance on

4 threads. The speedups in the two figures mainly increase

with growing thread numbers, showing ADATM has better

scalability using multiple-mode parallelism. Similar behavior

is also observed from the other tensors, demonstrating that

the thread scalability of higher-order tensors need further

improvement.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SPLATTAdaTM

168421
Number of threads

T
im

e
 (

se
c)

1.50x

1.34x

1.51x
1.54x

1.73x

0

3

6

9

12

15

SPLATTAdaTM

168421
Number of threads

T
im

e
 (

se
c)

6.46x 7.50x 8.42x
9.25x

6.68x

(a) nell2 (b) ehr85
Fig. 8. Multithreading scalability of ADATM and SPLATT on nell2 and ehr85.

To better evaluate the dimension scalability, we use the

1055

method from [30] in Tensor Toolbox to create synthetic higher-

order sparse tensors. We generate eight sparse hypercubical

tensors from 10th to 80th-order, all with 100,000 nonzeros

and equal mode size 1000. The running time of ADATM and

SPLATT is shown in figure 9. As tensor order grows, SPLATT’s

time is increasing much faster than ADATM’s time, which

verifies ADATM’s good speedup on higher-order tensors.

0

5

10

15

20

25

30
SPLATT

AdaTM

80d70d60d50d40d30d20d10d
Tensor order

T
im

e
 (

se
c)

Fig. 9. ADATM’s dimension scalability on synthetic sparse tensors.

4) Model Analysis: We test all possible np of ehr85 to

record their actual time on the two platforms and compare

with our predicted time in § VI. Figure 10 draws the relative

value by normalizing to each one’s time value on np = 1.

Model-predicted time can find the optimal np, which is 2,

and predicts a similar trend to the actual time on the two

platforms. Since the MTTKRP is dominated by TTM and q-

TTM products which have relatively predictable behavior by

timing a dense matrix, our model works well. However, since

our model hasn’t considered architecture characteristics, the

prediction is constant for different platforms.

0.5

1.0

1.5

2.0

2.5

Actual-Core i7

Actual-Xeon E7

Predict

7654321

R
e

la
ti

ve

np

Fig. 10. Accuracy of ADATM model on Xeon E7-4820 and Core i7-4770K.

D. Application

We compare the running time of CP-ALS using ADATM

and SPLATT in figure 11. Since the MTTKRP sequence dom-

inates CP-ALS, ADATM shows good speedups especially on

higher-order tensors. ADATM speedups CP-ALS by 4%−69%
for the third-order tensors and 2−8× for the higher-order ten-

sors. The speedups are similar to or slightly lower than those of

MTTKRP sequence in figure 6(a). This figure shows ADATM

is applicable to tensor decompositions in real applications.

0
1
2
3
4
5
6
7
8

ehr85ehr71ehr36delinell1nell2

S
p

e
e

d
u

p

Sparse Tensors

Fig. 11. CP-ALS runtime using SPLATT and ADATM.

VIII. RELATED WORK

Researchers have successfully optimized a single MTTKRP

operation through various methods. Tensor Toolbox [22] and

Tensorlab [31] implemented MTTKRP in the most popular

COO format by multiple sparse tensor-vector products using

MATLAB, with a high number of flops O(NmR). SPLATT [8,

23], the implementation achieving the highest performance

so far, algorithmically improved MTTKRP by factoring out

inner multiplications and proposed a more compressed CSF

format, reducing MTTKRP to O(N εmR) , ε ∈ [0, 1) flops. Gi-

gaTensor [11] reformulated MTTKRP as a series of Hadamard

products to utilize the massive parallelism of MapReduce.

However, this algorithm is not suitable for multi-core machines

because of its high complexity (O(5mR) for third-order

tensors). DFacTo [20] considered MTTKRP as a series of

sparse matrix-vector multiplications for distributed systems.

Though it has the same number of flops as SPLATT, the explicit

matricization takes non-negligible time. HyperTensor [19]

investigated fine- and coarse-grained distributed algorithms

also for distributed systems, while its MTTKRP implemen-

tation is based on COO format. These approaches require

O(
N (1+ε)mR

)
, ε ∈ [0, 1] flops for the MTTKRP sequence.

Our work is based on the SPLATT algorithm by memoizing

intermediate results to explore data reuse and reduces this flop-

complexity to O
(
ÑmR

)
, where Ñ is generally much less

than N (1+ε).

Recently, S. Zhou et al. [25] and A. Phan et al. [17]

exploited data reuse for the MTTKRP sequence by storing

the results of dense Khatri-Rao products. The extra storage

is Θ
(
I(N−1)R

)
and Ω

(
I

N
2 R

)
respectively for a hypercubical

sparse tensor, which is extremely larger than the number

of nonzeros and exponentially grows with tensor order N .

ADATM efficiently stores intermediate semi-sparse tensors

instead and in a very compressed pattern to avoid redundant

computation and also memory blowup. Baskaran et al. [32]

and Kaya et al. [33] also brought similar ideas to save

intermediate results in Tucker decomposition. However, our

work does a detailed analysis on the most significant factor –

the space and time tradeoff. Very recently, Kaya et al. [34]

applied the above method in CP decomposition by using

dimension trees and considered MTTKRP as a group of tensor-

times-vector products. Our work uses TTM and q-TTM for

better data locality, and ADATM allows user-defined strategy

for the space-time tuning in our model-driven framework.

IX. CONCLUSION AND FUTURE WORK

The methods underlying ADATM derive performance im-

provements from three key ideas. First, we consider not just a

single MTTKRP, but the sequence as it arises in the context of

CPD. Indeed, the lemmas of § V and optimization method

apply to other algorithms that might involve a Khatri-Rao

product chain, such as the CP-APR algorithm [30]. Secondly,

we develop an “any-space” memoization technique that per-

mits a gradual tradeoff of storage for time. A user or higher-

level library may therefore control our method according to

1056

whichever criterion is more important in a given application.

Thirdly, we parameterize our algorithm and build a model-

driven and user-guided framework for it. This technique gives

end-user application developers some flexibility in how they

employ our algorithm.

Looking forward, we plan to apply our adaptive tensor

memoization algorithm to other tensor decompositions, such

as CP-APR. We also believe a closer inspection of not just the

arithmetic but also communication properties of our method,

coupled with more architecture-specific tuning, manycore co-

processor acceleration, and extensions for distributed memory,

are ripe opportunities for future work.

ACKNOWLEDGMENT

We thank Piyush Sao, Casey Battaglino, and Xiaolong

Wu for their comments. This material is based upon work

supported by the U.S. National Science Foundation (NSF)

Award Number 1533768.

REFERENCES

[1] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing
neural networks,” CoRR, vol. abs/1509.06569, 2015.

[2] I. Perros, R. Chen, R. Vuduc, and J. Sun, “Sparse hierarchical tucker
factorization and its application to healthcare,” IEEE International
Conference on Data Mining (ICDM), 2015.

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[4] A. Cichocki, “Era of big data processing: A new approach via tensor
networks and tensor decompositions,” CoRR, vol. abs/1403.2048, 2014.

[5] L. De Lathauwer and D. Nion, “Decompositions of a higher-order tensor
in block terms—Part III: Alternating least squares algorithms,” SIAM
Journal on Matrix Analysis and Applications, vol. 30, no. 3, pp. 1067–
1083, 2008.

[6] J. Li, Y. Ma, C. Yan, and R. Vuduc, “Optimizing sparse tensor times
matrix on multi-core and many-core architectures,” in ACM/IEEE the
Sixth Workshop on Irregular Applications: Architectures and Algorithms.
Salt Lake City, Utah, USA: IEEE, 2016.

[7] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc, “An input-
adaptive and in-place approach to dense tensor-times-matrix multiply,”
in ACM/IEEE Supercomputing (SC ’15). New York, NY, USA: ACM,
2015.

[8] S. Smith, N. Ravindran, N. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in Proceed-
ings of the 29th IEEE International Parallel & Distributed Processing
Symposium, ser. IPDPS, 2015.

[9] J. C. Ho, J. Ghosh, and J. Sun, “Marble: High-throughput pheno-
typing from electronic health records via sparse nonnegative tensor
factorization,” in Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’14.
New York, NY, USA: ACM, 2014, pp. 115–124.

[10] Y. Wang, R. Chen, J. Ghosh, J. C. Denny, A. Kho, Y. Chen, B. A.
Malin, and J. Sun, “Rubik: Knowledge guided tensor factorization and
completion for health data analytics,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’15. New York, NY, USA: ACM, 2015, pp. 1265–
1274.

[11] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “GigaTensor:
Scaling tensor analysis up by 100 times—algorithms and discoveries,”
in Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’12. New York, NY,
USA: ACM, 2012, pp. 316–324.

[12] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015, software available from tensorflow.org.

[13] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor decompositions for learning latent variable models,” J. Mach.
Learn. Res., vol. 15, no. 1, pp. 2773–2832, Jan. 2014.

[14] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “ParCube:
Sparse parallelizable tensor decompositions,” in Proceedings of the 2012

European Conference on Machine Learning and Knowledge Discovery
in Databases - Volume Part I, ser. ECML PKDD’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 521–536.

[15] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-
rank tensor approximation techniques,” GAMM-Mitteilungen, vol. 36,
no. 1, pp. 53–78, 2013.

[16] A. Cichocki, N. Lee, I. V. Oseledets, A. Phan, Q. Zhao, and D. Mandic,
“Low-rank tensor networks for dimensionality reduction and large-scale
optimization problems: Perspectives and challenges part 1,” ArXiv e-
prints, Sep. 2016.

[17] A. H. Phan, P. Tichavsk, and A. Cichocki, “Fast alternating LS algo-
rithms for high order CANDECOMP/PARAFAC tensor factorizations,”
IEEE Transactions on Signal Processing, vol. 61, no. 19, pp. 4834–4846,
Oct 2013.

[18] F. Huang, N. Niranjan U., I. Perros, R. Chen, J. Sun, and A. Anand-
kumar, “Scalable Latent Tree Model and its Application to Health
Analytics,” ArXiv e-prints, Jun. 2014.

[19] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in dis-
tributed memory systems,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 77:1–
77:11.

[20] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization of
tensors,” in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger,
Eds. Curran Associates, Inc., 2014, pp. 1296–1304.

[21] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM Journal on Scientific Computing,
vol. 30, no. 1, pp. 205–231, December 2007.

[22] B. W. Bader, T. G. Kolda et al., “MATLAB Tensor Toolbox (Version
2.6),” Available online, February 2015.

[23] S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proceedings of the 5th Workshop on Irregular Appli-
cations: Architectures and Algorithms. ACM, 2015, p. 7.

[24] J. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of eckart-young
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[25] S. Zhou, X. V. Nguyen, J. Bailey, Y. Jia, and I. Davidson, “Accelerating
online CP decompositions for higher order tensors,” 22th ACM SIGKDD
2016 Conference on Knowledge Discovery & Data Mining (submitted),
Aug 2016.

[26] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka, and
T. Mitchell, “Toward an architecture for never-ending language learn-
ing,” 2010.

[27] O. Görlitz, S. Sizov, and S. Staab, “PINTS: Peer-to-peer infrastructure
for tagging systems,” in Proceedings of the 7th International Conference
on Peer-to-peer Systems, ser. IPTPS’08. Berkeley, CA, USA: USENIX
Association, 2008, pp. 19–19.

[28] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis.
(2017) FROSTT: The formidable repository of open sparse tensors and
tools. [Online]. Available: http://frostt.io/

[29] S. Smith, N. Ravindran, N. Sidiropoulos, and G. Karypis, “SPLATT: The
Surprisingly ParalleL spArse Tensor Toolkit (Version 1.1.1),” Available
online, 2016.

[30] E. C. Chi and T. G. Kolda, “On tensors, sparsity, and nonnegative
factorizations,” SIAM Journal on Matrix Analysis and Applications,
vol. 33, no. 4, pp. 1272–1299, 2012.

[31] L. Sorber, M. Van Barel, and L. De Lathauwer, “Tensorlab (Version
v3.0),” Available online, 2014.

[32] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, “Efficient and
scalable computations with sparse tensors,” in High Performance Ex-
treme Computing (HPEC), 2012 IEEE Conference on, Sept 2012, pp.
1–6.

[33] O. Kaya and B. Uar, “High-performance parallel algorithms for the
Tucker decomposition of higher order sparse tensors.” Inria - Research
Centre Grenoble Rhone-Alpes, RR-8801, 2015.

[34] ——, “Parallel cp decomposition of sparse tensors using dimension
trees.” Inria - Research Centre Grenoble Rhone-Alpes, RR-8976, 2016.

1057

