
Modeling and Analysis for Performance and Power

Jee Whan Choi (4th Year)

Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, USA
Email: jee@gatech.edu

Richard W. Vuduc (Advisor)

Computational Science and Engineering
Georgia Institute of Technology

Atlanta, USA
Email: richie@cc.gatech.edu

Abstract—Accurately modeling application performance for
specific architectures allows us to understand and analyze
the impact of various architectural features on performance
which will ultimately lead to improved performance and better
architecture design choices for efficiency and scalability on
future systems. Moreover, with the end of Dennard scaling,
processors can no longer maintain constant power per unit
area as before and consequently power and energy efficiencies
has become arguably an even more important factor than
performance for future systems.

In this paper we propose to search for a method of
modeling that, given an application, extract a unique set of
performance-influencing features and automatically determine
and match them to relevant architecture-specific features for
the purpose of deriving accurate models for performance,
energy and power. Different applications will display different
sets of features which will allow for more accurate models and
analysis. Ultimately these models will help us to better under-
stand the impact of application and architectural features on
performance, energy and power and help us design applications
and systems to maximize their efficiencies.

Keywords-performance modeling, energy and power model-
ing, scientific computing, sparse matrix-vector multiply, lattice
quantum chromodynamics, fast multipole method

I. INTRODUCTION

Predicting the performance of an application accurately

on a given architecture is an extremely difficult task due

to hardware factors such as complex architectural features

and software factors such as implementation choices and

compiler optimizations. On one end of the spectrum, we

have architecture-centric solutions such as cycle-accurate

simulators (CAS) [1] are very accurate but require a full

simulator that are difficult to write and often require an order

of magnitude longer to run as compared to actual runtime.

The problem becomes even worse for multi-core systems.

On the other end of the spectrum, there are algorithm-

centric methods that captures the most important features

such as flops and bytes and use those information in

conjunction with system-specific parameters such as peak

throughput and bandwidth to predict performance [2]. These

methods may be much less accurate than CASs but are much

easier to derive. However, these constant performance mod-

els (CPM) also have certain limitations and are sometimes

too simple to be applied to applications that have complex

DAGs and multiple phases with varying flops and bytes.

Functional performance models [3] may be able to address

a few of these issues but not all. There are also various other

methods of modeling performance that have their unique sets

of advantages and disadvantages [4], [5].

So the question is, is there a one-fits-all solution for

predicting performance? The answer is no because each

method addresses different issues and are useful in different

circumstances. For example, when trying to improve perfor-

mance by identifying bottlenecks and opprotunities for asyn-

chronous execution, roofline model would be very useful.

However, when trying to maximize instruction throughput

or identify pipleline stalls, a CAS would be most useful.

For the purpose of analyzing algorithm and architecture in

the context of performance, we believe that all algorithmic

features that influence performance should be extracted in

order to maximize accuracy of the model, and then these

features should be, given a particular architecture, mapped

to architectural specific parameters to create a cost model

for execution time. Different algorithmic features will have

different costs on different architectures, and the model must

capture this relationship accurately while at the same time it

must be general enough to apply to any application and its

set of features. This approach differs from other methods in

that we do not generalize all applications by certain identical

features, but take each application and extract its own unique

set of performance influencing features and map them to

specific architectures to autmatically drive a cost function,

and at the same time cover a wide enough range of features

so that this approach can be applied to any application.

Once we apply these models to both CPU and GPU,

we can also use them to model performance on CPU-GPU

hybrid systems which can aid us in designing the optimal

hybrid system as well as to schedule our application to

minimize execution time on these systems.

In order to accomplish all these things, we first need a way

of extracting and representing the features at algorithm level.

Once we have these features we must be able to relate these

features to architectural features. Once we have a mapping

of the relationships, we can finally derive a cost function

for the algorithm at hand. So far, we have studied several

kernels and applications and derived accurate performance

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.304

2460

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.304

2460

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.304

2466

models for these using features that were specific to each

application at hand on both CPUs and GPUs. We believe

that our experience in modeling these different kernels on

various architctures will allow us to more readily define

and formalize algorithmic features and map them to any

architecture.

Lastly, we need to address the problem of energy and

power. We believe that energy and power are costs that are

similar to execution time, and can be modeled using a similar

approach of extracting power influencing features from

algorithms and map them to architectrual power influecing

features to derive a cost function. Power has been modeled

in a manner similar to performance in other research [6] and

we believe that this is indicative of power and energy being

similar to execution time as a cost.

In section II, we will cover some of our previous research

in performance modeling to demonstrate how certain algo-

rithmic features can be mapped to architectural features to

derive a performance model. In section III, we will cover

some of our recent studies on the relationship between

energy/power and performance, and we will conclude our

paper in section IV with what we have yet to accomplish to

complete our story.

II. CASE STUDIES

In this section we cover various kernels and their per-

formance models. Since different kernels have different

computational requirements and are therefore influenced by

different architectural parmaeters, we try to capture only the

relevant algorithmic and architectural features specific to the

kernel and the hardware in our model when we try to predict

the execution time. Due to page limitations, we cover only

the basics in this section, but readers are encourged to look

up the relevant papers for more details.

A. Sparse Matrix-Vector Multiply

In this study [7] we implemented a highly efficient GPU

sparse matrix-vector multiply (SpMV) kernel and derived a

performance model for the purpose of automatically tuning

the kernel for optimal GPU specific parameters.

We abstracted the computation into number of thread
blocks, blocking size r×c (for fill ratio) and N , the number

of rows assigned to a thread block. In addition, a small

number of off-line benchmarks were used to measure certain

costs such as kernel startup and achievable performance of

the target GPU for our SpMV implementation. Together,

a cost model was created to predict the execution time

for any input matrix. Our performance model predicted

the execution time to within an average and median error

of 3.74% and 2.73% respectively. A graph comparing the

predicted and measured execution times for a Tesla C870

GPU is shown in Figure 1.

Figure 1. Comparison of model to real data on Tesla C870

B. Lattice Quantum Chromodynamics

Lattice-based quantum chromodynamics (LQCD) is a

theory in particle physics about the strong force and is

thus among the most fundamental areas of scientific in-

quiry in computational science. LQCD is a particular well-

established algorithmic approach for performing QCD com-

putations.

LQCD computes solutions to a sparse system of linear

equations using Krylov subspace solvers, such as conjugate

gradient (CG) and BiCGstab, for which a typical bottleneck

is the matrix-vector multiply (matvec) step. The matrix for

LQCD comes from an 8-point stencil discretization in a

high-dimensional space. However, instead of explicitly con-

structing and storing the (sparse) matrix needed to perform

the matvec, LQCD methods use matrix-free approaches in

which matrix entries are evaluated on-the-fly. The advantage

of this approach is to reduce total storage and increase

the computational intensity of the matvec relative to the

explicit sparse matrix approach, which would better utilize

the massive computational resources available on GPUs.

The matvec in LQCD consists of two so-called Dslash

operations, one that uses even lattice sites as input to

compute the output at odd lattice sites, and vice versa. The

Dslash operator consumes majority of the cycles needed for

the overall solver.

A conventional implementation of Dslash in single preci-

sion requires 1320 flops per 1440 bytes of main-memory

data, which already constitutes a much higher computa-

tional intensity than classical matvec for stored matrices. In

QUDA [11], Clark et. al use various techniques to further

improve this intensity by a factor of 1.5. However, even

at 960 bytes of memory traffic, the intensity of Dslash

remains heavily bandwidth-bound, and nowhere near the

theoretically smallest possible memory footprint of 448

bytes.

The latest development in cache blocking for stencil

computations, known as 3.5-D blocking [12], has shown

246124612467

improvements of 1.5× to 1.8× over previous state-of-

the-art 7-point stencil implementations for CPU and GPU

respectively. Therefore, intuitively one would assume that

using this technique on Dslash should also show significant

improvements on both CPU and modern GPUs that have

caches, essentially by improving reuse at each lattice site.

Our back-of-the-envelope estimates suggest that 3.5-D

blocking on an Intel Westmere-EP CPU, with 12 MB of

last-level cache (LLC) and 22 GB/s of bandwidth, could

yield up to 38 Gflop/s of performance. Our implementation,

which we believe to be the best CPU implementation of

Dslash currently available, comes within 90% of this target,

thereby validating our approach.

A similar estimate for an NVIDIA GTX 480 GPU reveals

that there would be no visible performance gain for Dslash

over the current QUDA implementation. This is due in part

to the GPU having much smaller last-level cache, and in part

to lattice site data being much larger than those of a simple

7-point stencil. The redundantly loaded boundary of cache

blocks would overshadow any savings.

However, there are alternative approaches better suited to

a GPU architecture. One such method is to restrict Dslash

to 2.5-D blocking, loading neighboring data in the temporal

dimension on-the-fly. We estimate that although this would

effectively raise the lattice site data from 448 bytes (3.5-

D blocking) to 640 bytes, it would alleviate the redundant

boundary problem by both allowing for larger 2-D blocks

and minimizing the surface area of the blocks. This approach

could yield a modest performance gain of 1.2 and we believe

that a more thorough investigation will reveal that carefully

blocking the data in the register file, the L1, and the L2

cache will increase the effective block sizes and increase

performance significantly up to approximately 1.5

We can go further. Since all Dslash operation occurs in

pairs, with the latter using the result of the former as input,

fusing the two Dslash operations into one will allow us

to effectively double the flops while keeping the data size

constant. This will again be non-trivial, since several blocks

of data need to be computed for the first Dslash before they

can be used for the second. This will require careful use of

barriers, as well as careful assignment of threads to workload

in both Dslash operations. However, if done correctly, it will

yield an additional 2 speedup on top of 2.5-D blocking, for a

total of 3 in speed up over current implementation of QUDA.

More details on our back-of-the-envelope estimates can

be found in [10], [12].

By extracting the relevant algorithmic features - in this

case, the number of flops and bytes and data access pattern

- and combining it with the relevant architectural feature -

in this case, compute throughput, bandwidth, and cache size

- we were able to come up with achievable performance by

applying a set of simple blocking schemes.

C. Fast Multipole Method

Fast Multipole Method (FMM) is a O (n) work optimal

algorithm with guaranteed approximation accuracy for a

N-body particle simulation involving n interacting parti-

cles which naı̈vely requires O (
n2

)
computations. FMM is

widely regarded as one of the most significant algorithms

in scientific computing [13]. FMM consists of six phases:

Up, Down, VList, UList, Wlist, and Xlist, each of which

has different compute and memory characteristics. However,

since the VList and UList phases constitute for over 90% of

the overall execution time, we currently only model these

two phases, leaving the analysis and modeling of the other

phases for future work.

In this study, we present analytical performance models

for UList and VList phases. The models have both algorith-

mic (number of target/source points, max points per leaf,

desired accuracy) and architectural (last level cache size,

memory bandwidth, etc,.) parameters making it practical

and usable. We also validate our models using performance

counter data.

III. CURRENT RESEARCH

With the upcoming Exascale supercomputing clusters

being limited to approximately 20MW of power and the

energy cost of keeping the systems running out-pacing sys-

tem build costs, power and energy efficiency has become one

of the hottest research topics in the area of high performance

computing.

As we have mentioned, we believe that power and energy

are metrics similar to execution time in the sense that they

are simply costs that have to be paid for running an appli-

cation on a given system. Therefore, it should be possible

to extract specific features that determine performance for

a given application and determine energy and power costs

corresponding to those features. For example, number of

flops will determine how much energy is expended on the

ALU, whereas the number of memory reads will correspond

to energy usage by the DRAM and the bus, similar to

how each of these features have an execution time costs

determined by the capability of the architecture.

Some of current research in energy and power modeling

involve dynamic voltage and frequency scaling (DVFS) [15],

where the voltage, and subsequently the frequncy, is lowered

to explore the possiblity of reducing energy usage without

the loss of performance.

In other studies [14], [16], power and energy character-

stics for various applications were profiled on single and

multi-node systems and simply analyzed. These studies have

proposed the possiblity of using power models to find energy

bottlenecks energy optimizing schedules.

From our studies, we have found enough evidence that

applications can be optimized to save energy and power and

that an accurate energy and power models will be beneficial

in analyzing the impact of application and architectural

246224622468

features on their consumption and ultimately lead to better

design choices for future applications and systems.

IV. CONCLUSIONS AND FUTURE WORKS

We have presented motivations for performance and

energy/power modeling that extracts application features

that influence performance and match them to correspond-

ing architectural features to predict performance and en-

ergy/power. Performance models will allow us to analyze

the algorithm and the architecture together to determine how

these features influence each other and ultimately guide us

into making better design decisions for future applications

and systems. Similarly, we have presented evidence based

on related research that has shown that 1) energy and

power costs are dependent on application features that also

determine performance, and 2) there is room for optimizing

energy and power through DVFS and identifying energy

bottlenecks. Theese conclusions tells us that having an

accurate energy and power model is cruicial in reducing

their consumption and help meet the energy requirements

for Exascale.

Future works include coming up with a method of formal-

izing application features for different applications, perhaps

even automatically by analyzing certain levels of algorithm

(high level vs. real code). Then these application features

must be matched to relevant architectural features and an

accurate model must be derived. This process might be

iterative or heuristic in terms of search space (e.g. finding the

right blocking technique that yields the best performance).

Then this process must be repeated and refined for deter-

mining a similar energy/power model.

REFERENCES

[1] Peter Strazdins, Bill Clarke, and Andrew Over. 2007. Efficient
cycle-accurate simulation of the UltraSPARC III CPU. In Pro-
ceedings of the thirtieth Australasian conference on Computer
science - Volume 62 (ACSC ’07), Gillian Dobbie (Ed.), Vol.
62. Australian Computer Society, Inc., Darlinghurst, Australia,
Australia, 221-228.

[2] Samuel Williams, Andrew Waterman, and David Patterson.
2009. Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM 52, 4
(April 2009), 65-76. DOI=10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785

[3] Alexey Lastovetsky and Ravi Reddy. 2007. Data Partition-
ing with a Functional Performance Model of Heteroge-
neous Processors. Int. J. High Perform. Comput. Appl. 21,
1 (February 2007), 76-90. DOI=10.1177/1094342006074864
http://dx.doi.org/10.1177/1094342006074864

[4] Sunpyo Hong, Hyesoon Kim, ”An Analytical Model for a GPU
Architecture with Memory-level and Thread-level Parallelism
Awareness,” Proceedings of the 36th International Symposium
on Computer Architecture (ISCA) , Austin, TX, June 2009.

[5] Tikir, M., Carrington, L., Strohmaier, E., and Snavely, A.
A genetic algorithms approach to modeling the performance
of memory-bound computations. in Proceedings of the SC07
Conference (reno, nV, nov. 1016). acm Press, new york, 2007.

[6] R. Ge and K. W. Cameron, Power-Aware Speedup, in 21st
IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), Long Beach, California, Mar. 2007.

[7] Jee W. Choi, Amik Singh, Richard W. Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on GPUs. In Pro-
ceedings of the 15th ACM SIGPLAN symposium on Principles
and practice of parallel programming - PPoPP10, Bangalore,
India, January, 2010.

[8] Sam Williams, Richard Vuduc, Leonid Oliker, John Shalf,
Katherine Yelick, and James Demmel. Optimizing sparse
matrix-vector multiply on emerging multicore platforms.
Jour- nal of Parallel Computing, 35(3):178194, March 2009.
http://dx.doi.org/10.1016/j.parco.2008.12.006.

[9] Chi-Keung Luk, Sunpyo Hong, Hyesoon Kim. Qilin: Ex-
ploiting Parallelism on Heterogeneous Multiprocessors with
Adaptive Mapping In MICRO 2009, December, 2009.

[10] Mikhail Smelyanskiy, Karthikeyan Vaidyanathan, Jee Choi,
Balint Joo, Jatin Chhugani, Michael A. Clark, Pradeep Dubey.
High-performance lattice QCD for multi-core based parallel
systems using a cache-friendly hybrid threaded-MPI approach
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2011.

[11] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C.
Rebbi. Solving Lattice QCD systems of equations using mixed
precision solvers on GPUs. In Computer Physics Communica-
tions, Volume 181, Issue 9, September 2010, Pages 1517-1528

[12] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-
D Blocking Optimization for Stencil Computations on Modern
CPUs and GPUs. In Proc. ACM/IEEE Conf. Supercomputing
(SC), New Orleans, LA, USA, November 2010.

[13] J. Board and K. Schulten. The fast multipole algorithm.
Computing in Science and Engi- neering, 2(1):7679, Jan-
uary/February 2000.

[14] X. Feng, R. Ge, K. Cameron. Power and energy profiling
of scientific applications on distributed systems. Proc. 19th
Int’l Parallel & Distributed Processing Symp. (IPDPS 05), Apr.
2005.

[15] Zhenwei Cao, Layne T. Watson, Kirk W. Cameron, and
Rong Ge. 2009. A power aware study for VTDIRECT95 using
DVFS. In Proceedings of the 2009 Spring Simulation Multi-
conference (SpringSim ’09). Society for Computer Simulation
International, San Diego, CA, USA, , Article 107 , 6 pages.

[16] Hatem Ltaief, Piotr Luszczek, Jack Dongarra. Profiling High
Performance Dense Linear Algebra Algorithms on Multicore
Architectures for Power and Energy Efficiency In Proceedings
International Conference on Energy-Aware High Performance
Computing, September 07-09, 2011, Hamburg, Germany (Uni-
versity of Tennessee Technical Report ut-cs-11-674, LAWN
251)

246324632469

