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ABSTRACT

A recent advancement in the world of heterogeneous computing,

the NVLink interconnect enables high-speed communication be-

tween GPUs and CPUs and among GPUs. In this paper we show

how NVLink changes the role GPUs can play in graph, and more

in general, data analytics. With the technology preceding NVLink,

the processing e�ciency of GPUs is limited to data sets that �t into

their local memory.

�e increased bandwidth provided by NVLink imposes a re-

assessment ofmany algorithms—including those used in data analytics—

that in the past could not e�ciently exploit GPUs because of their

limited bandwidth towards host memory.

Our contributions consist in the introduction of the basic proper-

ties of one of the �rst systems using NVLink, and the description of

how one of the most pervasive data analytics kernels, SpMV, can be

tailored to the system in question. We evaluate the resulting SpMV

implementation on a variety of data sets, and compare favorably to

the best results available in the literature.
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1 INTRODUCTION

We examine the impact of NVLink—a fast and improved alterna-

tive to the traditional Peripheral Component Interconnect Express

(PCIe) to connect GPUs andCPUs—on the viability and performance

of large-scale data analysis on GPUs. We use sparse matrix-vector

multiply (SpMV) as a proxy application, since it is arguably the

biggest performance bo�leneck for many classes of data analysis al-

gorithms, to show that NVLink eliminates many of the barriers that

have prevented GPUs from being more widely used for large-scale

analytics.

To �rst order, streaming the matrix dominates SpMV perfor-

mance since SpMV is largely memory bandwidth-bound. �is, cou-

pled with the fact that GPUs are memory bandwidth-rich, makes
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GPUs highly a�ractive for speeding up data analysis. With the

explosion of data from social networks, online shopping, ubiqui-

tous sensors, and more, analyzing large amounts of data in a timely

manner may even necessitate the use of GPUs in the near future.

However, the low PCIe memory-bandwidth between the CPU and

the GPU makes it extremely di�cult to amortize the cost of mov-

ing data from CPU memory to GPU memory before computation.

Moreover, the use of faster, but more expensive HBM2 (High Band-

width Memory) technology severely limits the total memory size on

GPUs, further making it di�cult to use GPUs for extremely large

data sets.

Prior works have explored the use of GPUs for large-scale data

analysis in distributed se�ings—where network latency and band-

width palliate the PCIe problem—to achieve non-trivial speedup

over CPU-only solutions. Nevertheless, the low PCIe bandwidth

continues to prevent GPUs from reaching their full potential for

large-scale data analysis. NVLink changes this paradigm by provid-

ing much higher bandwidth between GPUs and their host CPUs,

and among GPUs than previously available. On the system we used

in our experiments, the overall bandwidth between GPUs and main

memory is comparable to that available from the CPUs, making it

possible to change the programming paradigm for data analytics.

Contributions and Findings. As far as we are aware, this is the

�rst paper that explores the performance impact of NVLink on

SpMV, and, in general, shows the results of running a data analytics

kernel on a graph larger than the GPU memory footprint without

paying any penalties for the streaming of data into the GPUs. We

also provide a description of one of the �rst systems using NVLink,

and the results of some microbenchmarks running on it.

Paper Layout. In Section 2, we describe the overall system ar-

chitecture, focusing particularly on the NVLink speci�cation and

NVIDIA’s new Pascal microrachitecture. In Section 3, we discuss the

role of SpMV in large-scale data analytics, as well as our proposed

implementation. We present our experimental result in Section 4

and consider previous and related work in Section 5. Finally, we

conclude our paper in Section 6.

2 SYSTEM ARCHITECTURE

In this section we describe the hardware platform we used in our

exploration of the NVLink capabilities for data analytics and graph

processing, and we characterize its performance by using basic

metrics obtained through microbenchmarks.
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2.1 Hardware Platform

Weuse an IBMPower S822LC for HPC node, comprising 2 POWER 8

processor chips and 4 NVIDIA Tesla P100 (Pascal) GPUs. Our

evaluation revolves around the use the system does, �rst of its

kind, of NVLink Version 1.0 to connect the POWER 8 CPUs to the

GPUs. An architectural overview of system connectivity is shown

in Figure 1.
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Figure 1: Architecture of a Power S822LC for HPC Node.

EachNVLink connection betweenCPUandGPUorGPUand

GPU has an aggregate theoretical peak bandwidth of 38.2

GB/s in each direction.

NVLink uses theHigh-Speed Signaling Interconnect fromNVIDIA

to transmit data at a bandwidth of 19.2GB/s in each direction. On

our system, 2 links are installed between each GPU and its host

CPU, and between the GPUs sharing the same socket. For each

of those 2-link connections, the overall bandwidth is 38.4GB/s,

full-duplex.

�e POWER8 sockets are connected to each other by an SMP

link capable of a theoretical peak 38.4GB/s. Each POWER 8 socket

can read from its local memory at 76.8GB/s, and write to it at

38.4GB/s.

Each POWER8 CPU has 10 cores that run at 3.424GHz. Each

core has 64 KB of data cache, 32 KB of instruction cache, 512 KB of

L2 cache and 8MB of L3 cache. Each core supports up to 8 hardware

threads. �e power consumption of each chip is 190W. Each socket

has 512GB of DRAM memory. In our experiments, the operating

system is Red Hat Enterprise Linux Server version 7.3 Maipo.

�e so�ware environment and other architectural features of

the PASCAL GPUs are reported in Table 1. �e Streaming Multipro-

cessors (SM) run at 1480MHz, the High Bandwidth Memory (HBM)

runs at 715MHz providing a GPU Global Memory theoretical band-

width of 720GB/s. Each GPU consumes 300W. �e NVIDIA Cuda

compiler driver version is 8.0.55.

CUDA Driver Version / Runtime Version 8.0 / 8.0

CUDA Device Capability 6.0

Global memory (MB) 16,281

Streaming Multiprocessors (SM) 56

Single Precision CUDA Cores per SM 64

Double Precision CUDA Cores per SM 32

Load and Store Units per SM 16

Special Function Units per SM 16

Number of Instruction Caches per SM 1

Number of Instruction Bu�ers per SM 2

Number of Warp Schedulers per SM 2

Number of Dispatch Units per SM 4

Shared Memory Available per Block 48 KB

32-bit Registers Available per SM 64 KB

Read-Only Data Cache per SM 64 KB

Maximum SM Clock Frequency 1480 MHz

Maximum Global memory Clock Frequency 715 MHz

Memory Bus Width 4096 bits

�eoretical Global memory Bandwidth 720 GB/s

L2 Cache Size 4 MB

Total �antity of Constant Memory 64 KB

Warp Size in Number of �reads 32

Maximum Number of threads per SM 2048

Maximum Number of �reads per Block 1024

Table 1: Architectural Features of Pascal GPUs.

2.2 NVLink Performance

We proceed to characterize the performance of NVLink in what

concerns our study on data analytics. We focus on CPU to GPU

transfers, as they are the main bo�leneck in our SpMV case study.

To this end, we implemented a benchmark that stresses the NVLink

capabilities with di�erent transfer options and sizes, to measure

the e�ective bandwidth we can achieve from an application.

�e benchmark creates an MPI rank per GPU; because of the

NUMA nature of the architecture, we bind each rank to the socket

hosting the target GPU. Each rank allocates a certain number of

blocks of a speci�ed transfer size; the number of blocks is deter-

mined experimentally to guarantee that we sample a su�ciently

long execution time. �e memory is initialized using random num-

bers.

Memory on the host can be allocated in two di�erent ways: a)

pinned, and b) pageable. Pageable memory is the default alloca-

tion policy of most operating systems, including Linux; it can be

allocated with malloc in C or the operator new in C++. Pageable

memory can be swapped and therefore moved during execution.

Since the memory is allowed to move during a DMA copy, the sys-

temmust �rst copy the CPU data into a CPU temporary bu�er, then

transfer the bu�er to a temporary GPU bu�er and �nally copy the

data to the destination bu�er on the GPU. �is obviously increases

both the latency and the bandwidth consumption.

�e other option is to allocate pinned memory, i.e. not page-

able and not swappable memory. In this case the memory area
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will maintain the same physical addresses for the entire execution,

allowing the system to optimize memory transfers: GPUs can copy

data directly, and the memory is allocated as write-combined, to

allow the CPU to e�ciently read the area during transfers.

In addition to the di�erent tra�c pa�ern, CUDA does allow to

execute asynchronous transfers only with pinned memory.

�e benchmark is executed with di�erent block sizes to identify

the minimum transfer size required to achieve full bandwidth. �e

results of the experiments are shown in Figures 2a and 2b, for

pageable and pinned memory respectively.

Because of the synchronous behavior and the additional tra�c,

the e�ective bandwidth per GPU is only 10 − 11GB/s when using

pageable memory. Pinned memory, on the other hand, can generate

approximately 3× more bandwidth, with a per-GPU bandwidth of

∼ 30GB/s and an aggregate bandwidth of ∼ 120GB/s , i.e. 80% of

the peak CPU bandwidth.

Using the same benchmark we also veri�ed that we can achieve

full bandwidth with a limited number of asynchronous streams.

�is is important for our SpMV code since we plan to use only two

streams during the execution (one computing, the other transfer-

ring).

In terms of block sizes, the experiments shows that we can reach

peak bandwidth with transfers larger than 4MB, both for pinned

and pageable memory.

3 SPARSE MATRIX-VECTOR MULTIPLY

Sparse Matrix-Vector Multiply (SpMV) is one of the most fundamen-

tal operations in linear algebra because sparse matrices are widely

used to represent data in many domains, including computational

simulation, machine learning, and graph analysis.

In its simplest format, as shown in Equation 1, SpMV de�nes a

product operation between a sparse matrix A(m × n) and a dense

column vector x of size n, and produces a dense vector b of sizem.

bi =

n−1∑

k=0

Aik ∗ xk (i = 0, 1, ...,m − 1) (1)

�e implementations of SpMV vary based on how the matrix is

stored. As opposed to dense matrices, where the format is �xed

and straightforward, researchers introduced di�erent formats for

sparse matrices that be�er �t either the sparsity pa�ern of the

matrix or the characteristics of the system used to compute the

multiplication. Among them, Compressed Sparse Row (CSR) is the

de facto standard for general sparse matrices because of its limited

footprint and the relatively high performance on general purpose

architectures.

3.1 CSR-based SpMV

In CSR, the matrix A is stored using three contiguous arrays. �e

val array contains the values of each non-zero element of the matrix

ordered by rows. A second array, called rowstart , points to the �rst

element of each row in val . Since elements in val are ordered by

row, all the elements inval between rowstart[i] and rowstart[i+1]

belong to row i of the matrix. Finally, for each element in val , a

corresponding element exists in colidx to denote the column of the

element.

Using this representation, a straightforward implementation of

SpMV is described in Algorithm 1.

Algorithm 1: CSR-based SpMV Algorithm.

Input: (rowstart , colidx ,val ): matrix A;

x : input vector.

Output: b: output vector, initialized to 0.

1 for i ← 0 tom − 1 do

2 for j ← rowstart[i] to rowstart[i + 1] − 1 do

3 k ← colidx[j];

4 b[i]← b[i] + (val[j] ∗ x[k]);

�e algorithm scans sequentially the rows of A. For each row, it

pulls out all the non-zero elements of the matrix from val[j] and

multiplies them with the corresponding values of the vector x[k].

�en, the accumulation is wri�en into b[i]. One of the advantages

of this implementation is that it sequentially reads the arrays com-

posing the matrix, and it sequentially writes to the vector b so that

the accumulation can be performed by using a register.

3.2 Streaming SpMV over NVLink

GPUs are well suited for structured computation, such as dense lin-

ear algebra, but require some programming e�ort to handle SpMV

kernels e�ciently. �e irregularity of sparse matrices raises multi-

ple challenges on memory coalescing, load balancing and thread

divergence. For this reasons, most of the current e�orts at e�cient

SpMV for GPUs target alternative format representations [2],[5],

[7], [11], [12] and [15].

With our streaming SpMV implementation, however, we decided

to not focus our e�orts in creating yet another sparse format, for

the following reasons:

• �e cornerstone of most GPU-oriented formats is to �nd

ways of making the structure of the matrix more regular,

to reduce thread divergence and allow memory coalesc-

ing; while this approach works for sparse but structured

matrices (such as matrices from the PDE domain), this is

generally ine�ective on graphs, because of their natural

absence of structure [2],

• GPU-oriented algorithms generally have an increasedmem-

ory footprint w.r.t. the CSR format; this e�ect is aggravated

in graph matrices because of their absence of structure, as

demonstrated in [4], where the authors showed that com-

monly used formats like ELL or BCSR may require orders

of magnitude more space than a simple CSR.

• In our streaming algorithm we plan to compute and trans-

fer data concurrently; in this scenario, we expect the data

transfer to be the bo�leneck of the kernel, making GPU

kernel e�ciency a secondary point as it is unlikely to a�ect

the �nal performance.

For such reasons, we decided to use the most compact format

available (i.e., CSR) to reduce the transfer time as much as possible,

and we assumed that the standard GPU implementation of SpMV

over CSR o�ered by Nvidia’s cusparse is fast enough to keep up

with streaming the input matrix at the bandwidth of the NVLink.
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Figure 2: Measured Host to Device NVLink Transfer Bandwidths
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Figure 3: Block Layout for the SpMV Implementation. Each

block-row is assigned to a di�erent GPU, and within each

block-row two streams are active per GPU. Since blocks and

partitions are balanced using the nnz elements, the number

of rows and columns per block may vary.

3.2.1 Blocking Scheme. Figure 3 shows the layout of the blocks

across GPUs. �e matrix is partitioned in 4 block-rows, each as-

signed to a di�erent GPUs. Each partition is then divided into

blocks. Each block span for the entire set of rows and a subset of

the columns assigned to the partition. To maintain the work among

GPUs and blocks balanced, each partitions and each block will con-

tain approximately the same number of elements. Depending on

the structure of the matrix this may result in a di�erent number

of rows or columns per block. �e input vector resides in host

memory, and each GPU accesses it across the NVLink when needed.

�e partitioning scheme allows each GPU to make progress on a

separate section of the output vector without the need for inter-

GPU synchronization. A single synchronization is introduced, at

the end of the SpMV computation, to transfer the output vector

back to the host memory.

Algorithm 2 shows the algorithm to coordinate the execution

of the SpMV kernels local to each GPU. Each GPU executes the

presented pseudo-code in parallel on a di�erent block-row of the

input matrix to calculate a di�erent section of the output vector.

We assume each GPU G has two local bu�ers for the input matrix

and vector, xG
i
and AG

i
with i = 0, 1, to perform double-bu�ering,

and a single local copy bG of the output vector (since we perform

one computation at a time, from alternating streams). To guarantee

maximum overlap, most of the operations are asynchronous, and

each bu�er pair is assigned to a separate stream Si . For simplicity,

the pseudo-code assumes an even number of blocks per row.

In the pseudo-code, B is an array of descriptors that stores in-

formation about the blocks assigned to the GPU. �e cusparse-

implementation of SpMV performs the update operation at lines 7

and 14.

3.2.2 Performance Model.

Selecting the proper block size (and number of blocks) for the

streaming algorithm is not a trivial task. �ere is, of course, a phys-

ical limitation imposed by the total amount of memory available

on the GPU. But every block size below the memory limit is an

admissible choice.

In fact, from a performance point of view, having more blocks

improves the streaming e�ect since it allows the application to reach

a steady state faster and keep it for a longer period of time. On the

other hand, however, having too many blocks hurts performance

because it increases the size of the CSR index.

To be�er understand the behavior of the streaming algorithm, we

developed a simple analytical model that predicts the performance

of SpMV depending on the number (and size) of blocks used.

Figure 4 plots the block size and the total transfers required

to compute the entire multiplication with an R-MAT 26 matrix,

varying the number of blocks used. We use this information to

predict the overall GFlop/s, assuming that the whole computation

is transfer-bound. With streaming, however, the last block of the

matrix is computed a�er the entire matrix has been transferred,

adding some time to the execution. For the sake of simplicity, we

consider the time to execute an SpMV kernel over a block to be

comparable to the cost of transferring it from the CPU.
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Algorithm 2: Blocked SpMV.

Input: A: matrix A;

x : input vector;

B: blocking descriptors;

S : CUDA stream descriptors

Output: b: output vector.

1 cudaMemcpy(bG ,b,b .size) ;

2 cudaMemcpy(xG0 ,x ,B0.x bytes) ;

3 cudaMemcpy(AG0 ,A,B0.nnz bytes) ;

4 i ← 0;

5 while i < num blocks do

6 {Multiply on S0 and copy on S1.}

7 bG ← AG0 x
G

0 ;

8 cudaMemcpyAsync(xG1 ,x ,Bi .x bytes, S1) ;

9 cudaMemcpyAsync(AG1 ,A,Bi .nnz bytes, S1) ;

10 i ← i + 1;

11 cudaStreamSynchronize(S0);

12 cudaStreamSynchronize(S1);

13 {Multiply on S1 and copy on S0.}

14 bG ← AG1 x
G

1 ;

15 if i < num blocks then

16 cudaMemcpyAsync(xG0 ,x ,Bi .x bytes, S0) ;

17 cudaMemcpyAsync(AG0 ,A,Bi .nnz bytes, S0) ;

18 i ← i + 1;

19 cudaStreamSynchronize(S0);

20 cudaStreamSynchronize(S1);

21 cudaMemcpy(b,bG ,b .size) ;

We can see that every size �ts on the GPU, so we may be tempted

to use a single block and avoid streaming entirely, because this

solution would be optimal in terms of total transfers from the CPU.

However, with a single block, we cannot overlap computation and

communication. Similarly, when we have a very limited number of

blocks (i. e. 2 or 4), the cost of computing the last kernel impacts

the execution time.

As the number of blocks increases, the computation time of each

block decreases, to a point where the cost of the last block becomes

negligible. �e e�ect is clearly visible on the performance plot,

where we hit a maximum in the middle of the graph (around 10

blocks).

Since this is only a high-level model, where we are not consider-

ing other factors such as load imbalance and kernel overheads, the

model cannot be used directly to identify the optimal block size.

However, we can use it to narrow the search space to only a subset

of cases. In this example, this corresponds to the highligted area of

Figure 4.

It should also be noted that this result is not absolute, because

the curve depends on the characteristics of the matrix – speci�cally

the average number of non-zeros per row – thus the ideal number

of blocks may vary depending on the characteristics of the speci�c

graph; this goes to say that selecting the perfect number of blocks

to be used may not be trivial, and may require a study of the graph.
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Figure 4: Model Parameters for Streaming SpMV.

4 EXPERIMENTAL RESULTS

4.1 Testing Environment

We study the performance of SpMV using graph matrices, includ-

ing real-world graphs from the University of Florida Sparse Matrix

Collection [6] and the Stanford Large Network Dataset Collec-

tion [10], in addition to synthetic matrices of various sizes gener-

ated using two well-known graph generators, R-MAT and BTER.

R-MAT graphs are generated with the following parameters: a =

0.57,b = 0.19, c = 0.19,d = 0.05, e f = 16. For BTER we com-

pute α and δ using the reference code [9]; the other parameters

are cmax = 0.5,дcc = 0.15, e f = 16. Both generators produce

undirected edges. Table 2 summarizes our test matrices and their

properties. Synthetic graphs are generated with at least 1 billion

edges—corresponding to roughly 16GB of memory in CSR format.

Smaller graphs are not considered, because they can easily �t in

the memory of a single GPU and therefore do not require stream-

ing data from the CPU. Scale 29, corresponding to approximately

256GB of memory, is the maximum size we can �t in the CPU

(the next step—512GB—would be bigger than the total memory

available in our test system). For real-world data we decided to in-

clude graphs smaller than 16GB because of the scarcity of publicly

available large-scale graphs.
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Name
Rows -

Cols

nnz nnz / row Size

Avg Max (CSR - in GB)

Friendster 124M 3.6B 28.9 5.2K 54.75

IT-2004 41M 1.13B 27.8 9.9K 17.23

Arabic-2005 22.7M 631M 27.75 9.9K 9.57

Orkut 3M 234M 76.3 33K 3.51

R-MAT 25 32M 1B 32 638K 15.85

R-MAT 26 64M 2B 32 1M 31.84

R-MAT 27 128M 4B 32 1.5M 63.93

R-MAT 28 256M 8B 32 2.4M 128.24

R-MAT 29 512M 16B 32 3.8M 257.12

BTER 25 32M 1B 32 57K 16.23

BTER 26 64M 2B 32 47K 32.48

BTER 27 128M 4B 32 81K 64.99

BTER 28 256M 8B 32 67K 129.95

BTER 29 512M 16B 32 82K 259.93

Table 2: Test matrices used in performance evaluation.

Performance results are measured on the architecture previously

described in Section 2. We compare the streaming implementation

against the CPU algorithms described in [4], because they represent

the current state of the art for large-scale graph-based SpMV in

shared memory systems.

�e CPU-based SpMV implementation is wri�en in standard

C99 and is compiled with gcc v4.8.5 using –O3 optimization. SpMV

kernels are optimized using inline assembly. �e presented per-

formance results are calculated by averaging the results of �ve

executions, each performing ten SpMV iterations.

Two di�erent algorithms are presented in [4]: a blocking algo-

rithm and a binning algorithm, with the la�er outperforming the

former. Compared to the previously published results, however,

this server is equipped with 2 POWER 8 processors (instead of 8),

thus has less memory bandwidth and a less prominent NUMA e�ect.

Graphs are also smaller because of the lower amount of total system

memory (512GB instead of 2 TB). As a result, on this architecture,

the Blocking algorithm outperforms the Binning one (con�rming

that the architecture plays a very important role in determining

the best SpMV algorithm), so in this paper we only present results

for the Blocking algorithm. We use sparse blocks of 64k × 64k ele-

ments, and present the best result among 2 and 4 threads/core. Our

GPU-based SpMV implementation is wri�en in standard C++11

and is compiled with gcc v4.8.5 using –O3 optimization. SpMV ker-

nels are o�oaded using cusparse, while memory transfers exploit

CUDA’s memory copy primitives. We exploit CUDA streams to

allow transfers and computations to run concurrently on the GPU.

According to the results in Section 2, to improve performance and

allow asynchronous transfers, matrix blocks are allocated using

pinned memory. �e measured execution time includes the copy

of the result back on the host memory. In this case, because of the

high consistency and stability of GPU kernels, results are calcu-

lated by averaging the results of 3 executions, each performing a

single SpMV. In the GPU experiments we empirically found out

that a good trade-o� between streaming e�ect, amount of data

transferred, and computation balancing can be achieved by using a

�xed number of 14 blocks per partition∗. �erefore, all the results

presented in this section use GPU partitions with 14 blocks.

GFlop/s are always computed by considering the two �oating

point operations per element (nnz) of the original matrix.

Both the CPU and the GPU implementations use scrambling to

improve load balancing of the graphs.

4.2 Performance Comparison

We begin our experiments by comparing the performance of the

streaming GPU implementation against the current state of the art

for large-scale graphs on shared-memory systems [4].

�e CPU implementation peaks at ∼ 10GF/s , with performance

slowly degrading as the size of the matrix increases. Our streaming

GPU implementation shows much be�er results. Using R-MAT, the

performance starts at ∼ 11.89GF/s and grows up to ∼ 13.83GF/s .

�is represents an improvement over the CPU between 23% and

120%, depending on thematrix. With BTER graphs, the performance

is even more steady, ranging from ∼ 13.22GF/s to ∼ 14.15GF/s ,

o�ering an improvement over the CPU between 51% and 115%.

Similar results are con�rmed with real-world graphs, with the CPU

version, again, achieving results between ∼ 8.5GF/s and 9.88GF/s ,

and the GPU version is always above ∼ 13.4GF/s , and a maximum

with Orkut of ∼ 16.20GF/s , resulting in an improvement between

41% and 64%.

�ese numbers are not as high as the ones we modeled in the

previous section using only transfer sizes and bandwidths. �is

means there are other overheads we did not consider in the model.

In particular, we veri�ed that the use of graph matrices puts an in-

creased burden on the GPU’s threading and memory system which

can cause imbalance among GPUs even with a �xed number of

nnz per partition. As a result, in some cases, the computation can

become more expensive than the communication—introducing an

overhead we did not account for in the model. GPUs stream data

independently, therefore we can still achieve a good computation

balancing if this overhead is evenly spread among blocks of di�er-

ent GPUs. Unfortunately, there are cases (especially with smaller

matrices such as the R-MAT 25) where the overhead is mostly paid

by a single GPU, causing imbalance and therefore introducing ad-

ditional overhead. We show this e�ect in Table 3 by presenting the

performance of each individual GPU in the R-MAT 25 experiments.

We can clearly see that, although the number of elements is bal-

anced, the performance of GPU 2 is lower. An additional study with

NVIDIA’s pro�ler veri�ed that this is caused by longer execution

times in the cusparse SpMV kernel.

Nevertheless, the �nal results show our streaming implemen-

tation o�ering an average improvement of 62% over the previous

state of the art for large-scale graphs.

4.3 Scalability Study

We conclude our experiments by evaluating both strong and weak

scaling of our algorithms by using a variable number of GPUs.

For the strong scaling study, we selected a speci�c matrix, an

R-MAT 27, and varied the number of GPUs in the test from 1 to 4.

For the weak scaling, we kept the work per GPU �xed by increasing

∗�is number of blocks is contained in the “optimal” subset computed by the
model presented in Section 3.2.2
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Figure 5: Performance comparison of CPU and streaming GPU performance on Real World and Synthetic Graphs.
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Figure 6: Scaling on R-MAT.

GPU nnz Time Performance

Number (s) (GFlop/s)

GPU 0 261805091 0.150657 3.475516

GPU 1 261802582 0.150595 3.476903

GPU 2 261799623 0.175415 2.984909

GPU 3 261799470 0.149405 3.504558

Aggregate 1047206766 0.175441 11.937977

Table 3: Execution Pro�le for R-MAT 25.

the number of nnz of the matrix. Due to limitations in our graph

generators, we can only grow the graph by a factor of 2†. �erefore,

we gather points for 1,2, and 4 GPUs. We start with an R-MAT scale

25 on a single GPU and end with an R-MAT scale 27 on 4 GPUs.

�e results in Figure 6 show a good pro�le in both cases, high-

lighting the good scaling properties of our streaming implementa-

tions. It should be noted, however, that because of the partitioning

mechanism, we do not expect a perfect scaling. For each partition

we have to re-transfer the whole input vector, therefore increasing

†We could change the edge factor but this would signi�cantly change the structure
of the matrix, making the comparison unfair.

the amount of data to be transferred. In both cases, the 2-GPU

speedup is approximately 1.8×, while the 4-GPU speedup reaches

about 3.5× the performance of a single GPU.

5 RELATEDWORK

�e importance of SpMV as a kernel for graph processing and many

other �elds of engineering and science has lead to a broad variety

of studies. A few examples with focus on CPU-based SpMV can be

found in [8], [13] and [14].

Over the past years, the o�oad of processing to accelerators like

GPUs, FPGAs, or many-core co-processors became more and more

important and popular. �is created a revived interest in SpMV,

mostly because of its irregular pa�ern and low arithmetic inten-

sity, that led to a large variety of new matrix formats speci�cally

targeting GPUs. Among the most relevant works are [5], [7], [11]

and [15].

Work that speci�cally targets graph matrices on accelerators is,

however, limited. Anh et al. [1] are among the �rst. �e authors

show that most of the GPU memory bandwidth overhead comes

from the irregular access to the vector, and propose a format to

optimize the access and reduce the overhead.
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Reference Max Size Architecture

Best R-MAT Perf.

[GFlops/s]

(Parameters)

Ashari

et al. [2]
298Mnnz GPU N/A

Tang

et al. [12]
29Mnnz

Many-core

Coprocessor

∼ 7

(S 18, EF 32)

Boman

et al. [3]
1.6B nnz

CPU (Cluster)

256 Nodes
64.95 (S 26, EF 9)

Buono

et al. [4]
68B nnz

CPU

(Shared Mem.)
51.51 (S 26, EF 32)

Our

Approach
17B nnz GPU (streaming) 13.81 (S 29, EF 32)

Table 4: State of the art results in the literature for graph-

oriented SpMV algorithm. For synthetic graphs (R-MAT and

BTER), S is the graph scale and EF the edge factor. Note that

the results in [4] were obtained on a high-end Power SMP

system, with 8× the memory bandwidth of the system used

in this paper.

Another example of GPU-optimized graph kernels can be found

in [2]. �e authors optimize the load balancing, with less focus on

the amount and pa�erns of data that are accessed by the GPU.�eir

work uses binning techniques on top of standard CSR (called ACSR)

to reduce the matrix pre-processing overheads and also allow for

processing of dynamic graphs.

Tang et al. [12] utilize a many-core co-processor to run graph-

speci�c SpMV. Similar to [2], they focus on load balancing and

e�cient use of the accelerator. �eir approach includes a perfor-

mance tuning guide to adjust the partitioning to di�erent non-zero

distributions of the matrix data (scale-free matrices).

Each of these approaches assumes that the entire matrix is small

enough to �t inside the GPU memory, therefore limiting the size of

the problem to a few GB. To the best of our knowledge, [4] is the

�rst paper to introduce the concept of very large SpMV kernels for

data analytics on shared memory systems.

In [4], a novel algorithm for CPU-based SpMV is presented,

enabling the computation of matrix sizes of an order of magnitude

larger than the ones previously analyzed, even in cluster-oriented

papers like [16] and [3].

With this paper, we tackle very large matrices by solving prob-

lems of two orders of magnitude larger than the current state of the

art on GPUs, as shown in Table 4. To the best of our knowledge, we

are the �rst to propose a streaming approach with larger matrices

that can reside on the host memory.

6 CONCLUSION

In this paper we study the performance impact of NVLink on SpMV,

a core example of a graph analytics kernel, and we show how

NVLink enables computation on a much larger scale than previ-

ously possible. By leveraging NVLink, our experiments show that,

not only the problem scale can be increased, but, on the same sys-

tem, the streaming version of SpMV that uses NVLink achieves

approximately 50% be�er performance than the state-of-the-art

CPU implementation. Given the ubiquitous nature of SpMV, and

its sharing of common traits with other analytics kernels, we be-

lieve that NVLink can also bene�t a variety of other data analytics

problems.
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