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ABSTRACT 

  

 Advances in wireless technology and the growing popularity of multimedia 

applications have brought about a need for energy efficient and cost effective portable 

supercomputers capable of delivering performance beyond the capabilities of current 

microprocessors and DSP chips.  The SIMPil architecture currently being developed 

at Georgia Institute of Technology is a promising candidate for this task.  In order to 

develop applications for SIMPil, a high level language and an optimizing compiler for 

the language are essential.  However, with the recent trend of interconnect latency 

becoming a major bottleneck on computer systems, optimizations focusing on 

reducing latency are becoming more important, especially with SIMPil, as it is highly 

scalable.  The compiler tracks the path of data through the network and buffers data 

in each processor to eliminate redundant communication. With a buffer size of 5, the 

compiler was able to eliminate 96 percent of the redundant communication for a 9x9 

convolution and 8x8 DCT algorithms.  With 5x5 convolution, only 89 percent 

elimination was observed.  In terms of performance, 106 percent speedup was 

observed with 9x9 convolution at buffer size of 5 while 5x5 convolution and 8x8 

DCT which have a much lower number of communication showed only 101 percent 

speedup. 
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CHAPTER 1 

INTRODUCTION 

 

Advances in wireless technologies and the development of inexpensive storage 

media such as DVD (Digital Versatile Disc) in recent years have enabled large amounts of 

data to be transmitted or transported to any place on the globe. With growing popularity of 

multimedia applications, this allows more powerful multimedia applications such as video 

email and teleconferencing, manipulating captured image or video or real-time rendering of 

3-D objects to be carried out on portable devices such as a PDA (Personal Digital Assistant), 

a digital camera, or a cellular phone. However, in order for processors to be used on such 

devices, they have to not only be small and powerful, but also energy efficient and cost 

effective. The processors found on current PDAs or cellular phones are not capable of 

providing the required computation. SIMPil (SIMD Pixel Processor), a focal plane SIMD 

architecture currently being studied at Georgia Tech is a promising candidate that may meet 

the requirements of portable multimedia supercomputing [15]. 

The SIMPil architecture is well-suited for multimedia applications because it exploits 

the tremendous amount of data parallelism inherent in media-centric workloads. Workload 

can be broken down in to smaller blocks and distributed over the Processing Elements (PEs) 

and processed in parallel, achieving performance that cannot be matched by common 

microprocessors and DSP architectures, or even by some other parallel architectures [13]. 

SIMPil uses only the NEWS mesh network connections. This differs from the MasPar MP-1 

which employs the X-net mesh interconnect for 8-way local communication and the 

multistage crossbar interconnect for global communication [17], or the Connection Machine 

CM-1 which employs a NEWS (north, east, west, south) network for local communication 

and a router for global communication. Although this may seem as a disadvantage as 

communication between distant processors would take longer, it allows savings in terms of 
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hardware costs and simpler operations as the communication latency is deterministic [9]. 

In order to facilitate software development on the SIMPil architecture, a high level 

language and a compiler for the language are essential. Although often times, programs 

written directly in assembly language tend to be more efficient than those written in high 

level languages and then compiled, writing and debugging programs in assembly language is 

time consuming and difficult, especially as programs size gets larger. Also, the SIMPil 

architecture, with the NEWS network as its only means of communicating data across nodes, 

provides another challenge. As data travels further and more frequently, optimizing their 

movement through the network becomes more and more difficult. Therefore, having an 

efficient optimizing compiler is absolutely necessary, as it can not only minimize disparity in 

performance between compiled code and hand-written code, it can also reduce the number of 

unnecessary communications in the network. 

Through out the last four decades, transistor density has increased at an exponential 

rate as predicted by Moore’s Law, and the size of processors have become larger, 

incorporating even larger number of transistors, resulting in faster and more functional 

processors. However, these trends have also resulted in narrower and longer interconnects 

which increase the latency.  In recent years, interconnect latency has become a major 

limitation on the scalability of system performance [20]. It is predicted in the ITRS 

(International Technology Roadmap for Semiconductors) 2003 that relative latency will 

continue to increase as transistors become even smaller, as shown in Figure 1 [19].  
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Figure 1 Delay for Metal 1 and global wiring versus feature size [19] 

 

In the future, system designs will become interconnect-centric and design, process 

technology, packaging, and board construction will all need to come together to provide an 

integrated system level solution to interconnect requirements [19]. Some of the current 

research in interconnects include 3D interconnects [21], where interconnects link multiple 

layers of transistors and wiring stacked on top of each other, and new types of interconnects 

such as microwave and optical interconnects [20], and nanotubes. 

Therefore, reducing redundant communication would, in addition to reducing the 

number of instructions, minimize the latency caused by communication that could reduce the 

performance of the system. This is especially important for SIMPil as it can easily be scaled 

by adding more processors. The added processors could increase the size of the network and 

the latency involved in communication.  If the communication is not properly optimized, it 

could negate the benefit of having more processors. Although reducing communication 

comes at the costs of compilation overhead and extra memory usage, compilation occurs only 
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once per platform and memory will become less of a cost as technology improves. 

This thesis discusses how a compiler can track the path of data through the network 

and minimize the number of unnecessary communications by buffering the data in each 

processor. The algorithm decides whether to buffer the data or not by looking ahead in the 

program to see how much communication the data can eliminate. 5x5 convolution, 9x9 

convolution and 8x8 DCT algorithms were used to exercise the algorithm and the results 

were compared against those of random and FIFO replacement policies. 

Given enough buffers, the look-ahead algorithm was able to eliminate all redundant 

communication instructions, but the optimal size was found to be 5 at which 89 percent of the 

redundant communication was eliminated for 5x5 convolution, and 94 percent of the 

redundant communication was eliminated for 9x9 convolution and 8x8 DCT algorithms. 

After 5, the buffer hit the point of diminishing return. No performance gain in terms of 

execution cycles was seen with 5x5 convolution or 8x8 DCT as the percentage of 

communication was too small to affect the performance, but with 9x9 convolution, 6 percent 

reduction in execution cycles was seen with buffer size 5. 
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CHAPTER 2 

BACKGROUND 

 

ILLIAC-IV and ICL DAP 

 The history of SIMD systems can be traced back to the 1960’s with the design of the 

ILLIAC-IV which was composed of 64 64-bit processors and had a parallelizing FORTRAN 

compiler called the IVTRAN. ILLIAC-IV was later followed by the ICL DAP (Distributed 

Array Processor) in the 1970’s. However, it was not until the 1980’s that interest in SIMD 

really picked up and led to the development of machines such as the Connection Machine and 

the MasPar. 

 

Connection Machine 

One of the first successful massively parallel machines in the 1980’s was the 

Thinking Machines Corporation Connection Machine first introduced in 1985.  It was 

designed for general purpose applications whose inherent parallelism could be exploited to 

increase performance. The CM (Connection Machine) virtual-machine parallel instruction set, 

called Paris, presents the users with abstract machine architecture. Paris runs on the 

sequencers, where the instructions are parsed and appropriate sequence of nano-instructions 

are generated for the data processors. Paris allows for a rich instruction set and a virtual 

processor abstraction, where the Connection Machine is initialized with a virtual number of 

processors to fit the application needs, and then the physical processors time-slice itself over 

multiple data regions that has been assigned to it. This enables effective and flexible 

programming. Paris is the target language of the high level language compilers that are 

commonly used on the Connection Machine. 

The Connection Machine system software uses existing programming languages with 

minimal extensions to support data-parallel constructs to ease the pain of learning a 
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completely new programming style, and of the many that are available, such as Fortran, 

which uses the array extensions in the draft Fortran 8x standard, and *Lisp and CM-Lisp, 

which are data parallel dialects of the Common Lisp, C* stands out in particular with its 

unobtrusive data parallel extensions, as it can be read and written like the common serial C 

programs [3]. 

 

MasPar 

 Another recognized SIMD machine is the MasPar. The MasPar architecture uses a 

different approach to software development in that it uses the ACU (Array Control Unit), a 

fully programmable computer, rather than a micro-programmed sequencer, thus depending 

more on good compiler optimization techniques to generate code than on pre-programmed 

complex instructions. The approach to processor virtuality taken by the MasPar is also 

different than that taken by the Connection Machine in that instead of building virtuality into 

the instruction set, it utilizes optimizing compiler technology as well as elements of 

architecture and machine design. Instead of assigning blocks of data to processors statically, 

it uses optimizing techniques to minimize data motion and optimize register usage. The use 

of optimizing compilers by the MasPar system allowed class of optimizations and flexibility 

that was not possible with an instruction set concept of virtuality exhibited on the Connection 

Machine, thus demonstrating the importance of compilers in the development of software. 

  MasPar provides adaptation of C and FORTRAN suitable for massively parallel 

machines just as the Connection Machine does. Three such languages are the MasPar 

FORTRAN (MPF), MasPar C (MPC), and the MasPar Parallel Application Language (MPL). 

MPF and MPC are languages that generate code for all parts of the system (the front-end 

system, the ACU and the parallel array) whereas MPL generates code for only the parallel 

subsystem (the ACU and the parallel array). The MPF and MPC are analogous to the 

Connection Machine’s FORTRAN and C* languages. The MPL, however, provides a simpler, 
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massively parallel C for programming the ACU and the parallel array, and has three features 

that distinguish it from the regular C language. First, a variable can be declared as plural, in 

which case it is instantiated on all PEs; otherwise it can be declared as singular and 

instantiated only on the ACU. Expressions can mix plural and singular variables, in which 

case the scalar variables are broadcasted to the PEs and it is promoted to a plural variable. 

Control structure semantics are adapted to a SIMD computation model in that if a control 

expression is plural, then the expression is evaluated in a plural form, and only the active PEs 

execute the relevant code. Lastly, language syntax has been added to support the use of the X-

net and the global router which allows PEs access to a plural variable on a neighboring PE, or 

an arbitrary PE, respectively [4]. 

 

Other Data Parallel Languages and Compilers 

 Other than the languages and their compilers for the Connection Machine and the 

MasPar that were mentioned above, many other languages and compilers exist for massively 

parallel architectures. The dbC language is a data parallel extension to the ANSI C similar to 

C* on the Connection Machine and the MPL on MasPar [6]. SC is another enhancement of C 

language for the Connection Machine which adds a few new data types and primitives to 

facilitate the development of data parallel programs. SC does not have a compiler for it but 

has a translator that converts SC language to C* language which is then compiled to Paris 

assembly instructions, thus providing a different approach to creating data parallel programs 

[5]. By utilizing C as its base language, most of the languages available for massively parallel 

machines depend on an existing compiler, namely the C compiler, to do much of its serial 

optimizations and compilation, but also provide an extension for programming parallel 

applications. This is also the approach taken by the SEP (Simple Explicit Parallel) language 

developed for the SIMPil architecture. 
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SEP Language for SIMPil and its Compiler, SIMcc 

 Before the development of the SEP language for SIMPil, all programming on SIMPil 

was done in assembly language. Although this satisfies most of the optimization for relatively 

small programs it is difficult to create large programs due to the sheer amount of coding 

required. The SEP language and the SIMcc compiler for the language was created to remedy 

this problem. The SEP language closely resembles the MasPar’s MPL in that it uses a subset 

of C language enhanced with the three special grammar features of the MPL as described 

above to support massively parallel programming. Since SIMPil was targeted for portable 

multimedia computing, only a small subset of the C language deemed necessary for such 

applications was selected. This made the SEP language easier to program and to optimize 

[14]. The original SIMcc compiler for the SEP language was, however, inadequate in terms of 

achieving any sort of optimizations, as the compiler translated the SEP language directly in to 

SIMPil assembly language, without the use of any IR (Intermediate Representation) or 

dataflow analysis. This resulted in inefficient use of registers and thus reduced performance 

drastically. 

 

Convolution and DCT in Multimedia Applications 

 Some of the most common multimedia applications use certain algorithms repeatedly. 

For example, many image processing applications such as noise removal and edge 

enhancement use convolution [7], and image compression techniques such as those used in 

the popular JPEG standard use DCT (Discrete Cosine Transforms) [11]. Techniques such as 

convolution and DCT have a common property in that they both require a large number of 

inter-processor communications. When programs are written directly in assembly language 

and the programs are small it is easy to minimize the total number of communications.  

However, when the program becomes more complex it becomes more difficult to hand 

optimize the code.  Moreover, if the algorithm is modified for different applications, it 
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becomes cumbersome to re-optimize the code. Using a high level language relieves the 

problem of complexity in programming but the problem of increased communications 

becomes more apparent, as the architectural details are hidden from the programmer. Since 

inter-processor communication time is generally longer than computational time, 

communication could become a bottleneck in algorithms that have a large number of 

communications.  

 

Reducing Communications 

In the past, several solutions to the problem of reducing communication time were 

proposed on SIMD systems. CCSIMD (Concurrently Communicating SIMD) hides 

communication latencies by overlapping communication and computation or by 

communicating simultaneously in multiple directions [9]. In another example, by utilizing a 

shared memory, the total number of communications for a bitonic sort on a sorting network 

was reduced [12]. 

 

 

Summary 

It can be seen from comparing the software development environments of the 

Connection Machine and the MasPar utilizing an optimizing compiler can lead to 

improvements in performance that cannot otherwise be achieved. Similarly, in the case of the 

SIMPil architecture, the total number of communication can potentially be reduced while 

keeping the programming complexity minimal by utilizing the SEP language and an 

optimizing compiler. Although the SEP language provides a simple and easy programming 

environment, the original SIMcc compiler that was first developed for the language is 

inadequate in reducing the total number of communications as it provides no means of 

optimizing the generated assembly code. 
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In this paper, methods of reducing inter-processor communication for the SIMPil architecture 

through the use of high level language and its compiler will be developed and discussed. The 

overall relationship between different SIMD systems and their compilers and the SIMPil 

architecture and its SEP language and compiler is illustrated in Figure 2. 

 

 
Figure 2 Impact of different SIMD systems and their compilers to the development of SEP 

and SIMcc and the need for an optimizing compiler for SIMPil 
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CHAPTER 3 

METHODOLOGY 

 

3.1 SIMPil: A SIMD Pixel Processor with Integrated Optoelectronic Detectors 

 SIMPil is a SIMD architecture developed at Georgia Tech for portable multimedia 

applications that exploits inherent data parallelism in images and videos. SIMPil also 

incorporates an integrated array of thin film detectors stacked directly on top of the 

processing plane to reduce the image data transfer bottleneck [15]. A cross sectional diagram 

showing the two layers is shown in Figure 3. 

SIMD processing layerdetector array & ADC layer

through-wafer
optoelectronic
communication  

Figure 3 Cross sectional diagram showing the coupled detectors and processors [15] 

 

 SIMPil architecture consists of an Array Control Unit (ACU) connected to an array 

of SIMD PEs. Programs are stored in the ACU and broadcasted to every PE which, in turn, 

executes the instructions on the data in its local memory. Each PE communicates with its 

neighbors via a NEWS mesh network closed as a torus. The general architecture of SIMPil is 

shown in Figure 4 
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Figure 4 General architecture of the SIMPil system  

 

 Each PE is interfaced with a subset array of the thin film detectors stacked on top of 

the processing plane and an ADC (Analog to Digital Converter) to convert the light 

intensities incident on the detectors to a digital value. The microarchitecture of a PE consists 

of 16-bit datapath including an ALU, a barrel shifter, a multiply-accumulator unit, 16-word 

register file, and a local memory. 

 Overall, the SIMPil architecture provides the high computational throughput and data 

bandwidth required by modern multimedia applications while satisfying the low power and 

low cost constraints required of a portable processor. All tests done on the SIMPil system in 

this research was done through the SIMPil16 simulator. 

 

3.2 SEP: A High Level Language for Programming on the SIMPil Architecture 

 In order to facilitate software development on any system, a high level language and 

a good compiler are essential, and SIMPil is no exception. The SEP language and its compiler, 

the SIMcc, were first developed by Gunther R. Costas for the SIMPil system with this in 

mind [14]. 

The SEP language was designed to make programming for the SIMPil system as easy 

as possible. The language constructs used in SEP were kept to only those that are necessary in 
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creating common image processing applications and syntax similar to that of the widely used 

C language was adopted. SEP instructions include the WHILE loop, IF condition, arithmetic 

and logic instructions, and comparison operators. Also, there are special SIMPil specific 

instructions for communication and instructions for retrieving data sampled by the detector. 

An overview of instructions supported by SEP is shown in Figure 5. 

 

SINGULAR Singular variable declaration 
PLURAL Plural variable declaration 
IF/ELSE If/else condition 
WHILE While loop 
GET Communication instruction 
LOAD Retrieve data sampled by the detectors 
SAMPLE Sample image using detector 
SHOW_IMAGE Display image stored in memory 
SET Set architectural parameters 
+, -, *, /, = Arithmetic operators 
&&, ||, ==, !=, <=, 
>=, <, > 

Logical operators 

Figure 5 An overview of instructions supported by SEP 

 

 SEP supports two types of variables: singular and plural variables. Singular variables 

are integer variables that are declared only on the ACU, and plural variables are those that are 

declared on every PE. Plural variables can also be declared as an array. Most SEP instructions 

can be used with either a singular variable or a plural variable. Operations between variables 

of the same data type evaluate to a variable of the same data type and operations between a 

singular variable and a plural variable will evaluate to a plural variable. 

When the IF condition is used in conjunction with a condition that evaluates to a 

singular variable, the instruction is executed only by the ACU, and when it is used in 

conjunction with condition that evaluates to a plural variable, it is executed by all the PEs and 

only the PEs whose condition evaluates to true will execute the instructions within the IF 
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condition. 

The WHILE loop is similar to the IF condition. When the condition evaluates to a 

singular variable, the ACU executes the instruction like a normal WHILE loop. However, 

when the condition evaluates to a plural variable, the ACU sends instructions to the PEs and 

each PE executes the instructions within the WHILE loop as long as the condition evaluates 

to be true. However, instead of stopping here, the ACU repeatedly sends the instructions to 

the PEs until none of the PEs evaluate the condition to be true. A diagram of how a WHILE 

loop is executed by the PEs is shown in Figure 6. 

 

ID = 0 ID = 1

ID = 2 ID = 3

ID = 0

ID = 1

ID = 0

ID = 1 ID = 2

ID = 0

ID = 0

ID = 0

ID = 0

ID = 0

ID = 0 ID = 0

iteration 0 START iteration 1

iteration 2 iteration3 END

WHILE ( ID > 0 )
ID --

END

Active Node Sleeping Node

 
Figure 6 Execution of a SEP WHILE loop on SIMPil 

 

 The GET instruction is used to send data across the mesh network in any of the four 

NEWS directions. The LOAD instruction is used to load pixel data taken by the detectors to a 

variable. The various logical, arithmetic, and comparison operators used in SEP are identical 

to those used by the C language. 

 

3.3 SIMcc: An Optimizing SEP Compiler for SIMPil 
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 The original SIMcc compiler designed by Gunther R. Costas was a simple single 

stage compiler which generated SIMPil assembly instructions directly from a SEP program. 

Such simple compilers are often used for compiling simple languages like SEP as this design 

makes the compiler easier to implement. However, it also makes the compiler less efficient as 

it does not allow any form of optimization. Therefore, the original SIMcc compiler was 

redesigned from the parser level up to include the use of IR, optimizations and more efficient 

register allocation which was necessary to implement optimizations for communication. A 

diagram showing the various components of different compilers is shown in Figure 7. 

 

 
Old SIMcc New SIMcc Typical Optimizing Compiler

SEP

Parser

Assembly

Source
Code

OptimizerBuffering

SEP

Parser Parser

IR IR

Optimizer

Register
Allocator

Register
Allocator

Assembly Assembly

Constant
Propagation

Loop
Unrolling

Constant
Subexpression

Elimination

Dead Code
Elimination

 
Figure 7 Comparison of various components of different compilers 

 

 The parser in the newly designed SIMcc generates IR instead of real SIMPil 
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assembly instructions. The IR is often instructions that are representative of the assembly 

instructions but hides some of the architectural details that are unnecessary for optimizations. 

This way, after optimizations, the IR can be then translated to assembly instructions for the 

target system, and the optimizations won’t have to be repeated when being compiled on a 

different architecture. 

 There are different formats for IR, but for SIMcc, quadruples were chosen as they 

most closely resembled the SIMPil assembly instructions, and this makes translating to 

assembly instructions much easier. Format of the quadruples and a list of IR instructions used 

in SIMcc are shown in Figure 8. 

 

Quadruple Format 
instruction destination temporary source temporary 1 source temporary 2

 
Quadruple List 

add subtract multiply divide bra beq 
bne bgt bge blt ble label 

assign move assigntoarray loadfromarray sgt sge 
slt sle seq sne wakeup and 
or raisehand set xfer pload ploads 

sample show_image os_load_id vectorize   
Figure 8 Format and a list of quadruples used in SIMcc 

 

 Once the parser generates IR, it can then be optimized. Typically optimizations such 

as constant propagation, constant subexpression elimination, dead code elimination, and loop 

unrolling are done before allocating registers and generating the final assembly instructions. 

No optimizations were done on the IR generated by SIMcc as they do not generally affect 

communication between PEs. 

Once the IR and temporaries for the intermediate instructions were generated, the IR was 

converted to real assembly instructions. Then registers were allocated to the temporaries and 
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the variables used in the program. Another major change that was made to the compiler was 

the use of a register allocator. In the old SIMcc, all variables were stored in the memory, and 

registers were used only when the data was processed. This is analogous to how the C 

compiler also keeps a copy of all variables in the memory, but in the case of SIMcc, it was 

unnecessary and it resulted in a very inefficient register usage. Therefore, in the new SIMcc 

compiler, G. Chaitin’s graph coloring algorithm [1] was used to allocate registers and no 

variables were stored in the memory unless it was necessary. First, the IR was converted to 

basic blocks for liveness analysis, with each IR instruction being a basic block. Then, an 

interference graph was constructed from the result of the liveness analysis, and then the 

variables and the temporaries were allocated registers. If a register could not be found for a 

variable or a temporary, the variable was spilled to the memory, and the process was repeated 

from the beginning. Once the register allocation is complete, a set of assembly instructions 

that is executable on the SIMPil simulator is generated. 

 

3.4 Optimizing Communications 

 3.4.1 Importance of Reducing Communication 

 Many common image and video processing applications on SIMD share data across 

nodes. In convolution a PE shares its data with all nodes surrounding it, with the radius of 

communication depending on the size of the mask. In DCT, nodes share data with PEs in the 

same row and with those on the same column. Other examples include DFT (Discrete Fourier 

Transform), matrix multiplications and median filtering. Some of these applications have 

such a large number of communications that a significant amount of time is spent in 

communicating rather than computing. 

 When these algorithms are simple, writing them to communicate efficiently is also 

simple whether it is in assembly language or in SEP. However, when they become more 

complicated, implementing them completely in assembly language becomes near impossible 
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and even using SEP it becomes difficult to write efficiently.  

For example, writing a convolution algorithm using a 3x3 mask is simple whether 

you’re writing in assembly language or in SEP because there is only one way to communicate. 

Writing a convolution algorithm using a 5x5 mask to communicate efficiently becomes 

moderately difficult in assembly language and a little trickier in SEP. The real challenge 

begins when the size of the mask becomes 9x9. With such a large radius of communication, 

optimizing the communication becomes extremely complicated even in SEP. In this case, 

trying to minimize the communication by hand would take far too long for it to be practical 

and mistakes could occur too easily. It would be much simpler to just send each data from 

one source to one destination every time. However, doing so would greatly raise the number 

of communication instructions and in the cases of convolution and DCT where the percentage 

of communication is high, performance would be greatly affected. The most obvious solution 

to this problem is to allow users to write the algorithm however they want it, and have the 

compiler eliminate any redundant communication instructions. A diagram of communication 

paths before and after optimization for a 5x5 convolution is shown in Figure 9. 

 

4 XFERs 3 XFERs 2 XFERs

1 XFER

Unoptimized: 18 XFERs Optimized: 8 XFERs

 

Figure 9 Communication paths before and after optimization 
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 3.4.2 Algorithm for Tracking the Path of Data 

 The basic idea behind removing redundant communications is to track the path of 

data through the nodes and see which nodes are visited multiple times by the same data. By 

overlapping the paths of identical data and comparing the chronological order in which the 

communication instructions occur in the program, candidates for removal can be identified. 

Then, certain data items can be selected to be stored in the buffer to maximize the number of 

communication instructions that can be eliminated. Since all communications are executed 

simultaneously by all the nodes, data from all nodes travel in the same manner. Therefore, 

tracking the path of a variable by studying the instructions is identical to tracking the path of 

that variable on all nodes. A diagram showing the steps taken by the algorithm identify 

redundant communication is shown in Figure 10. 

 

Track Unique Paths of Data

Group Paths by Identical Data

Identify Overlapping Destinations

Buffer / Eliminate /Leave  

Figure 10 Steps taken by the algorithm to identify redundant communication 

 

An array of linked list was first constructed to track the movement of data among the 

nodes using the (X, Y) co-ordinate system. Each linked list in the array is a collection of 

nodes tracing the movement of a particular variable. Each node in the linked list represents an 

XFER instruction that was used to send the variable to a neighbor. The northerly direction 

represents the positive Y axis, the easterly direction represents the positive X axis, the 

westerly direction represents the negative X axis and the southerly direction represents the 

negative Y axis. For example, if the first XFER instruction sends the variable to the north, the 
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first node in the linked list would have the position (0, 1). If another XFER instruction sends 

the variable to the east, the new node added to the linked list would have the position (1, 1). A 

diagram of the co-ordinate system is shown in Figure 11. 

 

X = 0
Y = 0
R1

R2

X = 0
Y = 1

X = 1
Y = 1

X = 1
Y = 2

R1

R3

GET <N> R2 : R1

GET <E> R1 : R2

GET <N> R3 : R1

 
Figure 11 Co-ordinate system with an example trace 

 

 The algorithm creates a new linked list whenever a new variable that is not identical 

to a variable that is already at the end of an existing path is transferred. The algorithm keeps 

track of these variables that are at the end of any paths in a queue. Any copy instruction that 

copies a variable in the queue adds the copy to the queue and if any instruction overwrites a 

variable in the queue, the variable is removed. Copy instructions may be an ADDI instruction 

with immediate value of 0 or a XFER instruction that copies a variable to different variable in 

a neighboring node. Therefore, there may be multiple variables in the queue that continues 

the same path and a path may spread out like a tree. If any path does not have a variable in 

the queue, that path is closed and will not be extended any further. An example of how this is 

done is shown in Figure 12. 
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GET <N> R1 : R2

GET <N> R3 : R1

GET <S> R1 : R4

GET <E> R5 : R3

R2 R4 R2 R4

X = 0
Y = 1
R1

X = 0
Y = 1
R1

X = 0
Y = 2
R3

R2 R4

X = 0
Y = 1
R1

X = 0
Y = 2
R3

X = 0
Y = -1

R1

R2 R4

X = 0
Y = 1
R1

X = 0
Y = 2
R3

X = 0
Y = -1

R1

X = 1
Y = 2
R5

Cycle 0 Cycle 1

Cycle 2 Cycle 3

 
Figure 12 Example of how data movement is mapped by the algorithm 

 

Once all the paths have been mapped out, the source variables of all the linked lists 

are compared to see which are identical. The algorithm that was adopted for this task was a 

simple one that checks each variable against another to see if one is a copy of the other or if 

they are copied from the same variable. A much better, but also much more complicated 

algorithm such as value numbering would return a smaller number of sets of paths as value 

numbering identifies not just copies of variables but also variables that have the same value. 

This algorithm was used as it would suffice for the test programs that would be used to 

measure the performance of SIMcc. In a future update of SIMcc, a value numbering 

algorithm will most likely replace the current algorithm to improve performance. 

Once the sets of paths that are of variables with the same data are established, the 
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paths are then re-organized to identify the overlapping PEs more easily. The algorithm takes 

each set of paths and creates a 2-D linked list. Each 1-D linked list represents a particular 

destination that any of the paths in the set traverses and each node in the 1-D linked list 

represents a particular XFER instruction that sends the data to that PE. The nodes are 

arranged chronologically, that is in an ascending order with respect to the instruction number. 

The algorithm constructs this data structure by going through every PE in all the paths in the 

set and checking its (X, Y) co-ordinates. If the same destination already exists in the data 

structure, then a new node is created and added to the appropriate place in the corresponding 

1-D linked list. If that particular destination has not been encountered, a new 1-D linked list is 

created for that destination. A diagram depicting the data structure is shown in Figure 13. 

 

X = 0
Y = 1

Inst = 15

X = 0
Y = 1

Inst = 33

X = 0
Y = 1

Inst = 100

X = 1
Y = 1

Inst = 16

X = 1
Y = 1

Inst = 18

X = 1
Y = 1

Inst = 35

Each array element corresponds to a particular set
of variables or temporaries whose values are identical

 

Figure 13 Data structure containing information about overlapping PEs in the paths 

 

Once all these data structures have been established, the IR can be traversed again to 

see which data items would be stored in the buffer and which would not be in order to 

minimize the size of the buffer while maximizing the number of XFER instructions 
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eliminated 

 3.4.3 Algorithm for Buffering and Replacement 

 Since every XFER instruction can potentially be buffered and the buffer will often be 

full, a decision will need to be made at every XFER instruction on which data to replace, if 

any at all. The total number of ways in which to allocate data to the buffer for an entire 

program is so large that it is not feasible to check through them all to see which yields the 

largest number of XFER instructions eliminated. However, the different decisions that can be 

made at every XFER instruction can be formed in to a decision tree, where the tree branches 

out whenever a XFER instruction is encountered and a choice of which data item in the 

buffer to replace is made. The problem can then be presented as a search problem where the 

tree can be traversed or searched in a particular way to find a solution. A small part of the 

decision tree that can be constructed is shown in Figure 14. 

 

XFER 0

XFER 1XFER 1 XFER 1

XFER 2 XFER 2 XFER 2

XFER 3

Replace Slot 1 Replace Slot 2
Do Not Buffer

Replace Slot 1 Replace Slot 2
Do Not Buffer

Replace Slot 1

 

Figure 14 Part of the decision tree that can be constructed for buffer allocation 

 

 The tree that is formed from any program would have varying depths at different 

terminal nodes as some sets of decisions would yield more elimination of XFER instructions 

than the others. This would suggest a breadth first search to be the best method of finding the 
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solution as the path with the smallest depth would be optimal. However, since the size of the 

buffer determines the number of paths at each node, even if the buffer size is as small as 4, 

the number of nodes that must be checked at each level increases to such large numbers that 

checking all of them would be too time consuming to be practical after 10 or so XFER 

instructions.  

 Since every path leads to a solution a depth first search can also be used. However, 

since only one particular path would be explored with a depth first search, determining 

whether the path that was taken is the optimal path would be more difficult. To find a good 

solution to the problem using a depth first search algorithm, factors that influence the number 

of XFER instructions that can be eliminated must be found and decisions must be made based 

upon those factors. The solution can now be found using a hill climbing algorithm which is a 

depth first search with a heuristic measurement for ordering the choices and taking the choice 

with the best chance of yielding the optimal solution [18]. 

 In order to maximize the number of XFER instructions eliminated, each data that is 

stored in the buffer in a node must be received by the node as many times as possible before 

the data is replaced. Since the program has already constructed a data structure that keeps 

track of all the XFER instructions that send a particular data to a particular destination, it can 

easily determine how many XFER instructions can potentially be eliminated by storing that 

data in the buffer for a particular number of cycles. The objective is to eliminate as many 

XFER instructions as possible and therefore storing data that can eliminate more instructions 

is desirable. Therefore the algorithm ‘looks ahead’ to see how many instructions can be 

eliminated by storing a particular data in the buffer. 

 Whenever the algorithm used in SIMcc for buffering and replacing data encounters a 

XFER instruction, it checks the buffer to see if that data is already in it. If the data already 

exists in the node, the XFER instruction is not needed, and the data in the buffer can be used 

instead. Otherwise, the algorithm checks the buffer to see if there is any empty slot that can 
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be used. If no such slot is available, it checks the buffer to see which data eliminates the 

fewest number of XFER instructions from that point in time onwards. If the data item in 

question eliminates more instructions than the data in the buffer that was found to eliminate 

the fewest instructions, then that data replaces the one in the buffer, otherwise, nothing is 

replaced and the XFER instruction is executed. 

Whenever a piece of data is stored in the buffer, it is merely copied to a newly 

created temporary variable. If a XFER instruction is eliminated by that data in the buffer, all 

occurrences of the destination variable of the XFER instruction between the XFER 

instruction and the instruction that next kills it, is replaced by the temporary variable. After 

all modifications to the IR has been made by the buffering algorithm, the temporaries that 

were used as a buffer slot is allocated by the register allocator. In essence, each buffer slot is a 

common register that is not being used. This method is more efficient than storing them in a 

specified location like the memory or in pre-determined registers, as most programs do not 

use many registers simultaneously and accessing the registers is much faster than accessing 

the memory. 

SIMcc also has an algorithm that replaces data items randomly and an algorithm that 

replaces the oldest data item, thereby using the buffer as a FIFO queue. These algorithms 

were implemented to see how well the hill climbing algorithm performs compared to them. 
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CHAPTER 4 

RESULTS 

 

 Several small applications including 8x8 DCT, 5x5 convolution and 9x9 convolution 

algorithms were created in SEP in order to measure how well SIMcc eliminates 

communication instructions using the buffer.  The sizes of the three programs in SEP and 

their sizes in assembly language after being compiled by SIMcc without buffering, and their 

execution cycles are shown in Table 1. The sizes of the programs in SEP and assembly 

language are those after loop unrolling has been performed on loops with communication 

instructions. 

 

Table 1 Program sizes and execution times for various applications 
 SEP (lines) Assembly (lines) Execution Cycles 

5x5 Convolution 131 348 800 
9x9 Convolution 543 1205 2721 

8x8 DCT 456 1431 4173 

 

 Then, the programs were compiled with buffering in effect, with three different 

heuristics for buffer replacement: look-ahead, random and FIFO. The compiled assembly 

program was executed on the SIMPil simulator to measure the effectiveness of the heuristics 

used to eliminate the communication instructions. 

 

4.1 Percentage of Eliminable Communication Eliminated 

 Each of the example programs executes a certain number of communication 

instructions. Among them, certain instructions are absolutely necessary in order to distribute 

the data to all the destinations that need the data. For example, in a 5x5 convolution, each 

node needs to send its data to 24 other nodes surrounding it. Therefore, the first 24 XFER 
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instructions that send the data to the 24 surrounding nodes are compulsory, and all others are 

eliminable, that is, not necessary and therefore could be eliminated if buffered perfectly. 

Percentage of XFERs eliminated as compared to the total number of eliminable XFERs for 

varying buffer sizes for 5x5 convolution, 9x9 convolution, and 8x8 DCT are shown in Figure 

15, Figure 16, and Figure 17 respectively. Each graph compares the performance of the three 

different heuristics that were used for replacement. 
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Figure 15 Effect of buffer size on percentage of eliminable XFERs eliminated for a 5x5 
convolution algorithm 
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Comparison of Buffer Replacement Policies for a 9x9

Convolution Algorithm
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Figure 16 Effect of buffer size on percentage of eliminable XFERs eliminated for a 9x9 
convolution algorithm 
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Figure 17 Effect of buffer size on percentage of eliminable XFERs eliminated for a 8x8 DCT 
algorithm 

 

4.2 Percentage of Total Communication Eliminated 

 Percentage of XFERs eliminated as compared to the total number of XFERs, 
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including the mandatory XFERs, for 5x5 convolution, 9x9 convolution, and 8x8 DCT are 

shown in Figure 18, Figure 19, and Figure 20 respectively. Again, each graph compares the 

different heuristics used for replacement. 
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Figure 18 Effect of buffer size on percentage of total XFERs eliminated for a 5x5 convolution 
algorithm 
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Comparison of Buffer Replacement Policies for a 9x9

Convolution Algorithm
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Figure 19 Effect of buffer size on percentage of total XFERs eliminated for a 9x9 convolution 
algorithm 
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Figure 20 Effect of buffer size on percentage of total XFERs eliminated for a 8x8 DCT 
algorithm 

 

 It can be seen from the various graphs that using the look-ahead replacement method 

performs significantly better than random replacement or FIFO replacement. For the look-
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ahead replacement method, the number of XFERs eliminated grows quickly as the number of 

slots increases from 1 to 4, and then it starts to level, hitting the maximum at around buffer 

size of 9 for 5x5 convolution, and earlier at buffer size of 6 for 9x9 convolution and 8x8 DCT. 

As the buffer gets larger, enough slots are available to accommodate all data items to 

eliminate all eliminable XFERs. 

By studying the graphs, it can be concluded that the optimal size for the buffer would be 

either 4 or 5. Although a buffer size of 6 or larger that maximizes the number of XFERs 

eliminated is desirable, the gain in performance is too small to warrant the use of the extra 

registers that would be required, as that could potentially result in very costly spills in to the 

memory. 

 

4.3 Performance Speedup 

The ability of the buffer on eliminating XFER instructions and the effect of the buffer 

size on performance has been studied so far. However, every time a piece of data is buffered, 

a copy instruction is created, increasing the instruction count. Therefore, the effect of the 

buffer size on the overall execution time of the program is slightly different. Every time data 

is placed in the buffer, at least one XFER must be eliminated to break even. The effect of 

buffering on the number of instruction count is smaller when considering the overall 

execution time. The effect of buffer size on execution time for 5x5 convolution, 9x9 

convolution, and 8x8 DCT are shown in Figure 21, Figure 22, and Figure 23 respectively. 

Each graph compares the effectiveness of the three different heuristics used for replacement. 
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Figure 21 Effect of buffer size on execution time for a 5x5 convolution algorithm 

 

Comparison of Buffer Replacement Policies for a 9x9
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Figure 22 Effect of buffer size on execution time for a 9x9 convolution algorithm 
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Comparison of Buffer Replacement Policies for a 8x8 DCT
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Figure 23 Effect of buffer size on execution time for a 8x8 DCT algorithm 

 

 The results indicates that more instructions are generated than are eliminated when 

the buffer size is small. Performance gain can be seen only after the buffer size exceeds three. 

For 5x5 convolution and 8x8 DCT, even after the buffer size exceeds seven or eight when the 

maximum number of eliminable XFERs is eliminated, the percentage of overall execution 

cycle saved barely exceeds 1%. Slightly better result can be seen from 9x9 convolution, 

where about 4% reduction in execution time can be observed with a buffer size of four, 6% at 

a size of five, and a maximum of 7% at a size of six. 

 The poor performance gains that can be observed from 5x5 convolution and DCT are 

due to high execution time as compared to the amount of communication cycles. This is 

mainly due to overhead instructions that were necessary. In the convolution programs, there 

are instructions that store the mask in each node and in the DCT program, more than half the 

cycles are spent dividing the mesh in to 8x8 grids. Therefore, when these algorithms are 

executed multiple times, as they are done in larger applications, the observed performance 

gains will be higher, as the overhead instructions will still only be executed once, increasing 

the percentage of communication cycles. 
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4.4 Effect of Look-ahead Distance on Performance 

 Another aspect of the buffer algorithm that was studied was the effect of the number 

of instructions the algorithm looked ahead to see how many XFERs could be eliminated by 

having that data in the buffer. The effect of the look-ahead distance on the total number of 

XFERs eliminated for different algorithms is shown in Figure 24. Buffer size of 4 was used. 
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Figure 24 Effect of look-ahead distance on percentage of eliminable XFERs eliminated 

 

 It can be seen from the graph that although the performance does vary a little with 

smaller look-ahead distances, the performance generally increases by increasing look-ahead 

distance, and levels out at a maximum after a certain number. Therefore, it must generally be 

a good idea to just check the total number of XFERs a piece of data could potentially 

eliminate from that point in the program till the end of the program. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

 The SIMcc compiler is capable of eliminating a large percentage of redundant 

communication. However, performance improvement in execution cycles will not be seen 

unless a large percentage of the instructions are communication instructions. In fact, using 

buffering degrades performance if there are too few communication instructions or if the 

communication has already been fully optimized with no redundant instructions. 

The look-ahead algorithm performed significantly better than either random or FIFO 

replacement policies, and the look-ahead algorithm was able to eliminate all redundant 

communication instructions at a smaller buffer size. The optimal size for the buffer was found 

to be 4 or 5 at which 86 and 89 percent of redundant communication was eliminated 

respectively for 5x5 convolution. For the same buffer sizes, 86 and 94 percent of 

communication instructions were eliminated for 9x9 convolution, and 85 and 94 percent were 

eliminated for 8x8 DCT. After 4 or 5, the buffer hit the point of diminishing return but still 

eliminated all communication by 7 or 9. No performance gain in terms of execution cycles 

was seen with 5x5 convolution or 8x8 DCT as the percentage of communication was too 

small to affect the performance, but with 9x9 convolution, four and six percent reduction in 

execution cycles was seen with buffer sizes of four and five respectively. 

 This version of SIMcc is basic and there is much room for improvement. The 

buffering mechanism could be improved further by computing the number of registers 

available at each point in time and using only the ones available to increase the buffer size 

without spilling into the memory. Better data grouping algorithms like value numbering can 

be used to minimize the data sets and maximize the number of instructions each buffered data 

can eliminate.  

In future updates of the compiler, more common optimizations could be implemented 
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for better performance and more language constructs can be added for wider programming 

options. Currently, the compiler assumes a PPE (Pixels per Element) of 1. In a real system 

this may not suffice as some images may be too large for the processor array to support a PPE 

of 1. The compiler can be re-designed or modified to hide the PPE from the programmer and 

automatically detect the optimal PPE to maximize processor usage and generate instructions 

accordingly. 

 Since energy is also an important issue for portable architectures, analysis on energy 

usage could be done in order to see if there are any advantages or disadvantages of using 

buffers, as buffering may reduce the network usage, but it does increase processor and 

register usage. 
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