
REDUCING COMMUNICATION THROUGH BUFFERS ON A SIMD
ARCHITECTURE

A Dissertation
Presented to

The Academic Faculty

By

Jee W. Choi

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science in Electrical and Computer Engineering

Georgia Institute of Technology
April 28, 2004

REDUCING COMMUNICATION THROUGH BUFFERS ON A SIMD
ARCHITECTURE

Approved by:

Dr. D. Scott Wills, Advisor

Dr. Hsien-Hsin Lee

 Dr. Sudhakar Yalamanchili

Date Approved: 05/12/2004

ACKNOWLEDGEMENT

 I would like to express my sincerest gratitude to my advisor, Dr. Donald Scott

Wills for his guidance, support and encouragement throughout my time at Georgia

Tech as a graduate student. Without his help and his unending encouragements, I

would not have been able to complete this work.

 I would like to thanks Dr. Sudhakar Yalamanchili and Dr. Hsien-Hsin Lee for

serving in my thesis committee.

 I would also like to thank the member of the PICA group for their helpful

advices in times of need.

 Last but not least, I would like to thank my parents for their support,

encouragement and sacrifices that have brought me this far in life.

 iii

TABLE OF CONTENTS

Acknowledgements iii

Table of Contents iv

List of Tables v

List of Figures vi

Abstract viii

Chapter 1 Introduction 1

Chapter 2 Background 5

Chapter 3 Methodology 11
3.1 SIMPil: A SIMD Pixel Processor with Integrated Optoelectronic

 Detectors 11
3.2 SEP: A High Level Language for Programming on the SIMD
 Architecture 12
3.3 SIMcc: A Compiler for the SIMPil Assembly Language 15

 3.4 Optimizing Communications 17
 3.4.1 Importance of Reducing Communication 17
 3.4.2 Algorithm for Tracking the Path of Data 19
 3.4.3 Algorithm for Replacement 23

Chapter 4 Results 26
4.1 Percentage of Communication Eliminated 26
4.2 Percentage of Total Communication Eliminated 28
4.3 Percentage of Execution Cycles Eliminated 31
4.4 Effect of Look-ahead Distance on Performance 34

Chapter 5 Conclusions and Future Work 35

References 37

 iv

LIST OF TABLES

Table 1 Program sizes and execution times for various applications 26

 v

LIST OF FIGURES

Figure 1 Delay for Metal 1 and global wiring versus feature size [19] 3

Figure 2 Impact of different SIMD systems and their compilers to
 the development of SEP and SIMcc and the need for an
 optimizing compiler for SIMPil 10

Figure 3 Cross sectional diagram showing the coupled detectors and
 processors [15] 11

Figure 4 General architecture of the SIMPil system 12

Figure 5 An overview of instructions supported by SEP 13

Figure 6 Execution of a SEP WHILE loop on SIMPil 14

Figure 7 Comparison of various components of different compilers 15

Figure 8 Format and a list of quadruples used in SIMcc 16

Figure 9 Communication paths before and after optimization 18

Figure 10 Steps taken by the algorithm to identify redundant
 communication 19

Figure 11 Co-ordinate system with an example trace 20

Figure 12 Example of how data movement is mapped by the algorithm 21

Figure 13 Data structure containing information about overlapping
 PEs in the paths 22

Figure 14 Part of the decision tree that can be constructed for buffer
 allocation 23

Figure 15 Effect of buffer size on percentage of eliminable XFERs
 eliminated for a 5x5 convolution algorithm 27

Figure 16 Effect of buffer size on percentage of eliminable XFERs
 eliminated for a 9x9 convolution algorithm 28

Figure 17 Effect of buffer size on percentage of eliminable XFERs
 eliminated for a 8x8 DCT algorithm 28

Figure 18 Effect of buffer size on percentage of total XFERs eliminated

 vi

 for a 5x5 convolution algorithm 29

Figure 19 Effect of buffer size on percentage of total XFERs eliminated
 for a 9x9 convolution algorithm 30

Figure 20 Effect of buffer size on percentage of total XFERs eliminated
 for a 8x8 DCT algorithm 30

Figure 21 Effect of buffer size on execution time for a 5x5
 convolution algorithm 32

Figure 22 Effect of buffer size on execution time for a 9x9
 convolution algorithm 32

Figure 23 Effect of buffer size on execution time for a 8x8 DCT algorithm 33

Figure 24 Effect of look-ahead distance on percentage of eliminable
 XFERs eliminated 34

 vii

ABSTRACT

 Advances in wireless technology and the growing popularity of multimedia

applications have brought about a need for energy efficient and cost effective portable

supercomputers capable of delivering performance beyond the capabilities of current

microprocessors and DSP chips. The SIMPil architecture currently being developed

at Georgia Institute of Technology is a promising candidate for this task. In order to

develop applications for SIMPil, a high level language and an optimizing compiler for

the language are essential. However, with the recent trend of interconnect latency

becoming a major bottleneck on computer systems, optimizations focusing on

reducing latency are becoming more important, especially with SIMPil, as it is highly

scalable. The compiler tracks the path of data through the network and buffers data

in each processor to eliminate redundant communication. With a buffer size of 5, the

compiler was able to eliminate 96 percent of the redundant communication for a 9x9

convolution and 8x8 DCT algorithms. With 5x5 convolution, only 89 percent

elimination was observed. In terms of performance, 106 percent speedup was

observed with 9x9 convolution at buffer size of 5 while 5x5 convolution and 8x8

DCT which have a much lower number of communication showed only 101 percent

speedup.

 viii

CHAPTER 1

INTRODUCTION

Advances in wireless technologies and the development of inexpensive storage

media such as DVD (Digital Versatile Disc) in recent years have enabled large amounts of

data to be transmitted or transported to any place on the globe. With growing popularity of

multimedia applications, this allows more powerful multimedia applications such as video

email and teleconferencing, manipulating captured image or video or real-time rendering of

3-D objects to be carried out on portable devices such as a PDA (Personal Digital Assistant),

a digital camera, or a cellular phone. However, in order for processors to be used on such

devices, they have to not only be small and powerful, but also energy efficient and cost

effective. The processors found on current PDAs or cellular phones are not capable of

providing the required computation. SIMPil (SIMD Pixel Processor), a focal plane SIMD

architecture currently being studied at Georgia Tech is a promising candidate that may meet

the requirements of portable multimedia supercomputing [15].

The SIMPil architecture is well-suited for multimedia applications because it exploits

the tremendous amount of data parallelism inherent in media-centric workloads. Workload

can be broken down in to smaller blocks and distributed over the Processing Elements (PEs)

and processed in parallel, achieving performance that cannot be matched by common

microprocessors and DSP architectures, or even by some other parallel architectures [13].

SIMPil uses only the NEWS mesh network connections. This differs from the MasPar MP-1

which employs the X-net mesh interconnect for 8-way local communication and the

multistage crossbar interconnect for global communication [17], or the Connection Machine

CM-1 which employs a NEWS (north, east, west, south) network for local communication

and a router for global communication. Although this may seem as a disadvantage as

communication between distant processors would take longer, it allows savings in terms of

 1

hardware costs and simpler operations as the communication latency is deterministic [9].

In order to facilitate software development on the SIMPil architecture, a high level

language and a compiler for the language are essential. Although often times, programs

written directly in assembly language tend to be more efficient than those written in high

level languages and then compiled, writing and debugging programs in assembly language is

time consuming and difficult, especially as programs size gets larger. Also, the SIMPil

architecture, with the NEWS network as its only means of communicating data across nodes,

provides another challenge. As data travels further and more frequently, optimizing their

movement through the network becomes more and more difficult. Therefore, having an

efficient optimizing compiler is absolutely necessary, as it can not only minimize disparity in

performance between compiled code and hand-written code, it can also reduce the number of

unnecessary communications in the network.

Through out the last four decades, transistor density has increased at an exponential

rate as predicted by Moore’s Law, and the size of processors have become larger,

incorporating even larger number of transistors, resulting in faster and more functional

processors. However, these trends have also resulted in narrower and longer interconnects

which increase the latency. In recent years, interconnect latency has become a major

limitation on the scalability of system performance [20]. It is predicted in the ITRS

(International Technology Roadmap for Semiconductors) 2003 that relative latency will

continue to increase as transistors become even smaller, as shown in Figure 1 [19].

 2

Figure 1 Delay for Metal 1 and global wiring versus feature size [19]

In the future, system designs will become interconnect-centric and design, process

technology, packaging, and board construction will all need to come together to provide an

integrated system level solution to interconnect requirements [19]. Some of the current

research in interconnects include 3D interconnects [21], where interconnects link multiple

layers of transistors and wiring stacked on top of each other, and new types of interconnects

such as microwave and optical interconnects [20], and nanotubes.

Therefore, reducing redundant communication would, in addition to reducing the

number of instructions, minimize the latency caused by communication that could reduce the

performance of the system. This is especially important for SIMPil as it can easily be scaled

by adding more processors. The added processors could increase the size of the network and

the latency involved in communication. If the communication is not properly optimized, it

could negate the benefit of having more processors. Although reducing communication

comes at the costs of compilation overhead and extra memory usage, compilation occurs only

 3

once per platform and memory will become less of a cost as technology improves.

This thesis discusses how a compiler can track the path of data through the network

and minimize the number of unnecessary communications by buffering the data in each

processor. The algorithm decides whether to buffer the data or not by looking ahead in the

program to see how much communication the data can eliminate. 5x5 convolution, 9x9

convolution and 8x8 DCT algorithms were used to exercise the algorithm and the results

were compared against those of random and FIFO replacement policies.

Given enough buffers, the look-ahead algorithm was able to eliminate all redundant

communication instructions, but the optimal size was found to be 5 at which 89 percent of the

redundant communication was eliminated for 5x5 convolution, and 94 percent of the

redundant communication was eliminated for 9x9 convolution and 8x8 DCT algorithms.

After 5, the buffer hit the point of diminishing return. No performance gain in terms of

execution cycles was seen with 5x5 convolution or 8x8 DCT as the percentage of

communication was too small to affect the performance, but with 9x9 convolution, 6 percent

reduction in execution cycles was seen with buffer size 5.

 4

CHAPTER 2

BACKGROUND

ILLIAC-IV and ICL DAP

 The history of SIMD systems can be traced back to the 1960’s with the design of the

ILLIAC-IV which was composed of 64 64-bit processors and had a parallelizing FORTRAN

compiler called the IVTRAN. ILLIAC-IV was later followed by the ICL DAP (Distributed

Array Processor) in the 1970’s. However, it was not until the 1980’s that interest in SIMD

really picked up and led to the development of machines such as the Connection Machine and

the MasPar.

Connection Machine

One of the first successful massively parallel machines in the 1980’s was the

Thinking Machines Corporation Connection Machine first introduced in 1985. It was

designed for general purpose applications whose inherent parallelism could be exploited to

increase performance. The CM (Connection Machine) virtual-machine parallel instruction set,

called Paris, presents the users with abstract machine architecture. Paris runs on the

sequencers, where the instructions are parsed and appropriate sequence of nano-instructions

are generated for the data processors. Paris allows for a rich instruction set and a virtual

processor abstraction, where the Connection Machine is initialized with a virtual number of

processors to fit the application needs, and then the physical processors time-slice itself over

multiple data regions that has been assigned to it. This enables effective and flexible

programming. Paris is the target language of the high level language compilers that are

commonly used on the Connection Machine.

The Connection Machine system software uses existing programming languages with

minimal extensions to support data-parallel constructs to ease the pain of learning a

 5

completely new programming style, and of the many that are available, such as Fortran,

which uses the array extensions in the draft Fortran 8x standard, and *Lisp and CM-Lisp,

which are data parallel dialects of the Common Lisp, C* stands out in particular with its

unobtrusive data parallel extensions, as it can be read and written like the common serial C

programs [3].

MasPar

 Another recognized SIMD machine is the MasPar. The MasPar architecture uses a

different approach to software development in that it uses the ACU (Array Control Unit), a

fully programmable computer, rather than a micro-programmed sequencer, thus depending

more on good compiler optimization techniques to generate code than on pre-programmed

complex instructions. The approach to processor virtuality taken by the MasPar is also

different than that taken by the Connection Machine in that instead of building virtuality into

the instruction set, it utilizes optimizing compiler technology as well as elements of

architecture and machine design. Instead of assigning blocks of data to processors statically,

it uses optimizing techniques to minimize data motion and optimize register usage. The use

of optimizing compilers by the MasPar system allowed class of optimizations and flexibility

that was not possible with an instruction set concept of virtuality exhibited on the Connection

Machine, thus demonstrating the importance of compilers in the development of software.

 MasPar provides adaptation of C and FORTRAN suitable for massively parallel

machines just as the Connection Machine does. Three such languages are the MasPar

FORTRAN (MPF), MasPar C (MPC), and the MasPar Parallel Application Language (MPL).

MPF and MPC are languages that generate code for all parts of the system (the front-end

system, the ACU and the parallel array) whereas MPL generates code for only the parallel

subsystem (the ACU and the parallel array). The MPF and MPC are analogous to the

Connection Machine’s FORTRAN and C* languages. The MPL, however, provides a simpler,

 6

massively parallel C for programming the ACU and the parallel array, and has three features

that distinguish it from the regular C language. First, a variable can be declared as plural, in

which case it is instantiated on all PEs; otherwise it can be declared as singular and

instantiated only on the ACU. Expressions can mix plural and singular variables, in which

case the scalar variables are broadcasted to the PEs and it is promoted to a plural variable.

Control structure semantics are adapted to a SIMD computation model in that if a control

expression is plural, then the expression is evaluated in a plural form, and only the active PEs

execute the relevant code. Lastly, language syntax has been added to support the use of the X-

net and the global router which allows PEs access to a plural variable on a neighboring PE, or

an arbitrary PE, respectively [4].

Other Data Parallel Languages and Compilers

 Other than the languages and their compilers for the Connection Machine and the

MasPar that were mentioned above, many other languages and compilers exist for massively

parallel architectures. The dbC language is a data parallel extension to the ANSI C similar to

C* on the Connection Machine and the MPL on MasPar [6]. SC is another enhancement of C

language for the Connection Machine which adds a few new data types and primitives to

facilitate the development of data parallel programs. SC does not have a compiler for it but

has a translator that converts SC language to C* language which is then compiled to Paris

assembly instructions, thus providing a different approach to creating data parallel programs

[5]. By utilizing C as its base language, most of the languages available for massively parallel

machines depend on an existing compiler, namely the C compiler, to do much of its serial

optimizations and compilation, but also provide an extension for programming parallel

applications. This is also the approach taken by the SEP (Simple Explicit Parallel) language

developed for the SIMPil architecture.

 7

SEP Language for SIMPil and its Compiler, SIMcc

 Before the development of the SEP language for SIMPil, all programming on SIMPil

was done in assembly language. Although this satisfies most of the optimization for relatively

small programs it is difficult to create large programs due to the sheer amount of coding

required. The SEP language and the SIMcc compiler for the language was created to remedy

this problem. The SEP language closely resembles the MasPar’s MPL in that it uses a subset

of C language enhanced with the three special grammar features of the MPL as described

above to support massively parallel programming. Since SIMPil was targeted for portable

multimedia computing, only a small subset of the C language deemed necessary for such

applications was selected. This made the SEP language easier to program and to optimize

[14]. The original SIMcc compiler for the SEP language was, however, inadequate in terms of

achieving any sort of optimizations, as the compiler translated the SEP language directly in to

SIMPil assembly language, without the use of any IR (Intermediate Representation) or

dataflow analysis. This resulted in inefficient use of registers and thus reduced performance

drastically.

Convolution and DCT in Multimedia Applications

 Some of the most common multimedia applications use certain algorithms repeatedly.

For example, many image processing applications such as noise removal and edge

enhancement use convolution [7], and image compression techniques such as those used in

the popular JPEG standard use DCT (Discrete Cosine Transforms) [11]. Techniques such as

convolution and DCT have a common property in that they both require a large number of

inter-processor communications. When programs are written directly in assembly language

and the programs are small it is easy to minimize the total number of communications.

However, when the program becomes more complex it becomes more difficult to hand

optimize the code. Moreover, if the algorithm is modified for different applications, it

 8

becomes cumbersome to re-optimize the code. Using a high level language relieves the

problem of complexity in programming but the problem of increased communications

becomes more apparent, as the architectural details are hidden from the programmer. Since

inter-processor communication time is generally longer than computational time,

communication could become a bottleneck in algorithms that have a large number of

communications.

Reducing Communications

In the past, several solutions to the problem of reducing communication time were

proposed on SIMD systems. CCSIMD (Concurrently Communicating SIMD) hides

communication latencies by overlapping communication and computation or by

communicating simultaneously in multiple directions [9]. In another example, by utilizing a

shared memory, the total number of communications for a bitonic sort on a sorting network

was reduced [12].

Summary

It can be seen from comparing the software development environments of the

Connection Machine and the MasPar utilizing an optimizing compiler can lead to

improvements in performance that cannot otherwise be achieved. Similarly, in the case of the

SIMPil architecture, the total number of communication can potentially be reduced while

keeping the programming complexity minimal by utilizing the SEP language and an

optimizing compiler. Although the SEP language provides a simple and easy programming

environment, the original SIMcc compiler that was first developed for the language is

inadequate in reducing the total number of communications as it provides no means of

optimizing the generated assembly code.

 9

In this paper, methods of reducing inter-processor communication for the SIMPil architecture

through the use of high level language and its compiler will be developed and discussed. The

overall relationship between different SIMD systems and their compilers and the SIMPil

architecture and its SEP language and compiler is illustrated in Figure 2.

Figure 2 Impact of different SIMD systems and their compilers to the development of SEP

and SIMcc and the need for an optimizing compiler for SIMPil

I L LI A C - I V

I L C D A P MasPar

Connection
Machine SIMPil

I V T R A N

1 9 6 0 ’ s a n d 1 970’ s 1990’s1980’s

C * Fortran 8x *Lisp/
CM-Lisp

M P C MPFMPL

SEP(old)

Variable
Control

Communication

2 0 0 0 ’ s

S E P (n e w)

O p ti m i z a t i o n

 10

CHAPTER 3

METHODOLOGY

3.1 SIMPil: A SIMD Pixel Processor with Integrated Optoelectronic Detectors

 SIMPil is a SIMD architecture developed at Georgia Tech for portable multimedia

applications that exploits inherent data parallelism in images and videos. SIMPil also

incorporates an integrated array of thin film detectors stacked directly on top of the

processing plane to reduce the image data transfer bottleneck [15]. A cross sectional diagram

showing the two layers is shown in Figure 3.

SIMD processing layerdetector array & ADC layer

through-wafer
optoelectronic
communication

Figure 3 Cross sectional diagram showing the coupled detectors and processors [15]

 SIMPil architecture consists of an Array Control Unit (ACU) connected to an array

of SIMD PEs. Programs are stored in the ACU and broadcasted to every PE which, in turn,

executes the instructions on the data in its local memory. Each PE communicates with its

neighbors via a NEWS mesh network closed as a torus. The general architecture of SIMPil is

shown in Figure 4

 11

Figure 4 General architecture of the SIMPil system

 Each PE is interfaced with a subset array of the thin film detectors stacked on top of

the processing plane and an ADC (Analog to Digital Converter) to convert the light

intensities incident on the detectors to a digital value. The microarchitecture of a PE consists

of 16-bit datapath including an ALU, a barrel shifter, a multiply-accumulator unit, 16-word

register file, and a local memory.

 Overall, the SIMPil architecture provides the high computational throughput and data

bandwidth required by modern multimedia applications while satisfying the low power and

low cost constraints required of a portable processor. All tests done on the SIMPil system in

this research was done through the SIMPil16 simulator.

3.2 SEP: A High Level Language for Programming on the SIMPil Architecture

 In order to facilitate software development on any system, a high level language and

a good compiler are essential, and SIMPil is no exception. The SEP language and its compiler,

the SIMcc, were first developed by Gunther R. Costas for the SIMPil system with this in

mind [14].

The SEP language was designed to make programming for the SIMPil system as easy

as possible. The language constructs used in SEP were kept to only those that are necessary in

 12

creating common image processing applications and syntax similar to that of the widely used

C language was adopted. SEP instructions include the WHILE loop, IF condition, arithmetic

and logic instructions, and comparison operators. Also, there are special SIMPil specific

instructions for communication and instructions for retrieving data sampled by the detector.

An overview of instructions supported by SEP is shown in Figure 5.

SINGULAR Singular variable declaration
PLURAL Plural variable declaration
IF/ELSE If/else condition
WHILE While loop
GET Communication instruction
LOAD Retrieve data sampled by the detectors
SAMPLE Sample image using detector
SHOW_IMAGE Display image stored in memory
SET Set architectural parameters
+, -, *, /, = Arithmetic operators
&&, ||, ==, !=, <=,
>=, <, >

Logical operators

Figure 5 An overview of instructions supported by SEP

 SEP supports two types of variables: singular and plural variables. Singular variables

are integer variables that are declared only on the ACU, and plural variables are those that are

declared on every PE. Plural variables can also be declared as an array. Most SEP instructions

can be used with either a singular variable or a plural variable. Operations between variables

of the same data type evaluate to a variable of the same data type and operations between a

singular variable and a plural variable will evaluate to a plural variable.

When the IF condition is used in conjunction with a condition that evaluates to a

singular variable, the instruction is executed only by the ACU, and when it is used in

conjunction with condition that evaluates to a plural variable, it is executed by all the PEs and

only the PEs whose condition evaluates to true will execute the instructions within the IF

 13

condition.

The WHILE loop is similar to the IF condition. When the condition evaluates to a

singular variable, the ACU executes the instruction like a normal WHILE loop. However,

when the condition evaluates to a plural variable, the ACU sends instructions to the PEs and

each PE executes the instructions within the WHILE loop as long as the condition evaluates

to be true. However, instead of stopping here, the ACU repeatedly sends the instructions to

the PEs until none of the PEs evaluate the condition to be true. A diagram of how a WHILE

loop is executed by the PEs is shown in Figure 6.

ID = 0 ID = 1

ID = 2 ID = 3

ID = 0

ID = 1

ID = 0

ID = 1 ID = 2

ID = 0

ID = 0

ID = 0

ID = 0

ID = 0

ID = 0 ID = 0

iteration 0 START iteration 1

iteration 2 iteration3 END

WHILE (ID > 0)
ID --

END

Active Node Sleeping Node

Figure 6 Execution of a SEP WHILE loop on SIMPil

 The GET instruction is used to send data across the mesh network in any of the four

NEWS directions. The LOAD instruction is used to load pixel data taken by the detectors to a

variable. The various logical, arithmetic, and comparison operators used in SEP are identical

to those used by the C language.

3.3 SIMcc: An Optimizing SEP Compiler for SIMPil

 14

 The original SIMcc compiler designed by Gunther R. Costas was a simple single

stage compiler which generated SIMPil assembly instructions directly from a SEP program.

Such simple compilers are often used for compiling simple languages like SEP as this design

makes the compiler easier to implement. However, it also makes the compiler less efficient as

it does not allow any form of optimization. Therefore, the original SIMcc compiler was

redesigned from the parser level up to include the use of IR, optimizations and more efficient

register allocation which was necessary to implement optimizations for communication. A

diagram showing the various components of different compilers is shown in Figure 7.

Old SIMcc New SIMcc Typical Optimizing Compiler

SEP

Parser

Assembly

Source
Code

OptimizerBuffering

SEP

Parser Parser

IR IR

Optimizer

Register
Allocator

Register
Allocator

Assembly Assembly

Constant
Propagation

Loop
Unrolling

Constant
Subexpression

Elimination

Dead Code
Elimination

Figure 7 Comparison of various components of different compilers

 The parser in the newly designed SIMcc generates IR instead of real SIMPil

 15

assembly instructions. The IR is often instructions that are representative of the assembly

instructions but hides some of the architectural details that are unnecessary for optimizations.

This way, after optimizations, the IR can be then translated to assembly instructions for the

target system, and the optimizations won’t have to be repeated when being compiled on a

different architecture.

 There are different formats for IR, but for SIMcc, quadruples were chosen as they

most closely resembled the SIMPil assembly instructions, and this makes translating to

assembly instructions much easier. Format of the quadruples and a list of IR instructions used

in SIMcc are shown in Figure 8.

Quadruple Format
instruction destination temporary source temporary 1 source temporary 2

Quadruple List

add subtract multiply divide bra beq
bne bgt bge blt ble label

assign move assigntoarray loadfromarray sgt sge
slt sle seq sne wakeup and
or raisehand set xfer pload ploads

sample show_image os_load_id vectorize
Figure 8 Format and a list of quadruples used in SIMcc

 Once the parser generates IR, it can then be optimized. Typically optimizations such

as constant propagation, constant subexpression elimination, dead code elimination, and loop

unrolling are done before allocating registers and generating the final assembly instructions.

No optimizations were done on the IR generated by SIMcc as they do not generally affect

communication between PEs.

Once the IR and temporaries for the intermediate instructions were generated, the IR was

converted to real assembly instructions. Then registers were allocated to the temporaries and

 16

the variables used in the program. Another major change that was made to the compiler was

the use of a register allocator. In the old SIMcc, all variables were stored in the memory, and

registers were used only when the data was processed. This is analogous to how the C

compiler also keeps a copy of all variables in the memory, but in the case of SIMcc, it was

unnecessary and it resulted in a very inefficient register usage. Therefore, in the new SIMcc

compiler, G. Chaitin’s graph coloring algorithm [1] was used to allocate registers and no

variables were stored in the memory unless it was necessary. First, the IR was converted to

basic blocks for liveness analysis, with each IR instruction being a basic block. Then, an

interference graph was constructed from the result of the liveness analysis, and then the

variables and the temporaries were allocated registers. If a register could not be found for a

variable or a temporary, the variable was spilled to the memory, and the process was repeated

from the beginning. Once the register allocation is complete, a set of assembly instructions

that is executable on the SIMPil simulator is generated.

3.4 Optimizing Communications

 3.4.1 Importance of Reducing Communication

 Many common image and video processing applications on SIMD share data across

nodes. In convolution a PE shares its data with all nodes surrounding it, with the radius of

communication depending on the size of the mask. In DCT, nodes share data with PEs in the

same row and with those on the same column. Other examples include DFT (Discrete Fourier

Transform), matrix multiplications and median filtering. Some of these applications have

such a large number of communications that a significant amount of time is spent in

communicating rather than computing.

 When these algorithms are simple, writing them to communicate efficiently is also

simple whether it is in assembly language or in SEP. However, when they become more

complicated, implementing them completely in assembly language becomes near impossible

 17

and even using SEP it becomes difficult to write efficiently.

For example, writing a convolution algorithm using a 3x3 mask is simple whether

you’re writing in assembly language or in SEP because there is only one way to communicate.

Writing a convolution algorithm using a 5x5 mask to communicate efficiently becomes

moderately difficult in assembly language and a little trickier in SEP. The real challenge

begins when the size of the mask becomes 9x9. With such a large radius of communication,

optimizing the communication becomes extremely complicated even in SEP. In this case,

trying to minimize the communication by hand would take far too long for it to be practical

and mistakes could occur too easily. It would be much simpler to just send each data from

one source to one destination every time. However, doing so would greatly raise the number

of communication instructions and in the cases of convolution and DCT where the percentage

of communication is high, performance would be greatly affected. The most obvious solution

to this problem is to allow users to write the algorithm however they want it, and have the

compiler eliminate any redundant communication instructions. A diagram of communication

paths before and after optimization for a 5x5 convolution is shown in Figure 9.

4 XFERs 3 XFERs 2 XFERs

1 XFER

Unoptimized: 18 XFERs Optimized: 8 XFERs

Figure 9 Communication paths before and after optimization

 18

 3.4.2 Algorithm for Tracking the Path of Data

 The basic idea behind removing redundant communications is to track the path of

data through the nodes and see which nodes are visited multiple times by the same data. By

overlapping the paths of identical data and comparing the chronological order in which the

communication instructions occur in the program, candidates for removal can be identified.

Then, certain data items can be selected to be stored in the buffer to maximize the number of

communication instructions that can be eliminated. Since all communications are executed

simultaneously by all the nodes, data from all nodes travel in the same manner. Therefore,

tracking the path of a variable by studying the instructions is identical to tracking the path of

that variable on all nodes. A diagram showing the steps taken by the algorithm identify

redundant communication is shown in Figure 10.

Track Unique Paths of Data

Group Paths by Identical Data

Identify Overlapping Destinations

Buffer / Eliminate /Leave

Figure 10 Steps taken by the algorithm to identify redundant communication

An array of linked list was first constructed to track the movement of data among the

nodes using the (X, Y) co-ordinate system. Each linked list in the array is a collection of

nodes tracing the movement of a particular variable. Each node in the linked list represents an

XFER instruction that was used to send the variable to a neighbor. The northerly direction

represents the positive Y axis, the easterly direction represents the positive X axis, the

westerly direction represents the negative X axis and the southerly direction represents the

negative Y axis. For example, if the first XFER instruction sends the variable to the north, the

 19

first node in the linked list would have the position (0, 1). If another XFER instruction sends

the variable to the east, the new node added to the linked list would have the position (1, 1). A

diagram of the co-ordinate system is shown in Figure 11.

X = 0
Y = 0
R1

R2

X = 0
Y = 1

X = 1
Y = 1

X = 1
Y = 2

R1

R3

GET <N> R2 : R1

GET <E> R1 : R2

GET <N> R3 : R1

Figure 11 Co-ordinate system with an example trace

 The algorithm creates a new linked list whenever a new variable that is not identical

to a variable that is already at the end of an existing path is transferred. The algorithm keeps

track of these variables that are at the end of any paths in a queue. Any copy instruction that

copies a variable in the queue adds the copy to the queue and if any instruction overwrites a

variable in the queue, the variable is removed. Copy instructions may be an ADDI instruction

with immediate value of 0 or a XFER instruction that copies a variable to different variable in

a neighboring node. Therefore, there may be multiple variables in the queue that continues

the same path and a path may spread out like a tree. If any path does not have a variable in

the queue, that path is closed and will not be extended any further. An example of how this is

done is shown in Figure 12.

 20

GET <N> R1 : R2

GET <N> R3 : R1

GET <S> R1 : R4

GET <E> R5 : R3

R2 R4 R2 R4

X = 0
Y = 1
R1

X = 0
Y = 1
R1

X = 0
Y = 2
R3

R2 R4

X = 0
Y = 1
R1

X = 0
Y = 2
R3

X = 0
Y = -1

R1

R2 R4

X = 0
Y = 1
R1

X = 0
Y = 2
R3

X = 0
Y = -1

R1

X = 1
Y = 2
R5

Cycle 0 Cycle 1

Cycle 2 Cycle 3

Figure 12 Example of how data movement is mapped by the algorithm

Once all the paths have been mapped out, the source variables of all the linked lists

are compared to see which are identical. The algorithm that was adopted for this task was a

simple one that checks each variable against another to see if one is a copy of the other or if

they are copied from the same variable. A much better, but also much more complicated

algorithm such as value numbering would return a smaller number of sets of paths as value

numbering identifies not just copies of variables but also variables that have the same value.

This algorithm was used as it would suffice for the test programs that would be used to

measure the performance of SIMcc. In a future update of SIMcc, a value numbering

algorithm will most likely replace the current algorithm to improve performance.

Once the sets of paths that are of variables with the same data are established, the

 21

paths are then re-organized to identify the overlapping PEs more easily. The algorithm takes

each set of paths and creates a 2-D linked list. Each 1-D linked list represents a particular

destination that any of the paths in the set traverses and each node in the 1-D linked list

represents a particular XFER instruction that sends the data to that PE. The nodes are

arranged chronologically, that is in an ascending order with respect to the instruction number.

The algorithm constructs this data structure by going through every PE in all the paths in the

set and checking its (X, Y) co-ordinates. If the same destination already exists in the data

structure, then a new node is created and added to the appropriate place in the corresponding

1-D linked list. If that particular destination has not been encountered, a new 1-D linked list is

created for that destination. A diagram depicting the data structure is shown in Figure 13.

X = 0
Y = 1

Inst = 15

X = 0
Y = 1

Inst = 33

X = 0
Y = 1

Inst = 100

X = 1
Y = 1

Inst = 16

X = 1
Y = 1

Inst = 18

X = 1
Y = 1

Inst = 35

Each array element corresponds to a particular set
of variables or temporaries whose values are identical

Figure 13 Data structure containing information about overlapping PEs in the paths

Once all these data structures have been established, the IR can be traversed again to

see which data items would be stored in the buffer and which would not be in order to

minimize the size of the buffer while maximizing the number of XFER instructions

 22

eliminated

 3.4.3 Algorithm for Buffering and Replacement

 Since every XFER instruction can potentially be buffered and the buffer will often be

full, a decision will need to be made at every XFER instruction on which data to replace, if

any at all. The total number of ways in which to allocate data to the buffer for an entire

program is so large that it is not feasible to check through them all to see which yields the

largest number of XFER instructions eliminated. However, the different decisions that can be

made at every XFER instruction can be formed in to a decision tree, where the tree branches

out whenever a XFER instruction is encountered and a choice of which data item in the

buffer to replace is made. The problem can then be presented as a search problem where the

tree can be traversed or searched in a particular way to find a solution. A small part of the

decision tree that can be constructed is shown in Figure 14.

XFER 0

XFER 1XFER 1 XFER 1

XFER 2 XFER 2 XFER 2

XFER 3

Replace Slot 1 Replace Slot 2
Do Not Buffer

Replace Slot 1 Replace Slot 2
Do Not Buffer

Replace Slot 1

Figure 14 Part of the decision tree that can be constructed for buffer allocation

 The tree that is formed from any program would have varying depths at different

terminal nodes as some sets of decisions would yield more elimination of XFER instructions

than the others. This would suggest a breadth first search to be the best method of finding the

 23

solution as the path with the smallest depth would be optimal. However, since the size of the

buffer determines the number of paths at each node, even if the buffer size is as small as 4,

the number of nodes that must be checked at each level increases to such large numbers that

checking all of them would be too time consuming to be practical after 10 or so XFER

instructions.

 Since every path leads to a solution a depth first search can also be used. However,

since only one particular path would be explored with a depth first search, determining

whether the path that was taken is the optimal path would be more difficult. To find a good

solution to the problem using a depth first search algorithm, factors that influence the number

of XFER instructions that can be eliminated must be found and decisions must be made based

upon those factors. The solution can now be found using a hill climbing algorithm which is a

depth first search with a heuristic measurement for ordering the choices and taking the choice

with the best chance of yielding the optimal solution [18].

 In order to maximize the number of XFER instructions eliminated, each data that is

stored in the buffer in a node must be received by the node as many times as possible before

the data is replaced. Since the program has already constructed a data structure that keeps

track of all the XFER instructions that send a particular data to a particular destination, it can

easily determine how many XFER instructions can potentially be eliminated by storing that

data in the buffer for a particular number of cycles. The objective is to eliminate as many

XFER instructions as possible and therefore storing data that can eliminate more instructions

is desirable. Therefore the algorithm ‘looks ahead’ to see how many instructions can be

eliminated by storing a particular data in the buffer.

 Whenever the algorithm used in SIMcc for buffering and replacing data encounters a

XFER instruction, it checks the buffer to see if that data is already in it. If the data already

exists in the node, the XFER instruction is not needed, and the data in the buffer can be used

instead. Otherwise, the algorithm checks the buffer to see if there is any empty slot that can

 24

be used. If no such slot is available, it checks the buffer to see which data eliminates the

fewest number of XFER instructions from that point in time onwards. If the data item in

question eliminates more instructions than the data in the buffer that was found to eliminate

the fewest instructions, then that data replaces the one in the buffer, otherwise, nothing is

replaced and the XFER instruction is executed.

Whenever a piece of data is stored in the buffer, it is merely copied to a newly

created temporary variable. If a XFER instruction is eliminated by that data in the buffer, all

occurrences of the destination variable of the XFER instruction between the XFER

instruction and the instruction that next kills it, is replaced by the temporary variable. After

all modifications to the IR has been made by the buffering algorithm, the temporaries that

were used as a buffer slot is allocated by the register allocator. In essence, each buffer slot is a

common register that is not being used. This method is more efficient than storing them in a

specified location like the memory or in pre-determined registers, as most programs do not

use many registers simultaneously and accessing the registers is much faster than accessing

the memory.

SIMcc also has an algorithm that replaces data items randomly and an algorithm that

replaces the oldest data item, thereby using the buffer as a FIFO queue. These algorithms

were implemented to see how well the hill climbing algorithm performs compared to them.

 25

CHAPTER 4

RESULTS

 Several small applications including 8x8 DCT, 5x5 convolution and 9x9 convolution

algorithms were created in SEP in order to measure how well SIMcc eliminates

communication instructions using the buffer. The sizes of the three programs in SEP and

their sizes in assembly language after being compiled by SIMcc without buffering, and their

execution cycles are shown in Table 1. The sizes of the programs in SEP and assembly

language are those after loop unrolling has been performed on loops with communication

instructions.

Table 1 Program sizes and execution times for various applications
 SEP (lines) Assembly (lines) Execution Cycles

5x5 Convolution 131 348 800
9x9 Convolution 543 1205 2721

8x8 DCT 456 1431 4173

 Then, the programs were compiled with buffering in effect, with three different

heuristics for buffer replacement: look-ahead, random and FIFO. The compiled assembly

program was executed on the SIMPil simulator to measure the effectiveness of the heuristics

used to eliminate the communication instructions.

4.1 Percentage of Eliminable Communication Eliminated

 Each of the example programs executes a certain number of communication

instructions. Among them, certain instructions are absolutely necessary in order to distribute

the data to all the destinations that need the data. For example, in a 5x5 convolution, each

node needs to send its data to 24 other nodes surrounding it. Therefore, the first 24 XFER

 26

instructions that send the data to the 24 surrounding nodes are compulsory, and all others are

eliminable, that is, not necessary and therefore could be eliminated if buffered perfectly.

Percentage of XFERs eliminated as compared to the total number of eliminable XFERs for

varying buffer sizes for 5x5 convolution, 9x9 convolution, and 8x8 DCT are shown in Figure

15, Figure 16, and Figure 17 respectively. Each graph compares the performance of the three

different heuristics that were used for replacement.

Comparison of Buffer Replacement Policies for a 5x5

Convolution Algorithm

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6 7 8 9 10

Buffer Size

P
e
rc

e
n
ta

g
e
 O

f
E
lim

in
a
b
le

X
fe

rs
 E

lim
in

a
te

d Lookahead
Replacement

FIFO

Random

Figure 15 Effect of buffer size on percentage of eliminable XFERs eliminated for a 5x5
convolution algorithm

 27

Comparison of Buffer Replacement Policies for a 9x9

Convolution Algorithm

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6 7 8 9 10

Buffer Size

P
e
rc

e
n
ta

g
e
 o

f
E
lim

in
a
b
le

X
fe

rs
 E

lim
in

a
te

d Lookahead
Replacement

FIFO

Random

Figure 16 Effect of buffer size on percentage of eliminable XFERs eliminated for a 9x9
convolution algorithm

Comparison of Buffer Replacement Policies for a 8x8 DCT

Algorithm

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6 7 8 9 10

Buffer Size

P
e
rc

e
n
ta

g
e
 o

f
E
lim

in
a
b
le

X
fe

rs
 E

lim
in

a
te

d Lookahead
Replacement

FIFO

Random

Figure 17 Effect of buffer size on percentage of eliminable XFERs eliminated for a 8x8 DCT
algorithm

4.2 Percentage of Total Communication Eliminated

 Percentage of XFERs eliminated as compared to the total number of XFERs,

 28

including the mandatory XFERs, for 5x5 convolution, 9x9 convolution, and 8x8 DCT are

shown in Figure 18, Figure 19, and Figure 20 respectively. Again, each graph compares the

different heuristics used for replacement.

Comparison of Buffer Replacement Policies for a 5x5

Convolution Algorithm

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10

Buffer Size

P
e
rc

e
n
ta

g
e
 o

f
T
o
ta

l
X
fe

rs

E
lim

in
a
te

d

Lookahead
Replacement

FIFO

Random

Figure 18 Effect of buffer size on percentage of total XFERs eliminated for a 5x5 convolution
algorithm

 29

Comparison of Buffer Replacement Policies for a 9x9

Convolution Algorithm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 1 2 3 4 5 6 7 8 9 10

Buffer Size

P
e
rc

e
n
ta

g
e
 o

f
T
o
ta

l
X
fe

rs

E
lim

in
a
te

d

Lookahead
Replacement

FIFO

Random

Figure 19 Effect of buffer size on percentage of total XFERs eliminated for a 9x9 convolution
algorithm

Comparison of Buffer Replacement Policies for a 8x8 DCT

Algorithm

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10

BUffer Size

P
e
rc

e
n
ta

g
e
 o

f
T
o
ta

l
X
fe

rs

E
lim

in
a
te

d

Lookahead
Replacement

FIFO

Random

Figure 20 Effect of buffer size on percentage of total XFERs eliminated for a 8x8 DCT
algorithm

 It can be seen from the various graphs that using the look-ahead replacement method

performs significantly better than random replacement or FIFO replacement. For the look-

 30

ahead replacement method, the number of XFERs eliminated grows quickly as the number of

slots increases from 1 to 4, and then it starts to level, hitting the maximum at around buffer

size of 9 for 5x5 convolution, and earlier at buffer size of 6 for 9x9 convolution and 8x8 DCT.

As the buffer gets larger, enough slots are available to accommodate all data items to

eliminate all eliminable XFERs.

By studying the graphs, it can be concluded that the optimal size for the buffer would be

either 4 or 5. Although a buffer size of 6 or larger that maximizes the number of XFERs

eliminated is desirable, the gain in performance is too small to warrant the use of the extra

registers that would be required, as that could potentially result in very costly spills in to the

memory.

4.3 Performance Speedup

The ability of the buffer on eliminating XFER instructions and the effect of the buffer

size on performance has been studied so far. However, every time a piece of data is buffered,

a copy instruction is created, increasing the instruction count. Therefore, the effect of the

buffer size on the overall execution time of the program is slightly different. Every time data

is placed in the buffer, at least one XFER must be eliminated to break even. The effect of

buffering on the number of instruction count is smaller when considering the overall

execution time. The effect of buffer size on execution time for 5x5 convolution, 9x9

convolution, and 8x8 DCT are shown in Figure 21, Figure 22, and Figure 23 respectively.

Each graph compares the effectiveness of the three different heuristics used for replacement.

 31

Comparison of Buffer Replacement Policies for a 5x5

Convolution Algoirthm

98%

100%

102%

104%

106%

108%

0 1 2 3 4 5 6 7 8 9 10

Buffer Size

P
e
rc

e
n
ta

g
e
 C

h
a
n
g
e
 i
n

E
xe

c
u
ti
o
n
 T

im
e Lookahead

Replacement

FIFO

Random

Figure 21 Effect of buffer size on execution time for a 5x5 convolution algorithm

Comparison of Buffer Replacement Policies for a 9x9

Convolution Algoirthm

90%

95%

100%

105%

110%

115%

0 1 2 3 4 5 6 7 8 9 10

Buffer Size

P
e
rc

e
n
ta

g
e
 C

h
a
n
g
e
 i
n

E
xe

c
u
ti
o
n
 T

im
e Lookahead

Replacement

FIFO

Random

Figure 22 Effect of buffer size on execution time for a 9x9 convolution algorithm

 32

Comparison of Buffer Replacement Policies for a 8x8 DCT

Algorithm

98%

99%

100%

101%

102%

103%

0 1 2 3 4 5 6 7 8 9 10

Buffer Size

P
e
rc

e
n
ta

g
e
 C

h
a
n
g
e
 i
n

E
xe

c
u
ti
o
n
 T

im
e Lookahead

Replacement

FIFO

Random

Figure 23 Effect of buffer size on execution time for a 8x8 DCT algorithm

 The results indicates that more instructions are generated than are eliminated when

the buffer size is small. Performance gain can be seen only after the buffer size exceeds three.

For 5x5 convolution and 8x8 DCT, even after the buffer size exceeds seven or eight when the

maximum number of eliminable XFERs is eliminated, the percentage of overall execution

cycle saved barely exceeds 1%. Slightly better result can be seen from 9x9 convolution,

where about 4% reduction in execution time can be observed with a buffer size of four, 6% at

a size of five, and a maximum of 7% at a size of six.

 The poor performance gains that can be observed from 5x5 convolution and DCT are

due to high execution time as compared to the amount of communication cycles. This is

mainly due to overhead instructions that were necessary. In the convolution programs, there

are instructions that store the mask in each node and in the DCT program, more than half the

cycles are spent dividing the mesh in to 8x8 grids. Therefore, when these algorithms are

executed multiple times, as they are done in larger applications, the observed performance

gains will be higher, as the overhead instructions will still only be executed once, increasing

the percentage of communication cycles.

 33

4.4 Effect of Look-ahead Distance on Performance

 Another aspect of the buffer algorithm that was studied was the effect of the number

of instructions the algorithm looked ahead to see how many XFERs could be eliminated by

having that data in the buffer. The effect of the look-ahead distance on the total number of

XFERs eliminated for different algorithms is shown in Figure 24. Buffer size of 4 was used.

Effect of Number of Instructions to Lookahead on Various Algorithms on

a Buffer of Size 4

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45 50 55 60

Instructions Looked Ahead

P
e
rc

e
n
ta

g
e
 o

f
E

lim
in

a
b
l

X
fe

rs
 E

lim
in

a
te

d

5x5 Convolution

9x9 Convolution

8x8 DCT

Figure 24 Effect of look-ahead distance on percentage of eliminable XFERs eliminated

 It can be seen from the graph that although the performance does vary a little with

smaller look-ahead distances, the performance generally increases by increasing look-ahead

distance, and levels out at a maximum after a certain number. Therefore, it must generally be

a good idea to just check the total number of XFERs a piece of data could potentially

eliminate from that point in the program till the end of the program.

 34

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

 The SIMcc compiler is capable of eliminating a large percentage of redundant

communication. However, performance improvement in execution cycles will not be seen

unless a large percentage of the instructions are communication instructions. In fact, using

buffering degrades performance if there are too few communication instructions or if the

communication has already been fully optimized with no redundant instructions.

The look-ahead algorithm performed significantly better than either random or FIFO

replacement policies, and the look-ahead algorithm was able to eliminate all redundant

communication instructions at a smaller buffer size. The optimal size for the buffer was found

to be 4 or 5 at which 86 and 89 percent of redundant communication was eliminated

respectively for 5x5 convolution. For the same buffer sizes, 86 and 94 percent of

communication instructions were eliminated for 9x9 convolution, and 85 and 94 percent were

eliminated for 8x8 DCT. After 4 or 5, the buffer hit the point of diminishing return but still

eliminated all communication by 7 or 9. No performance gain in terms of execution cycles

was seen with 5x5 convolution or 8x8 DCT as the percentage of communication was too

small to affect the performance, but with 9x9 convolution, four and six percent reduction in

execution cycles was seen with buffer sizes of four and five respectively.

 This version of SIMcc is basic and there is much room for improvement. The

buffering mechanism could be improved further by computing the number of registers

available at each point in time and using only the ones available to increase the buffer size

without spilling into the memory. Better data grouping algorithms like value numbering can

be used to minimize the data sets and maximize the number of instructions each buffered data

can eliminate.

In future updates of the compiler, more common optimizations could be implemented

 35

for better performance and more language constructs can be added for wider programming

options. Currently, the compiler assumes a PPE (Pixels per Element) of 1. In a real system

this may not suffice as some images may be too large for the processor array to support a PPE

of 1. The compiler can be re-designed or modified to hide the PPE from the programmer and

automatically detect the optimal PPE to maximize processor usage and generate instructions

accordingly.

 Since energy is also an important issue for portable architectures, analysis on energy

usage could be done in order to see if there are any advantages or disadvantages of using

buffers, as buffering may reduce the network usage, but it does increase processor and

register usage.

 36

REFERENCES

[1] G. Chaitin, “Register Allocation and Spilling via Graph Coloring,” ACM SIGPLAN
Symposium on Compiler Constructions, 1982, pp. 98-101.

 [2] A. Aho, R. Sethi, and J. Ullman, Compilers Principles, Techniques, and Tools, Addison-
Wesley, 1988.

[3] L. Tucker and G. Robertson, “Architecture and Applications of the Connection Machine,”
Computer, Volume 21, Issue 8, August 1988, pp. 26-38.

[4] P. Christy, “Software to Support Massively Parallel Computing on the MasPar MP-1,”
Compcon Spring ’90, ‘Intellectual Leverage’, Digest papers, Thirty-Fifth IEEE Computer
Society International Conference, 26 Feb-2 Mar 1990, pp. 29-33.

[5] R. Bargrodia and K. Chandy, “Programming the Connection Machine,” Computer
Languages, 1988. Proceedings., International Conference on, 9-13 Oct 1988, pp.50-57.

[6] M. Gokhale and J. Schlesinger, “A Data Parallel C and its Platforms,” Frontiers of
Massively Parallel Computations, 1995. Proceedings. ‘Frontiers 95’., Fifth Symposium on
the, 6-9 Feb 1995, pp. 194-202.

[7] S. Ranka and S. Sahni, “Convolution on Mesh Connected Multicomputers,” pattern
Analysis and Machine Intelligence, IEEE Transactions on, volume 12, issue 3, Mar 1990,
pp.315-318.

[8] A. Fisher, J. Leon, and P. Highnam, “Design and Performance of an Optimizing SIMD
Compiler,” Frontiers of Massively Parallel Computation, 1990, Proceedings., 3rd Symposium
on the, 8-10 Oct 1990, pp. 507-510.

[9] V. Garg and D. Schimmel, “Hiding Communication Latency in Data Parallel
Applications,” Parallel Processing Symposium, 1998. 1998 IPPS/SPDP. Proceedings of the
First Merged International…and Symposium on Parallel and Distributed Processing 1998, 30
Mar-3 Apr 1998, pp. 18-23.

[10] J. Choi, C. Lin, H. Kim, “Low Power Register Allocation Algorithm using Graph
Coloring,” TENCON 2000, Proceedings, volume 3, 2000, pp. 80-85.

[11] A. Watson, “Image Compression Using the Discrete Cosine Transform”

[12] J. Lee and K. Batcher, “Minimizing Communication in the Bitonic Sort,” Parallel and
Distributed Systems, IEEE Transactions on, volume 11, issue 5, May 2000, pp. 459-474.

 37

[13] A. Gentile and D. S. Wills, “Portable Video Supercomputing,” to appear in IEEE
Transactions on Computers, 29 pages, TC 114531, accepted February 2004.

[14] G. Costas, “Explicitly Parallel Compiling for the SIMPil Architecture,” Pica Group
Technical Report, 1998.

[15] H. H. Cat, A. Gentile, J. C. Eble, M. Lee, O. Vendier, Y. J. Joo, D. S. Wills, M. Brooke,
N. M. Jokerst, A. S. Brown, and R. Leavitt, “SIMPil: An OE Integrated SIMD Architecture
for Focal Plane Processing Applications,” Proceedings of the Third International Conference
on Massively Parallel Processing Using Optical Interconnections, pages 44-52, Maui, Hawaii,
October 1996.

[16] B. Kahle and W. Hillis, “The Connection Machine Model CM-1 Architecture,” Systems,
Man and Cybernetics, IEEE Transactions on, volume 19, issue 4, Jul/Aug 1989, pp. 707-713.

[17] J. Nickolls, “The Design of the MasPar MP-1: A Cost Effective Massively Parallel
Computer,” Compcon Spring ’90. ‘Intellectual Leverage’. Digest of Papers. Thirty-Fifth
IEEE Computer Society International Conference, 26 Feb-2 Mar 1990, pp. 25-28.

[18] Patrick H. Winston, Artificial Intelligence, Addison-Wesley, 1992

[19] International Technology Roadmap for Semiconductors 2003

[20] J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, P. A. Kohl,
“Interconnect Opportunities for Gigascale Integration,” IBM J. Res. & Dev. vol. 46, pp. 245-
263, Mar/May 2002.

[21] J. W. Joyner, R. Venkatesan, P. Zarkesh-Ha, J. Davis, and J. D. Meindl, “Impact of
Three-Dimensional Architectures on Interconnects in Gigascale Integration,” IEEE Trans.
Very Large Scale Integration Systems, vol. 9, pp.922-928, Dec. 2001.

 38

