
On Optimizing Distributed Tucker Decomposition for Dense Tensors

Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Xing Liu,
Prakash Murali, Yogish Sabharwal, Dheeraj Sreedhar

IBM Research
{vechakra,prakmura,ysabharwal,dhsreedh}@in.ibm.com {jwchoi,djoseph,xliu}@us.ibm.com

Abstract—The Tucker decomposition expresses a given ten-
sor as the product of a small core tensor and a set of factor
matrices. Our objective is to develop an efficient distributed
implementation for the case of dense tensors. The implementa-
tion is based on the HOOI (Higher Order Orthogonal Iterator)
procedure, wherein the tensor-times-matrix product forms the
core routine. Prior work have proposed heuristics for reducing
the computational load and communication volume incurred
by the routine. We study the two metrics in a formal and
systematic manner, and design strategies that are optimal under
the two fundamental metrics. Our experimental evaluation on
a large benchmark of tensors shows that the optimal strategies
provide significant reduction in load and volume compared to
prior heuristics, and provide up to 7x speed-up in the overall
running time.

Keywords-Tensor compression, HOSVD, HOOI.

I. INTRODUCTION

Tensors are the higher dimensional analogues of matrices.

While matrices represent two-dimensional data, tensors are

useful in representing data in three or higher dimensions.

Tensors have been studied extensively via generalizing con-

cepts pertaining to matrices. The Tucker decomposition [1]

is a prominent construction that extends the singular value

decomposition (SVD) to the setting of tensors. Given an

N -dimensional tensor T, the decomposition approximately

expresses the tensor as the product of a small N -dimensional

core tensor G and a set of N factor matrices, one along each

dimension (or mode); see Figure 1 for an illustration. The

core is much smaller than the original tensor leading to data

compression. Prior work [2] has reported compression rates

to the tune of 5000 on large real tensors. Apart from data

compression, the decomposition is also useful in analysis

such as PCA, and finds applications in diverse domains such

as computer vision [3] and signal processing [4]. A detailed

discussion on the topic can be found in the excellent survey,

by Kolda and Bader [5].

Tucker decomposition has been well-studied in sequential,

shared memory and distributed settings for both dense and

sparse tensors (e.g., [2], [6], [7]). Our objective is to develop

an optimized implementation for dense tensors on dis-

tributed memory systems. The implementation is based on

the popular STHOSVD/HOOI procedures. The STHOSVD

(Sequentially Truncated Higher Order SVD) [8] is used

to produce an initial decomposition. The HOOI (Higher

Order Orthogonal Iterator) [9] procedure transforms any

Figure 1: Illustration for Tucker decomposition on a 3-

dimensional tensor: T - input tensor, G - core tensor, Fn

- factor matrices.

given decomposition to a new decomposition with the same

core size, but with reduced error. The procedure is applied

iteratively so as to reduce the error monotonically across the

iterations. We focus on the latter HOOI procedure which

is invoked multiple times. The tensor-times-matrix product

(TTM) component forms the core module of the procedure.

Prior work has proposed heuristic schemes for reducing

the computational load and communication volume of the

component. Our objective is to enhance the performance

by constructing schemes which are optimal in these two

fundamental metrics.

Prior Work

Heuristics for computational load: The TTM compo-

nent comprises of a set of tensor-times-matrix multiplication

operations. Based on the observation that the operations can

be rearranged and reused in multiple ways, prior work has

proposed heuristics for reducing the computational load. A

naive scheme for implementing the component performs

N(N − 1) TTM operations. Baskaran et al. [10] focused

on reducing the number of TTM operations, and proposed

a scheme with (approximately) N2/2 operations, which

was further improved to N logN by Kaya and Uçar [11].

However, minimizing the number of TTM operations is

not sufficient and it is crucial to consider the cost of the

operations, especially in the context of dense tensors. Austin

et al. [2] measure the cost in terms of the number of

floating point operations (FLOP). They empirically showed

that the performance of the navie scheme can be improved

by permuting (ordering) the modes of the input tensor and

proposed a greedy heuristic for mode ordering. A similar

heuristic is given by Vannieuwenhoven et al. [8].

Heuristics for communication volume: Austin et al. [2]

presented the first distributed implementation of HOOI. They

distribute the tensors among the processors using a Cartesian

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.86

1038

parallel distribution which generalizes the block distribution

technique used in the context of matrices. The processors

are arranged in the form of an N -dimensional grid and a

tensor is partitioned into blocks by imposing the grid on the

tensor; the blocks are then assigned to the processors. They

showed that the communication volume is determined by the

choice of the grid, and presented an empirical evaluation of

the effect of the grid on the communication volume.

Our Contributions

Our objective is to enhance the performance of distributed

Tucker decomposition for dense tensors by designing opti-

mal schemes for the two metrics and we make the following

contributions.

• Optimal TTM-trees: As observed in prior work [11], the

different TTM schemes can be conveniently represented

in the form of trees, called TTM-trees. We present an

efficient algorithm for constructing the optimal TTM-

tree, the one having the least computational load, mea-

sured in terms of number of floating operations (FLOP).

• Dynamic Gridding: Prior work uses a static gridding

scheme, wherein the same grid is used for distributing

the tensors arising in the different TTM operations. We

propose the concept of dynamic gridding that uses dif-

ferent grids tailored for the different operations, leading

to significant reduction in communication volume, even

when compared to the optimal static grids.

• Optimal Dynamic Gridding: We present an efficient

algorithm for finding the dynamic gridding scheme

achieving the optimal communication volume.

Our distributed implementation builds on the work of Austin

et al. [2] and incorporates the optimal schemes described

above. We setup a large benchmark consisting of about 1700
tensors whose metadata are derived from real-life tensors.

Furthermore, we also include a set of tensors with metadata

derived from simulations in combustion science. Our exper-

imental evaluation on the above benchmark demonstrates

that the combination of optimal trees and the dynamic

gridding scheme offers significant reduction in computa-

tional load and communication volume, resulting in up to

7-factor improvement in overall execution time, compared

to prior heuristics. To the best of our knowledge, our study

is the first to consider optimal algorithms for the Tucker

decomposition.

We note that prior work [8], [2] has provided evidence

that STHOSVD may be sufficient for particular application

domains. They present experimental evaluations on a sample

of tensors arising in image processing and combustion sci-

ence showing that for these tensors, STHOSVD is sufficient

and HOOI does not provide significant error reduction.

Our optimizations on HOOI would be useful for other

tensors/domains where HOOI provides error reduction over

STHOSVD. Furthermore, the ideas developed in this paper

can be recast and used for improving STHOSVD as well.

Related Work

Tucker decomposition has been studied in sequential and

parallel settings for dense and sparse tensors. For dense

tensors, the MATLAB Tensor Toolbox provides a sequential

implementation [12]. Li et al. [13] proposed performance

enhancements for a single TTM operation and their tech-

niques can be incorporated within our framework. Austin

et al. [2] described the first implementation for distributed

memory systems, wherein they proposed heuristics for mode

ordering and experimentally demonstrated the effect of grid

selection on communication time. For sparse tensors, se-

quential [7], shared memory [10] and distributed implemen-

tations [6] are known. Other tensor decompositions have also

been considered (see [5]). In particular, CP decomposition

which generalizes the concept of rank factorization has been

well studied (e.g. [14]).

Note: Certain details are omitted from the discussion

in this paper, due to space limitations. These can be found in

the full version of the paper (available as ArXiv preprint).

II. TUCKER DECOMPOSITION

A. Preliminaries

Fibers: Consider an N -dimensional tensor T of size

L1×L2× · · ·×LN . Let |T| denote the cardinality (number

of elements) of the tensor. The elements of T can be

canonically indexed by a coordinate vector of the form

〈l1, l2, . . . , lN 〉, where each index ln belongs to [1, Ln], for

all modes 1 ≤ n ≤ N . A mode-n fiber −→x is a vector

of length Ln, containing all the elements that differ on the

nth coordinate, but agree on all the other coordinates, i.e.,

〈l1, . . . , ln−1, ∗, ln+1, . . . lN 〉. The number of mode-n fibers

is |T|/Ln. In the analogous case of matrices, two types of

fibers can be found: row vectors and column vectors.

Tensor Unfolding: The tensor T is stored as a matrix

and there are N different matrix layouts are possible, called

the unfoldings. The mode-n unfolding of T refers to the

matrix whose columns are the mode-n fibers of the tensor.

The columns are arranged in a lexicographic order (the

details are not crucial for our discussion). This matrix is

of size Ln × (|T|/Ln), and we denote it as T(n).

Tensor-Times-Matrix Multiplication (TTM): For any

mode n, the tensor T can be multiplied by a matrix A along

mode n, provided A has size K ×Ln, for some K; the op-

eration is denoted Z = T×nA. Conceptually, the operation

applies the linear transformation A to all the mode-n fibers.

It is realized via the matrix-matrix multiplication A× T(n),
and taking the output matrix to be the mode-n unfolding

of Z. While the length along mode n changes from Ln to

K, the number of fibers and the lengths along other modes

remains the same. Thus, Z has cardinality K · (|T|/Ln) and

size L1 × · · · × Ln−1 ×K × Ln+1 × LN .

1039

TTM-Chain: The TTM-chain operation refers to mul-

tiplying T along multiple distinct modes. For two modes

n1 and n2 and matrices A1 and A2, we first multiply

T by A1 along mode n1, and then multiply the output

tensor along mode n2 by A2. An important property of

the operation is commutativity [9], namely the two TTM

operations can be performed in any order: (T ×n1
A1)×n2

A2 = (T×n2
A2)×n1

A1. In general, for a subset of distinct

modes S = {n1, n2, . . . , nr}, and matrices A1,A2, . . . ,Ar,

where Aj has size Kj × Lnj , the output is a tensor

Z = T×n1
A1 × · · · ×nr

Anr
. The length of Z remains the

same as T along modes not belonging to S, and changes

to Kj , for all nj ∈ S. Commutativity implies that the

multiplications can be performed in any order.

B. Tucker Decomposition and HOOI

The Tucker decomposition of T approximates the tensor

as the product of a core tensor G of size K1 ×K2 × · · · ×
KN , with each Kn ≤ Ln, and a set of factor matrices
F1,F2, . . . ,FN : T ≈ Z = G ×1 F1 ×2 F2 × · · · ×N FN .

The factor matrix Fn has size Ln×Kn. The decomposition

compresses the length of T along each mode from Ln to

Kn. We write the decomposition as {G;F1,F2, . . . ,FN}.
The error of the decomposition is measured by comparing

the recovered tensor Z and the input tensor T under the

normalized root mean square metric.

The HOOI procedure [9] transforms a given decomposi-

tion into a new decomposition having the same core size,

but with reduced the error. Given an initial decomposition,

the procedure can be invoked repeatedly to reduce the error

monotonically, until a desired convergence is achieved. An

initial decomposition can be found using methods such as

STHOSVD [8].

The HOOI procedure (a single invocation), shown in

Figure 2, takes as input the tensor T, and a decomposition

{G,F1,F2, . . . ,FN} with core size K1 ×K2 × · · · ×KN .

It produces a new decomposition {G̃, F̃1, F̃2, . . . , F̃N} with

lesser error, but having the same core and factor matrix sizes.

For computing each new factor matrix F̃n, the procedure

utilizes the alternating least squares paradigm and works

in two steps. First, it performs a TTM-chain operation by

skipping mode n and multiplying T by the transposes of

all the other factor matrices Fj (with j 	= n) and obtains

a tensor Z. The tensor Z has length compressed from Lj

to Kj along all modes j 	= n. In the next step, it performs

an SVD on Z(n), the mode-n unfolding of the Z. The new

factor matrix F̃n is obtained by arranging the leading Kn

singular vectors as columns. Once all the new factor matrices

are computed, the new core tensor is computed.

Figure 3 (a) depicts the process in the form of a tree.

The root represents the input tensor T, each node with label

n represents multiplication along mode n, and each leaf

represents a new factor matrix. For dense tensors, the SVD

operations tend to be inexpensive (see [2]). Therefore, we

Input: A tensor T and a decomposition {G,F1,F2, . . . ,FN}
Size of tensor T: L1 × L2 × · · · × LN

Size of core G: K1 ×K2 × · · ·KN ,
Size of factor matrix Fn: Ln ×Kn

Output: New decomp. {G̃, ˜F1, ˜F2, . . . , ˜FN} with lesser error

Size of core G̃ and factor matrices ˜Fn: Same as input.
Procedure:

For each mode n from 1 to N
TTM-Chain: Perform TTM along all the modes, except n.

Z← T ×1 F
T
1 × · · · ×n−1 F

T
n−1 ×n+1 F

T
n+1 × · · · ×N FT

N .

SVD: ˜Fn ← leading Kn left singular vectors of Z(n)

New core: G̃← T ×1
˜FT
1 × · · · ×N

˜FT
N

Output {G̃, ˜F1, ˜F2, . . . , ˜FN}.

Figure 2: HOOI Procedure

focus on optimizing the TTM component comprising of the

N TTM-chains, from the perspectives of computational load

and communication volume.

III. COMPUTATIONAL LOAD

The TTM component performs N TTM-chains, each

involving (N − 1) TTM operations. Commutativity allows

us to rearrange and reuse the operations in multiple ways,

all of which can be represented in the form of TTM-trees, as

observed in prior wok [11]. We measure the computational

load of a tree by the number of floating point operations

incurred. Our objective is to design an efficient algorithm for

finding the optimal TTM-trees. Below, we first formalize the

above model and rephrase prior schemes, and then describe

the optimal algorithm.

A. TTM-trees and Cost

In a TTM-tree, the root represents the input tensor T,

each leaf node represents a unique new factor matrix and

each internal node (nodes other than the root and the leaves)

represents TTM along a particular mode. The root-to-leaf

path leading to a new factor matrix F̃n realizes the TTM-

chain required for computing F̃n.

1) TTM-Trees: Formally, a TTM-tree H is a rooted tree

with a function lbl(·) that assigns a label lbl(u) to each node

u such that the following properties are satisfied: (i) the label

of the root node is lbl(root) = T; (ii) there are exactly N
leaves, with each leaf u being labeled with a unique new

factor matrix lbl(u) = F̃n; (iii) each internal node u is

labeled with a mode lbl(u) ∈ [1, N]; (iv) for each leaf u
with label lbl(u) = F̃n, the path from the root to u has

exactly (N − 1) internal nodes and all the modes except n
appear on the path.

Figure 3 (a) - (c) provides example TTM-trees for the

case of N = 4. Although the trees differ in the order in

which the modes are processed and the total number of

TTMs performed, they all realize the necessary TTM chains.

1040

(a) Chain tree (b) Chain tree (c) Balanced tree (d) Cost analysis

Figure 3: Example TTM-trees and cost analysis. Tree (a) and (b) are both chain trees, but use different orderings, 〈1, 2, 3, 4〉
and 〈4, 3, 2, 1〉, respectively.

Given a tree H , the HOOI procedure can be executed via

a natural top-down process by associating each node with

an input tensor In(u) and an output tensor Out(u). For the

root node, In(root) = Out(root) = T. Each internal node

u with lbl(u) = n takes as input the tensor output by its

parent v, multiplies it along mode n by the factor matrix FT
n ,

and outputs the resultant tensor, i.e., In(u) = Out(v) and

Out(u) = In(u)×nF
T
n . Each leaf node u with lbl(u) = F̃n

constructs the new factor matrix F̃n by performing an SVD

on the tensor output by its parent. The correctness of the

procedure follows from the commutativity property of the

TTM-chain operation. In the above procedure, we reuse the

tensor output by a node for processing all its children. By

executing the process via an in-order traversal, we can ensure

that the maximum number of intermediate tensors stored at

any point is bounded by the depth of the tree.

2) Computational Load: We define the cost (or com-
putational load) of a TTM-tree H to be the number of

floating point operations (FLOP) performed. Each internal

node u with label lbl(u) = n executes the TTM Out(u) =
In(u)×n F

T
n . Recall that the operation involves the matrix-

matrix multiplication, wherein the matrix FT
n is multiplied

by the mode-n unfolding of In(u). The matrix has size

Kn×Ln and the unfolded tensor has size Ln×(|In(u)|/Ln)
and so, the cost of the TTM is Kn · |In(u)|. The cardinality

of the output tensor is |Out(u)| = (Kn/Ln)|In(u)|; namely,

the node compresses the tensor by a factor (Kn/Ln). We can

compute the cost incurred at all the nodes and the cardinality

of their output tensors by performing the above calculations

in a top-down manner. Then, the cost of the tree H is given

by the sum of costs of its internal nodes. We can see that

each mode n is associated with two parameters: a cost factor
Kn and a compression factor (Kn/Ln), which we denote

as hn. At each node, the cost incurred and the cardinality

of the output tensor can be expressed in terms of these two

parameters.

Figure 3 (d) provides an illustration. The cost incurred

and the cardinality of the output tensor are shown at each

node. For the ease of exposition, we have normalized all the

quantities by |T|. The root node has cost 0 and its cardinality

of its output is |T|, which is 1 after normalization. Each node

u with label n incurs a cost of Kn times the cardinality of

the tensor output by its parent; it outputs a tensor having

cardinality compressed by a factor hn.

B. Prior Schemes

We rephrase the prior schemes in terms of TTM-trees.

Chain trees: These trees encode the naive scheme, with

N independent chains, each comprising of (N − 1) nodes

(see figure 3 (a) and (b)).

Balanced trees: Chain trees perform N(N −1) TTMs.

Kaya and Uçar [11] improved the count to approximately

N logN , via a divide-and-conquer strategy. The idea is to

divide the modes into two groups {1, 2, . . . ,m} and {m +
1,m+2, . . . , N}, where m =
N/2�. We create a chain of

nodes of length m with labels from the first group and attach

it to the root. Then, we recursively construct a subtree for

the second group and attach it at the bottom of the chain.

We then repeat the process by reversing the roles of the two

groups. Figure 3 (c) shows an example for N = 4. The

number of internal nodes is approximately N logN .

Mode Ordering: Since the TTM-chain operation is

commutative, the TTM products within a chain can be

performed in any order. Based on this fact, Austin et al.

[2] propose the concept of mode ordering, wherein the

modes of the input tensor are rearranged according to some

permutation. For example, Figure 3 (a) and (b) are both chain

trees, but have different mode orderings. They proposed

two greedy heuristic for mode ordering. The first heuristic

arranges the modes in increasing order of cost factor Kn,

placing lower cost modes at the top of the tree where large

tensors are encountered. The second heuristic arranges the

modes in increasing order of compression factor hn, aiming

at higher compression at the top layers of the tree. We are

not aware of any prior work on mode ordering with respect

to balanced trees.

1041

C. Constructing Optimal Trees
In this section, we present our algorithm for constructing

the optimal TTM-tree, the tree with the minimum cost. The

algorithm is based on dynamic programming and runs in

time O(4N). In practice, the algorithm takes negligible time,

since the number of dimensions of dense tensors is fairly

small (typically, N ≤ 10).
Towards developing the dynamic programming algorithm,

we first claim that the optimal TTM-tree is binary, namely

every node has at most two children. The proof is based on

the observation that if a node u has three children, then

the children can be rearranged so that only two of the

nodes remain as children of u. The proof can be found

in full version of the paper. Below, we identify a set of

subproblems and derive a recurrence relation relating them.

This is followed by a description of the algorithm and an

analysis of the running time.
1) Subproblems: Consider any binary tree H and let u be

an internal node in it. With respect to u, the modes n can be

partitioned into three groups: (i) pre-multiplied: n is found

along the path from the root to u, including u; (ii) computed
under u: the leaf bearing label F̃n is found under the sub-tree

rooted at u; (iii) n does not belong to either category. Let

P , Q and R denote the set of modes belonging to the three

categories. For an illustration, consider the tree in Figure

3 (c) and let u denote the right child of the root labeled

3; with respect this node, P = {3}, Q = {1, 2} and R =
{4}. Notice that the triple (P,Q,R) forms a partitioning of

[1, N]. We can characterize any node u in a TTM-tree via

the above 3-partition.
We next make an observation regarding the set R. Con-

sider the stage in the HOOI execution, wherein we have

completed the processing of the node u. At this stage, we

have already completed multiplication along all modes in

P . For any mode n ∈ Q, the corresponding TTM-chain

involves multiplication along all modes, except n. Of these

modes, we are yet to perform multiplication along the modes

in R and Q\{n}. The multiplications along modes in R are

common to the TTM-chains corresponding to all the modes

in Q. Therefore, at this stage, we can potentially select any

mode from R, perform multiplication along the mode and

reuse the output tensor. Hence, we call the modes in R as

reusable. For instance, mode 4 is reusable in the example

discussed earlier (Figure 3).
The idea behind the dynamic programming algorithm is to

consider a subproblem for each possible triple (P,Q,R) as

follows: construct the optimal subtree given that the modes

in P have been multiplied already, the modes in Q needs to

be computed and R are the reusable modes. We formalize

the concept using the notion of partial TTM-trees.
Partial TTM-tree: Consider a triple (P,Q,R) with

|Q| ≥ 1. Let T[P] denote the tensor obtained by multiplying

T by the factor matrices along all the modes found in P . A

partial TTM-tree for (P,Q,R) is a rooted tree with labels

on its nodes such that the following properties are satisfied:

(i) the root is labeled X = T[P]; (ii) there are exactly |Q|
leaves, with each leaf u being labeled with a unique factor

matrix F̃n, for n ∈ Q; (iii) each internal node u is labeled

with a mode from [1, N] \P ; (iv) for each leaf node u with

label F̃n, the path from the root to u has exactly N−|P |−1
internal nodes and all the modes except P ∪ {n} appear on

them. Figure 4 shows two example partial-TTM trees for the

triple P = {3}, Q = {1, 2} and R = {4} discussed earlier.

The cost of a partial-TTM tree is defined analogous to the

usual TTM-trees. Let H∗(P,Q,R) denote the optimal par-

tial TTM-tree for the triple (P,Q,R) and let cost∗(P,Q,R)
be the cost of the optimal tree. The optimal tree for the

original problem is given by H∗(P,Q,R) with P = ∅,
Q = [1, N] and R = ∅.

2) Recurrence Relation: We discuss the subproblem

structure and derive a recurrence relation. Consider a triple

(P,Q,R). Since optimal trees are binary, the root of

H∗(P,Q,R) can have either one or two children. The

recurrence relation considers both the possibilities, which

we refer to as reuse and splitting.

Reuse: This option is available, if R 	= ∅. In this case,

we select a mode n ∈ R and multiply X = T[P] along

mode n. The result is then reused for computing the new

factor matrices of all the modes in Q. In terms of TTM-

trees, the operation corresponds to adding a single child with

label n to the root of the partial TTM-tree. Once the above

TTM operation is performed, we are left with solving the

subproblem corresponding to the triple (P∪{n}, Q,R\{n}).
The cost is given by sum of the cost of the TTM operation

X×nF
T
n and the cost of recursively solving the subproblem.

Recall that the former cost is Kn · |X|. The latter cost is

cost∗(P ∪{n}, Q,R\{n}). In the above process, any mode

from R can be reused and we can find the best option by

considering all the choices.

Splitting: The second possibility is to split (or partition)

Q into sets Q1 and Q2 and independently solve the triples

(P,Q1, R) and (P,Q2, R). The total cost is given by the

sum of costs of optimal subtrees of the two subproblems,

i.e., cost∗(P,Q1, R) + cost∗(P,Q2, R). Any (non-trivial)

partition (Q1, Q2) of Q with Q1, Q2 	= ∅ can be used in

the above process and the best choice can be found by an

exhaustive search.

The above discussion yields the following recurrence

relation for computing the optimal cost of a triple (P,Q,R):

cost∗(P,Q,R) = min{cost∗reuse, cost∗split},where

cost∗reuse = min
n∈R

Kn · |T[P]|+ cost∗(P ∪ {n}, Q,R \ {n})
cost∗split = min

〈Q1,Q2〉⊆Q
cost∗(P,Q1, R) + cost∗(P,Q2, R).

The dynamic programming table constructed by the al-

gorithm has at most 3N entries. It can be shown that the

1042

Figure 4: Example partial TTM-trees with N = 4, P = {3},
Q = {1, 2}, and R = {4}. X = T[P] = T ×3 F

T
3

number of table lookups is at most 2 · 4N . Thus, algorithm

runs in time O(4N).

Remarks: Given that N is small, we may consider

constructing the optimal TTM-trees via an exhaustive search.

A naive search over all TTM-trees is prohibitively expensive.

The TTM operation corresponding to a mode n involves

multiplication along all the other (N−1) modes, which can

be performed in any of the ((N − 1)!) orderings. Over all

the nodes, the number of combinations is ((N − 1)!)N), all

which can be realized as chain trees. We can expedite the

search by considering only the binary TTM-trees. We are

not aware of any closed form expression for the number of

binary TTM-trees. We note that our algorithm can be mod-

ified to enumerate all these trees. Instead of enumeration,

the algorithm incorporates memoization and computes the

optimal tree efficiently in time O(4N).

IV. COMMUNICATION VOLUME

Our strategy is to fix a TTM-tree H (based on the heuristic

or the optimal tree) and devise schemes for minimizing

the volume. Our distributed implementation uses the same

strategy as that of Austin et al. [2] for distributing the tensors

and performing TTM in a distributed manner. We propose

a dynamic gridding scheme that offers significant reduction

in volume and design an efficient algorithm for finding the

optimal scheme.

A. Distributed Setup

Tensor Distribution: Fix a TTM-tree H and let P be the

number of processors. We arrange the processors in an N -

dimensional grid g = q1×q2×· · ·×qN such that P =
∏

j qj .

To distribute a tensor, we impose the grid on the tensor

and partition it into P blocks, and assign each block to a

processor; see Figure 5 (a) for an illustration. The input

tensor T and all the intermediate tensors gets partitioned

using the same grid.

Distributed TTM and Volume: Each node u with label

n and parent v performs the TTM operation Out(u) =
In(u)×nF

T
n . For the grid g, we denote the communication

volume incurred by the operation as vol(u, g). As observed

in the prior work vol(u, g) = (qn − 1)|Out(u)|; a brief

outline of the argument in the following paragraph. The total

communication volume of g, denoted vol(H, g), is defined

to be the sum of volumes incurred at all the internal nodes.

Recall that the TTM operation Out(u) = In(u) ×n FT
n

can be viewed as applying the linear transformation FT
n

to every mode-n fiber −→x of In(u). That is, we need to

perform the matrix-vector product −→y = FT
n · −→x . Since the

factor matrices are small in size, we can afford to keep a

copy of them at every processor. However, each mode-n
fiber −→x gets distributed equally among some qn processors

and so, computing the product requires a reduce operation.

Similarly, the output fiber −→y must be distributed among

the same processors using a scatter operation. See Figure

5 (b) for an illustration. The reduce-scatter operation is

performed over the output fiber −→y of Kn, for which we

incur (qn−1)Kn units of communication. Summed up over

all the fibers, the total communication volume for the TTM

is (qn − 1)|Out(u)|.
In the above distribution method, if qn > Ln for some

mode n, then some processor would receive an empty

block while partitioning T. Similarly, if qn > Kn then

same scenario would arise on some intermediate tensor. We

avoid the load imbalance by considering only grids with

qn ≤ Kn, for all n; we call these valid grids. In the rest

of the discussion, unless explicitly mentioned, we shall only

consider valid grids.

B. Finding the Optimal Static Grid

We observe that the optimal static grid, the one achieving

the minimum communication volume, can be found via an

exhaustive search in negligible time. The number of grids,

including the invalid ones, is the same as number of ways in

which the integer P can be expressed as the product of N
factors, which we denote ψ(P,N). If the prime factorization

of P is P = pe11 · pe22 · · · pess , then we have that

ψ(P,N) =
s∏

i=1

(
ei +N − 1

N − 1

)

When the quantity becomes large, the search can be paral-

lelized in a straightforward manner. Even for the extreme

case of P = 220 and N = 10, the number of grids to be

scanned per processor is approximately 10.

C. Dynamic Gridding Scheme

The idea of dynamic gridding is as follows. Consider a

node u, and let its parent be v and label be n. The node u
performs the TTM operation Out(u) = In(u)×nF

T
n . If the

tensor In(u) is represented in a grid g = 〈q1, q2, . . . , qN 〉
then we incur a volume of (qn−1)|Out(u)|, Thus, it is bene-

ficial to represent In(u) under a grid with a small assignment

qn, and in fact, the operation can be made communication-

free by assigning qn = 1. The static gridding scheme

selects a single grid by considering the cumulative effect

of the above communication volume over all the nodes.

The idea of dynamic gridding is to select different grids for

representing the intermediate tensors, as appropriate for each

node. However, we need to pay a price for dynamic gridding:

1043

(a) Example grids (b) Matrix-fiber multiplication

Figure 5: Distributed setup: (a) the two figures use the grids 〈4, 2, 1〉 and 〈2, 2, 2〉, respectively.

if the tensor output by the parent v is represented in a grid g
and we have selected a different grid g′ for representing it at

u, then the tensor must be regridded (redistributed) among

the processors. The process incurs a volume of |In(u)|.
Thus, a dynamic grid scheme must decide whether or not to

regrid at each node, and furthermore, if it decides to regrid,

the new grid must be selected in a manner beneficial for the

TTM operations performed later in the subtree, so that the

overall communication is minimized.

In Figure 6, we have shown an example, carefully con-

structed so as to highlight the different aspects of dynamic

gridding. Assume that the number of processors is P = 64
and the core is of size 8 × 8 × 8 × 64. The choice of

the initial grid 〈1, 1, 1, 64〉 makes the TTM operations at

nodes a, b, c and e are communication-free. However, the

grid is not suitable for the TTM at node d, since the volume

incurred is 63× |Out(d)|. Instead, we switch to a new grid

〈8, 8, 1, 1〉, making the operation communication-free. We

perform another regrid operation at node f by selecting the

new grid 〈2, 4, 8, 1〉, The choice of the new grid is motivated

by the following considerations. The subtree beneath f does

not involve any TTM along mode 3 and so, it is prudent to

assign a high value along the mode. However, we must select

a valid grid, and the constraint implies that the maximum

possible value is 8 (since the core length along mode 3
is K3 = 8). We next assign a value of 1 to mode 4,

thereby making the TTM at node d communication-free. The

remaining of value of 8 is assigned to the modes 1 and 2 in

a balanced manner.

Dynamic Grid Scheme: Formally, a dynamic grid
scheme is a mapping π that associates a grid π(u) with

each node u. The volume incurred by the scheme, denoted

dvol(H,π) is defined as follows. For each node u with label

n and parent v, we compute the volume incurred at the node

as the sum of two components: (i) TTM operation volume:

(qn − 1)|Out(u)|, where qn is the assignment to mode n
under π(u); (ii) regridding volume: if π(u) is the same as the

parent grid π(v), then the volume is zero, and otherwise, it

is |In(u)|. The volume of the scheme π, denoted dvol(H,π),
is defined to be the sum of communication incurred over all

the nodes u. At the root node, we represent the input tensor

T under the grid π(root) and we do not have the regrid

Figure 6: Example dynamic grid scheme

option. Let dvol∗(H) denote the optimal communication

volume achievable among all dynamic grid schemes, and

let Opt(H) denote an optimal scheme.

D. Optimal Dynamic Gridding Scheme

In this section, we develop an efficient dynamic program-

ming algorithm for computing the optimal dynamic grid

scheme for a given tree H . For a node u, let H(u) denote

the subtree rooted at u. A partial grid scheme for H(u)
refers to a mapping π that specifies a grid for each node in

H(u). For each node u and each grid gpar, we shall define

a subproblem with the following connotation: assuming that

the tensor output by the parent is represented under the grid

gpar, find the optimal partial grid scheme for the subtree

H(u). We solve these subproblems via a bottom-up traversal

of the tree, wherein the optimal solution at u is computed

from the optimal solutions of its children.

1) Subproblems: Consider a pair (u, gpar), where u is a

node and gpar is a grid. For a partial grid scheme π for the

subtree, let dvol(H(u), π|gpar) denote the volume incurred

by π given that the tensor output by the parent of u is

represented in the grid gpar. Formally, it is computed as

follows. For each node z ∈ H(u), define a parent grid

pg(z): for the node u, pg(u) = gpar, and for the other

nodes, pg(z) = π(z′), where z′ is the parent of z. For any

node z ∈ H(u), associate the volume given by the sum of

the following two components: (i) TTM operation volume:

(qn−1)|Out(z)|, where n is the mode label of z and qn is the

assignment to mode n under π(z); (ii) regridding volume:

if π(u) is the same as pg(z), then the volume is zero, and

1044

otherwise, it is |In(z)|. Then, the volume dvol(Hu, π|gpar)
is defined to be the sum of volumes associated with all the

nodes z ∈ H(u). Let dvol∗(H(u)|gpar) denote the minimum

volume possible among all partial grid schemes π. We do

not regrid at root and so, define dvol∗(H|gpar) to be the

minimum volume given that T is represented under gpar.
2) Recurrence Relation: We derive a recurrence relation

for computing dvol∗(H(u)|gpar). Let v1, v2, . . . , vs be the

children of u. In determining the optimal partial scheme,

we have two options: (i) regrid: select a new grid rg∗(u)
for representing In(u); (ii) do no regrid: represent In(u)
under the given grid gpar. In the first case, we select rg∗(u)
to be the grid yielding the minimum volume for the child

subtrees:

rg∗(u) = argming

s∑
j=1

dvol∗(H(vj)|g).

We can now write the recurrence for dvol∗(H(u)|gpar).
Let n be the label of u and v be the parent of u. Let gpar =
〈p1, p2, . . . , pN 〉 and let rg∗(u) = 〈q1, q2, . . . , qN 〉. Then:

dvol∗(H(u)|gpar) = min{vol∗1, vol∗2},where

vol∗1 = |In(u)|+(qn−1)|Out(u)|+
s∑

j=1

dvol∗(H(vj)|rg∗(u))

vol∗2 = (pn − 1)|Out(u)|+
s∑

j=1

dvol∗(H(vj)|gpar)

The two quantities correspond to the optimal solutions for

the two choices of regridding and not regridding. In both

the cases, we incur communication for the TTM operation

and communication in the subtrees. In addition, the first case

incurs a regrid volume of |In(u)|. Under the two choices, the

tensors In(u) and Out(u) get represented under the grids

rg∗(u) and gpar, respectively. Consequently, the recursive

calls for the two choices are made with the corresponding

grids. At the root node, we represent T under gpar and do

not regrid and so, we consider only the first choice at the

root. The optimal volume for the whole tree dvol∗(H) is

given by minimum of dvol∗(H|gpar), over all the choices of

gpar and can be computed via enumerating the choices.

The algorithm can be implemented with a running time

O(|H| ·ψ(P,N)). As in Section IV-B, it can be parallelized

so that the execution time is negligible in practice.

V. EXPERIMENTAL EVALUATION

A. Distributed Implementation

The distributed implementation consists of two modules,

a planner that constructs TTM-trees and selects grids, and

an engine, which implements distributed TTM, SVD and

regrid (tensor redistribution in the case of dynamic gridding

scheme) operations. The TTM operation is implemented

Tensor Dimensions Core Tensor Dimensions
HCCI (672, 672, 627, 16) (279, 279, 153, 14)
TJLR (460, 700, 360, 16, 4) (306, 232, 239, 16, 4)
SP (500, 500, 500, 11, 10) (81, 129, 127, 7, 6)

Table I: Real tensors used in our study

using the algorithm proposed by Austin et al. [2]. We im-

plement the SVD component using distributed Gram matrix

computation (AAT) followed by eigen value decomposition

(EVD) via dsyrk and dsyevx calls. All the processors

use the same TTM-tree and there is synchronization at each

tree node.

B. Setup

1) System: The experiments were conducted on an IBM

BG/Q system. Each BG/Q node has 16 cores and 16 GB

memory. Our implementation is based on MPI and OpenMP,

with gcc 4.4.6 and ESSL 5.1. Each MPI rank was

mapped to a single node and spawns 16 threads which are

mapped to the cores. All the experiements use 32 nodes.

2) Tensors: As discussed in the introduction, the execu-

tion time of the HOOI algorithm is crucially dependent on

the metadata (dimension lengths of the input tensor and the

core tensor), and independent of the elements in the tensor.

We exploit this property to construct a large benchmark

of tensors with metadata derived from real world tensors

considered in prior work.

We also include a set of tensors with metadata derived

from simulations in combustion science [2]. The metadata of

these tensors is shown in Table I. Due to memory limitations,

we curtailed the length along certain dimensions; while the

length along all the spatial dimensions were retained as such,

we reduced the length along the axes of variables/timesteps

and proportionately reduced the length of the core along

these axes. We fill these tensors with randomly generated

data.

The benchmark is constructed as follows. We constructed

5 and 6-dimensional tensors with dimension lengths Ln

drawn from the set {20, 50, 100, 400}. We selected the

core dimension lengths Kn by fixing the compression ratio

hn = Kn/Ln. The value for hn was drawn from the set

{1.25, 2, 5, 10}. Given the above two sets of choices, an

input for the HOOI procedure can be generated as follows:

for each dimension n ∈ [1,N], we select Ln from the first set

of choices, and select hn from the second set of choices, and

set Kn = hn ·Ln. We placed an upper limit of 8 ·109 on the

cardinality of T. We enumerated all possible HOOI inputs

in the above manner and obtained a benchmark consisting

of 1134 5-dimensional and 642 6-dimensional tensors.

C. Evaluation

The experiments involved comparing our algorithm and

prior heuristics (Section III-B and IV-A). The heuristics are

obtained by fixing the tree class to be chain and balanced

1045

(a) Overall time (5D) (b) Overall time (6D) (c) Real Tensors. CK:(chain,K), CH: (chain,
h), B: (balanced), OPT:(opt-tree, dynamic grid)

Figure 7: Overall Execution Time

(a) Computational Time (5D) (b) Computational Time (6D) (c) Computational Load (5D)

(d) Computational Load (6D) (e) Commnunication Time (f) Communication Volume

Figure 8: Analysis of Benchmark Results

trees, and the mode ordering to be K-ordering and h-

ordering. In the case of balanced trees, we observed that

K-ordering and h-ordering do not impact the execution time

and so, we use the input (naive) mode ordering. For all these

heuristics, we use the optimal static grids. We compare the

heuristics with our algorithms: the optimal tree algorithm

with static grids and the same algorithm with dynamic grids.

The following metrics were studied: overall execution

time, computational load and time, and communication

volume and time. The dimensions of the tensors/matrices

arising in the computations are identical across different

HOOI iterations (only data elements change). Consequently,

any two HOOI iterations will incur the same computational

load and communication volume. Thus, the running times

would be approximately the same across iterations. Hence,

we executed each algorithm on all the benchmark tensors

and measured these metrics for a single HOOI invocation.

1) Overall Execution Time: We compared overall execu-

tion time of the opt-tree algorithm with dynamic gridding

against the prior heuristics. For each tensor, we normalized

the execution times w.r.t the execution time of the opt-tree

algorithm (which becomes 1 unit). Given that the benchmark

is large, we summarize the results using a percentile plot.

Figure 7a and 7b shows the plots for 5D and 6D tensors.

In these plots, normalized time of t on percentile value k
means that for k% of tensors, the normalized execution time

is less than t. For example, in Figure 7a, the 60th percentile

value for the (chain, K) is 4.7, meaning that the improvement

factor obtained by the opt-tree algorithm is at most 4.7x for

60% of the tensors and at least 4.7x for the remaining 40%
of the tensors. These plots reveal the overall performance of

the heuristics across the benchmark; a lower curve means

1046

that the heuristic performs better.

The curves corresponding to the prior work lie above the

opt-tree algorithm, i.e., it outperforms all the prior algo-

rithms on every tensor in the benchmark. The performance

gain is dependent on the meta-data. and varies from 1.5x to

7x. The tensors that achieved the minimum and the maxi-

mum gains are: Min - 400×400×20×20×20 compressed

to 320×40×10×10×10; Max - 400×100×100×50×20
compressed to 80 × 80 × 10 × 40 × 10. The median

improvement is 3.4x for 5D and 4.0x for 6D tensors. A

detailed study is required to characterize the gain in terms

of meta-data.

We also studied the performance of the algorithms on

the real tensors. Figure 7c shows the actual execution time

for one HOOI invocation. For each tensor, we show 4 bars,

corresponding to three prior algorithms and the opt-tree

algorithm with dynamic grids. For all the tensors, we see

that balanced tree outperforms the chain algorithms, because

it reuses TTM operations. The opt-tree algorithm offers

improvements as high as 4.6x over (chain, h), 5.8x over

(chain, K) and 4.1x over (balanced). For these tensors, the

superior performance of the opt-tree algorithm is mainly

because of drastic reduction in communication time and

partial reduction in computation time. Remarkably, the opt-

tree algorithm becomes near communication-free under all

the three tensors.

2) Computation Optimization: Here, we study the perfor-

mance gains from optimal computation tree construction by

comparing heuristics and the opt-tree algorithm on computa-

tion time and load for the TTM-component. We normalized

the quantities with respect to the opt-tree algorithm. The time

and load for each algorithm-tensor pair was normalized w.r.t

the time and load of the opt-tree algorithm. The comparison

of the time for 5D and 6D tensors are reported in Figure

8a and 8b. The opt-tree algorithm offers 1.5-1.7x median

improvement compared to prior algorithms for 5D tensors

and 1.4-2.0x median improvement for 6D tensors. The

maximum gain is as high as 2.8x and 3.7x for 5D and 6D.

Figure 8c and 8d show the normalized computational load

for 5D and 6D. We see that the opt-tree algorithm offers

up to 2.8x (5D) and 3.6x (6D) reduction in load over the

best prior algorithm, corroborating the improvements seen

in time. The improvements are higher for 6D, compared

to 5D, because opt-tree has more opportunities for careful

placement and reuse of the TTMs.

3) Communication Optimization: In this experiment, we

study the benefits of dynamic gridding. To do so, we com-

pare the opt-tree algorithm with the static and the dynamic

gridding schemes under the metrics of communication time

and volume. For the latter, we include the time incurred in

TTM multiplication, as well as regridding. The quantities are

normalized with respect to the dynamic gridding scheme.

The results are shown in Figure 8e and 8f. In Figure 8f,

we can see that dynamic gridding offers up to 6x factor

improvement in communication volume over static gridding,

whereas in Figure 8e, we can see improvements up to 17x

factor (median 9.4x) in communication time. The reason

for higher improvements on communication time is that

regridding (based on all-to-all collective) turns out to be

faster than TTM multiplication (based on reduce-scatter over

group communicators) for the same communication volume.

Remarkably, the dynamic grid scheme outperforms static

grid scheme on almost all the tensors in the benchmark,

with a gain of at least 3-factor on 90% of the tensors.

The gain in communication time is a result of improvement

in communication volume, a machine independent statistic.

Thus, we expect similar gains on other distributed memory

systems as well.
Acknowledgements: We thank Woody Austin, Grey

Ballard and Tamara G. Kolda for sharing their insights with

us, and the reviewers for helpful comments.

REFERENCES

[1] L. R. Tucker, “Some mathematical notes on three-mode factor
analysis,” Psychometrika, vol. 31, pp. 279–311, 1966.

[2] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor
compression for large-scale scientific data,” in IPDPS, 2016.

[3] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis
of image ensembles: Tensorfaces,” in ECCV, 2002.

[4] D. Muti and S. Bourennane, “Multidimensional filtering based
on a tensor approach,” Signal Processing, vol. 85, pp. 2338–
2353, 2005.

[5] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Review, vol. 51, pp. 455–500, 2009.

[6] O. Kaya and B. Uçar, “High performance parallel algorithms
for the tucker decomposition of sparse tensors,” in ICPP,
2016.

[7] T. G. Kolda and J. Sun, “Scalable tensor decompositions for
multi-aspect data mining,” in ICDM, 2008.

[8] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A
new truncation strategy for the higher-order singular value
decomposition,” SIAM J. on Scientific Computing, vol. 34,
no. 2, pp. 1027–1052, 2012.

[9] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “On the best
rank-1 and rank-(R1, R2, . . . , RN) approximation of high-
erorder tensors,” SIAM J. Matrix Analysis and Applications,
vol. 21, pp. 1324–1342, 2000.

[10] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, “Ef-
ficient and scalable computations with sparse tensors,” in
HPEC, 2012.

[11] O. Kaya and B. Uçar, “High-performance parallel algorithms
for the tucker decomposition of higher order sparse tensors,”
Inria, Tech. Rep. RR-8801, HAL-01219316, 2015.

[12] B. W. Bader and T. G. Kolda, “Efficient MATLAB computa-
tions with sparse and factored tensors,” SIAM J. on Scientific
Comp., vol. 30, no. 1, pp. 205–231, 2007.

[13] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc, “An
input-adaptive and in-place approach to dense tensor-times-
matrix multiply,” in SC, 2015.

[14] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos,
“GigaTensor: Scaling tensor analysis up by 100 times -
algorithms and discoveries,” in KDD, 2012.

1047

