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ABSTRACT
The Tucker decomposition generalizes the notion of Singular Value
Decomposition (SVD) to tensors, the higher dimensional analogues
of matrices. We study the problem of constructing the Tucker de-
composition of sparse tensors on distributed memory systems via
the HOOI procedure, a popular iterative method. The scheme used
for distributing the input tensor among the processors (MPI ranks)
critically influences the HOOI execution time. Prior work has pro-
posed different distribution schemes: an offline scheme based on
sophisticated hypergraph partitioning method and simple, light-
weight alternatives that can be used real-time. While the hyper-
graph based scheme typically results in faster HOOI execution time,
being complex, the time taken for determining the distribution is
an order of magnitude higher than the execution time of a single
HOOI iteration. Our main contribution is a lightweight distribution
scheme, which achieves the best of both worlds. We show that
the scheme is near-optimal on certain fundamental metrics associ-
ated with the HOOI procedure and as a result, near-optimal on the
computational load (FLOPs). Though the scheme may incur higher
communication volume, the computation time is the dominant fac-
tor and as the result, the scheme achieves better performance on
the overall HOOI execution time. Our experimental evaluation on
large real-life tensors (having up to 4 billion elements) shows that
the scheme outperforms the prior schemes on the HOOI execution
time by a factor of up to 3x. On the other hand, its distribution
time is comparable to the prior lightweight schemes and is typically
lesser than the execution time of a single HOOI iteration.
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1 INTRODUCTION
Tensors are the higher dimensional analogues of matrices that are
useful in representing data in three or higher dimensions. Differ-
ent tensor decompositions have been proposed, among which the
two most prominent are the Tucker decomposition [28] and CP
(canonical polyadic) decomposition [5, 8]. The Tucker decomposi-
tion represents high-rank data in the form of a low-rank structure:
given an N -dimensional input tensor T, the decomposition (ap-
proximately) expresses T as the product of a small N -dimensional
core tensor, and a set of N factor matrices. It can be viewed as a
generalization of the SVD (Singular Value Decomposition) to higher
dimensions. While the factor matrices represent the most signifi-
cant information along the different dimensions, the core captures
the interaction among them. Figure 1 provides a pictorial depic-
tion in 3-D. The CP decomposition generalizes rank factorization
and can be viewed as a constrained form of Tucker decomposition,
wherein the core is a diagonal tensor with uniform length across
all the dimensions.

The Tucker decomposition has been used in performing tasks
such as data compression and principal component analysis. It finds
application in diverse domains ranging from signal processing [22]
to text analytics [21]. We refer to the survey by Kolda and Bader
[17] for a detailed discussion on Tucker decomposition and its ap-
plications. The decomposition has been well-studied in sequential,
sharedmemory, map-reduce and distributed settings, for both dense
and sparse tensors [1–3, 6, 11, 15, 18, 25–27].
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Figure 1: Illustration for the Tucker decomposition in 3-D. G
is the core tensor, and F1, F2 and F3 are the factor matrices.

HOOI Procedure. The HOOI (Higher Order Orthogonal Iterator)
procedure [20] provides a popular iterative method for constructing
the Tucker decomposition of a given tensor. The procedure trans-
forms any given decomposition to a more refined decomposition
and it is usually invoked multiple times until a suitable convergence
criterion is attained. Given a decomposition, the HOOI procedure
(a single invocation) constructs the new decomposition in N it-
erations, wherein each iteration involves a TTM-Chain (Tensor-
times-matrix chain) operation, followed by an SVD step. Finally, the
newly constructed factor matrix rows are communicated among
the processors to be used in the subsequent HOOI invocation.

Our goal is to develop an efficient implementation of the Tucker
decomposition for sparse tensors on distributed memory systems.
We build on a prior framework of Kaya and Uçar [15], which pro-
vides mechanisms for implementing the TTM and SVD operations
in a distributed manner. The execution time of the HOOI procedure
critically depends on the scheme used for distributing the input
tensor among the processors (MPI ranks).

Prior Schemes. We consider distribution schemes proposed for
Tucker decomposition, as well as the related CP decomposition.
The schemes can be classified into three types: (i) coarse-grained
schemes [7, 15, 23] that partition the tensor into large chunks (sub-
tensors) and assign the chunks to the processors; (ii) fine-grained
schemes that assign individual tensor elements [15]; (iii) a medium
grained scheme [25] that strikes a balance between the two. Among
the above methods, hypergraph partitioning (a fine grained schme)
[15] typically offers the best HOOI execution time. However, hyper-
graph partitioning is expensive and the time taken for distributing
the tensor is significantly higher than the execution time of a single
HOOI invocation. On the other hand, the other schemes are real-
time, lightweight procedures with much faster distribution time
(comparable to HOOI execution).

Our Contributions. Our main goal is to demonstrate that high
performance on the HOOI execution time can be achieved via
lightweight schemes:
• We present a lightweight distribution scheme called Lite that
is easy to implement and parallelize.
• We define certain fundamental metrics (implicit in the prior
work) associated with the HOOI procedure and prove that
Lite is near-optimal on all these metrics. As a result, the
scheme is near-optimal on computational load, load balance
and communication volume associated with the TTM and
the SVD components.
• Lite outperforms the prior schemes on real-life tensors in
terms of the HOOI execution time. Lite may incur higher
overall communication volume, because of higher factor
matrix data transfer. Nevertheless, in contrast to the CP

For each mode n from 1 to N
TTM-Chain: Perform TTM along all the modes, except n.
Z← T ×1 FT1 × · · · ×n−1 F

T
n−1 ×n+1 F

T
n+1 × · · · ×N FTN .

SVD: F̃n ← leading Kn left singular vectors of Z(n)
New core: G̃← T ×1 F̃T1 × · · · ×N F̃TN
return {G̃, F̃1, F̃2, . . . , F̃N }.

Figure 2: HOOI Procedure

decomposition, the computation time is the dominant factor
in the Tucker decomposition and as a result, Lite achieves
better HOOI execution time.

We present a detailed experimental study evaluating the different
schemes over a benchmark of large real-life tensors having up to 4
billion elements. The results show that the new scheme achieves
the best of both worlds:
• On HOOI execution time, Lite outperforms the hypergraph
based scheme by a factor of up to 4x. Taking the best of prior
schemes in each test case, the gain is upto a factor of 3x.
HOOI scales well under the scheme: on MPI ranks from 32
to 512, the speedup is in the range of 8.7x to 15.5x.
• Lite distributes tensors with billions of elements in real-time,
with its distribution time comparable to the prior lightweight
schemes and a single HOOI invocation.

Related Work. Tucker decomposition has been studied under
various settings. In the case of sparse tensors, the direct evalua-
tion of TTM-Chain via computing intermediate tensors leads to
memory blowup. To address the issue, Kolda and Sun [18] proposed
a memory efficient approach (MET) and Baskaran [3] developed
semi-dense structures. Recently, Smith and Karypis [26] used the
compressed sparse fiber representation (CSF) to reduce the com-
putational load, while limiting the memory blowup. The above
implementations target sequential and shared-memory settings.
Kaya and Uçar [15] presented the first distributed memory imple-
mentation; we build on their framework. The TTM component of
the framework is a special case of the MET approach, wherein no
intermediate tensors are computed.

For the Tucker decomposition of dense tensors, MATLAB [2],
single-machine [30] and distributed [1, 6] implementations have
been proposed. Prior work has also studied the Tucker decompo-
sition on the MapReduce platform [11]. Other tensor decomposi-
tions such as CP factorization have been explored as well (e.g.,[12–
14, 16, 25]).

Full Version. Due to space constraints, we could not accommo-
date some of the details in this version; these can be found in
the full version of the paper available as Arxiv preprint (https:
//arxiv.org/abs/1804.09494).

2 TUCKER DECOMPOSITION
Tensors. Multi-dimensional arrays are referred to as tensors. Con-

sider an N -dimensional tensor T of size L1 × L2 × · · · × LN . For
1 ≤ n ≤ N , a mode-n fiber refers to the vector obtained by fixing
all the coordinates except n, i.e., ⟨l1, . . . , ln−1, ∗, ln+1, . . . lN ⟩. These
fibers have length Ln and the number of fibers is L̂n = Πj,nLj .
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A mode-n unfolding refers to the matrix of size Ln × L̂n obtained
by arranging the mode-n fibers as the columns in a lexicographic
order. The matrix is denoted as T(n).

Tensor-matrix-multiplication (TTM) refers tomultiplyingT along
any mode n, by a matrix of size K × Ln (for some K ). The operation
is denoted Z = T ×n A. It involves the matrix-matrix multiplication
A × T(n), and taking the output to be the mode-n unfolding of Z.
The output tensor Z of size L1 × · · · × Ln−1 ×K × Ln+1 × · · · × LN .

The TTM-chain operation refers to multiplying T along multiple
distinct modes X = {n1,n2, . . . ,nr } by matrices A1,A2, . . . ,Ar ,
where Aj has size Kj × Lnj . The output is a tensor Z whose length
remains Lj , for all modes j < X and changes to Kj , for all modes
j ∈ X . The operation is denoted Z = T ×n1 A1 × · · · ×nr Anr .

HOOI Procedure. The Tucker decomposition approximately rep-
resents a given tensor T as the product of a small core tensor G and
a set of factor matrices: T ≈ Z = G ×1 F1 ×2 F2 × · · · ×N FN . The
core is of size K1 × K2 × · · · × KN , with each Kn ≤ Ln being user
specified. Each factor matrix Fn has size Ln × Kn .

HOOI [20] is an iterative algorithm that transforms a given
decomposition {G, F1, F2, . . . , FN } to a more refined decomposition
{G̃, F̃1, F̃2, . . . , F̃N } having the same core and factor matrix sizes. It
is bootstrapped with an initial decomposition produced by methods
such as HOSVD (Higher Order SVD) [19] and invoked multiple
times until a pre-defined convergence criterion is met.

The HOOI procedure (a single invocation) is based on the al-
ternating least squares paradigm (ALS) and works in N iterations;
see Figure 2. Each iteration n ∈ [1,N ] computes the new factor
matrix F̃n by performing two operations: TTM-Chain and SVD.
Skipping mode n, the TTM-Chain multiplies T by the transposes of
all the other factor matrices Fj (with j , n) and obtains a tensor Z.
The tensor Z has length compressed from Lj to Kj along all modes
j , n. The mode-n unfolding of Z, denoted Z(n), is a matrix of size
Ln × K̂n , where K̂n = Πj,nKj . The SVD step obtains the leading
Kn singular vectors of Z(n). These get arranged as columns to ob-
tain the new factor matrix F̃n . We refer to the matrix Z(n) as the
penultimate matrix, since it is one TTM short of a full TTM chain.
The TTM-chain and SVD operations form the main components of
the procedure, since it is sufficient to compute the new core only
once after all the invocations are completed.

3 DISTRIBUTED FRAMEWORK
Asmentioned in the introduction, we build on the distributed frame-
work of Kaya and Uçar [15]. Here, we present an outline of the
framework focusing on the aspects critical for our discussion.

The input sparse tensor T is represented in the coordinate format.
Let E denote the set of all non-zero elements. Each element e ∈ E
is represented by a coordinate vector (l1, l2, . . . , lN ) (where each
ln ∈ [1,Ln ]) and a value val(e) ∈ R. Consider a distributed setting
consisting of P processors (MPI ranks), numbered 0, 1, . . . , P − 1.

The HOOI procedure involves of N iterations. Consider the com-
putation along any mode n ∈ [1,N ], consisting of a TTM-Chain
operation that generates the penultimate matrixZ(n) of size Ln×K̂n ,
followed by an SVD operation on the matrix. In order to evaluate
the TTM-Chain in a distributed manner, the framework uses a
reformulation via the Kronecker product.

Figure 3: TTM-Chain reformulation

Figure 4: Framework illustration

Reformulation. We partition the elements into groups based on
the nth coordinate, called slices: for each l ∈ [1,Ln ], define Sliceln as
the set of elements having thenth coordinate as l . The reformulation
is based on the observation that any row Z(n)[l , :] is determined
only by the contributions from the elements in Sliceln . Figure 3
provides an illustration using a 3-D tensor with eight elements,
by considering the TTM-Chain operation along the first mode
(n = 1). In this example, L1 = 3 and so, there are three slices:
Slice11 = {e1, e3, e6}, Slice

2
1 = {e2, e7} and Slice31 = {e4, e5, e8}. The

rows to which the elements contribute are shown by arrows. Each
slice and the corresponding row are assigned the same color.

While the row to which e contributes is determined by its nth
coordinate, the contribution is determined by the other (N − 1)
coordinates of e . The contribution, denoted contrn (e), is a vector
of length K̂n , the same as the length of rows of Z(n). It is computed
via the Kronecker (or outer) product of the rows indexed by the
above (N − 1) coordinates in the corresponding factor matrices.
We vectorize the resultant (N − 1)-dimensional tensor and scale
by val(e) to get contrn (e); the details are given at the end of the
section. The reformulation states that for any row-index l ∈ [1,Ln ],
the row lth is given by Z(n)[l , :] =

∑
e ∈Sliceln

contrn (e)

TTM Component. We distribute the input tensor using a distribu-
tion policy (a mapping) π : E→ [0, P − 1] that assigns each element
e to a processor p = π (e), called the owner of e . Equivalently, the
policy partitions the set of elements E into P parts E0,E1, . . . ,EP ,
where Ep denotes the set of elements assigned to the processor
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p. Given a policy π , each processor p computes a local copy of
the penultimate matrix Zp

(n) by considering only the contributions

made by the elements owned by it. Namely, we initialize Zp
(n) to

all 0 and for each element e ∈ Ep , we add the vector contrn (e) to
the row Zp

(n)[l , :], where l is the n
th coordinate of e . The global

penultimate matrix Z(n) is simply the sum of the local copies, i.e.,
Z(n) is sum-distributed.

Part (a) of Figure 4 provides an illustration over three proces-
sors using a simple policy π that partitions the elements in a lex-
icographic manner: E0 = {e1, e2, e3}, E1 = {e4, e5, e6} and E2 =
{e7, e8}. The local copies are also shown.

In the above procedure, a processor may not contribute to all the
rows of Z(n). For a row-index l ∈ [1,Ln ], we say that a processor
p shares Sliceln , if it owns at least one element from the slice, i.e.,
Ep ∩ Sliceln , ∅. The processor contributes only to the rows cor-
responding to the slices shared by it; the other rows are said to be
empty. Let Rpn denote the number of slices shared by p, or equiva-
lently, the number of rows to which p contributes. By omitting the
empty rows, we can represent the local copy succinctly as a matrix
of size Rpn × K̂n . Apart from reducing the memory footprint, the
above truncation provides significant advantages in optimizing the
subsequent SVD operation. In Figure 4, the empty rows are colored
white; here, L1 = 3 and R

p
n = 2 for all the processors.

SVD Component. While the matrix Z(n) can be constructed ex-
plicitly by aggregating the local copies, the approach may lead to
high volume of communication. Instead, the framework performs
the SVD operation directly over the local copies by employing the
Lanczos bidiagonalization method [9], an iterative matrix-free pro-
cedure. The Lanczos method can be explained using an oracle (i.e.,
query-answering) model. The method works iteratively, wherein
each iteration generates two query vectors, a column vector −→x in
and a row vector −→y in, and our task is to evaluate the matrix-vector
products −→x out = Z(n) ·

−→x in and −→y out =
−→y in · Z(n) and return the

answers −→x out and −→y out to the method.
Regarding the first product, each processor computes the local

answer −→x p
out = Zp

(n) ·
−→x in. These get aggregated by a global point

to point reduction operation, as follows. The framework uses a
suitable row-index mapping σn : [1,Ln ] → [0, P − 1] that assigns
each row-index l to a processor σn (l) called the owner of l . The
owner is chosen to be one among the processors sharing Sliceln . The
owners accumulate partial contributions received from the other
processors. Thus, the global answer −→x out is output in a distributed
manner according to σn . In Figure 4, processors 1, 0 and 2 are the
owners and communication is shown by dashed arrows. The second
product is executed in an analogous manner.

Factor Matrix Transfer. The Lanczos algorithm produces the fac-
tor matrix F̃n in a distributed manner, wherein each row F̃n [l , :]
gets generated at the owner σn (l). These rows are needed for the
TTM computation of the next HOOI invocation. Towards that goal,
the owner σn (l) sends the row F̃n [l , :] to all the processors that
would require the row for the subsequent TTM computation.

Distribution Schemes. The execution time of the HOOI proce-
dure critically depends on the choice of the distribution policy π ,

since the policy determines the parameters of computational load
(FLOPs), load balance and communication volume. An efficient pol-
icy must optimize the above parameters with respect to the HOOI
computation along all the N modes. The task becomes easier, if we
use N distribution policies, each customized with respect to the
computation along a single mode. We call such a sequence of N poli-
cies (π1,π2, . . . ,πN ) as a distribution scheme. If a single policy π is
used across all modes, we refer to the scheme as uni-policy scheme,
and the general case as mulit-policy scheme. Uni-policy schemes
need to store only a single copy of the input tensor (distributed
among the processors), whereas multi-policy schemes must store
N copies, one along each mode. However, multi-policy schemes
offer more flexibility and opportunities for optimization.

Kronecker Product. Here, we describe how to compute the rows of
the penultimate matrix. Let u1,u2, . . . ,ur be a sequence vectors of
length s1, s2, . . . , sr , respectively. The Kronecker (or outer) product
of the sequence is an r -dimensional tensor of size s1 × s2 × . . . × sr ,
wherein the element with coordinate (c1, c2, . . . , cr ) takes the value
Πr
j=1uj [c j ]. We represent the tensor as a vector of length s1 ·s2 ·. . .·sr

by arranging the elements in a lexicographic order.
For an element e with coordinate (l1, l2, . . . , ln . . . , lN ) and value

val(e), let Kronn (e) denote the vector yielded by the Kronecker
product of the following rows (vectors) of the factor matrices:

Fn [l1, :], . . . , Fn−1[ln−1, :], Fn+1[ln+1, :], . . . , FN [lN , :].

Define contrn (e) = val(e) · Kronn (e). Then, the lth row is given by
Z(n)[l , :] =

∑
e ∈Sliceln

contrn (e)

4 PERFORMANCE METRICS
In this section, we identify certain fundamental metrics that de-
termine the computational load and communication volume in-
curred by the HOOI procedure, under a given distribution scheme
(π1,π2, . . . ,πN ). The HOOI procedure consists of three compo-
nents, TTM, SVD and factor matrix transfer, of which the first two
involve computation and the latter two involve communication.
We analyze the efficacy of a scheme along each mode n separately.
The cumulative performance across all modes can be computed via
suitable aggregation.

4.1 Computational Load
We generalize the notations Ep and R

p
n to multi-policy schemes

in a natural manner. Let Epn denote the the set of elements owned
by processor p along mode n, i.e., Epn = {e : πn (e) = p}. For a
row-index l ∈ [1,Ln ], we say that p shares Sliceln , if it owns at
least one element from the slice with respect to the policy πn , i.e.,
E
p
n ∩ Sliceln , ∅. Let R

p
n denote the number of slices shared by p

along mode n.

TTM Computation. The TTM component has to evaluate |E|
Kronecker products (one for each element). Thus, the TTM compu-
tation load is the same for all distribution schemes. However, the
policy πn may induce load imbalance by distributing the elements
among the processors in a non-uniform manner. The TTM load
imbalance along mode n is captured by our first metric:

Metric 1: Emaxn = max
p
|E
p
n |.
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The optimal value the metric is the average ⌈|E|/P⌉, which can be
achieved by uniformly distributing the elements.

SVD Computation. For any matrix-vector product associated
with a Lanczos query, each processor p incurs a computational load
of Rpn · K̂n , the size of its local copy. LetQn be the number of queries
raised by the Lanczos procedure. Summed across all queries and all
processors, the total oracle load is given by Qn · K̂n ·

∑
p R

p
n . Since

Qn and K̂n are the same for all policies, the oracle load along mode
n is captured by our second metric:

Metric 2: Rsumn =
∑
p

R
p
n .

Similarly, the load imbalance within the oracle computation along
mode n is captured by our third metric:

Metric 3: Rmaxn = max
p

R
p
n .

The above discussion has omitted other computations (such as inter-
nal to the Lanczos algorithm) that are common across all schemes.

The metric Rsumn is the aggregate number of times the slices are
shared, across all processors.We say that a slice is good, if it is shared
by only one processor; otherwise, the slice is said be bad. If a slice S
is good, then the corresponding row is non-empty only in the local
copy of the processor sharing S , whereas for a bad slice, the row
becomes non-empty in multiple local copies. Thus, bad slices lead
to redundancy in the penultimate matrix and SVD computation,
and result in higher load. An optimal policy is to assign each slice
in its entirety to a single processor, thereby making all the slices
good. This would yield the optimal value of Rsumn = Ln . In addition,
if the processors are assigned an equal number of slices, we get the
optimal value of ⌈Ln/P⌉ on the metric Rmaxn . For example, in Figure
4, eachmode-1 slice is shared by two processors, leading to Rsumn = 6,
which results in a two-factor increase in the load compared to the
setting where all slices are good.

4.2 Communication Volume
SVD Communication. Consider the first product −→x out = Z(n) ·

−→x in. For each row-index l ∈ [1,Ln ], each processor sharing Sliceln ,
except the owner σn (l), sends one unit each of data (a real number)
to the owner, where the data gets accumulated. Summed across all
row-indices, the communication volume per matrix-vector product
is Rsumn − Ln . The product −→y in · Z(n) can also be shown to incur
the same volume. Summed across all the Qn queries, the oracle
communication volume along mode n is Qn · (R

sum
n − Ln ). Since Qn

and Ln are constants across schemes, we can measure the oracle
volume by Rsumn , the same metric that determines the oracle load. As
before, we have omitted other communications that are common
across the schemes.

Factor Matrix Transfer. Each row Fn [l , :] of the factor matrix
must be communicated to all the processors that would require
the row for TTM computation in the next HOOI invocation. In
the case of uni-policy schemes, a processor requires the row, if it
shares Sliceln . Excluding the owner, the number of processors is
Sliceln −1. Each row consists of Kn entries. Summed across all rows,
the total communication volume is Kn · (Rsumn − Ln ) units. Thus,

for uni-policy schemes, the factor matrix transfer volume is also
determined by the parameter Rsumn .

The case of multi-policy schemes is more intricate: a processor
requires the row Fn [l , :], if it owns an element e ∈ Sliceln with
respect to any of the (N −1) policies, excluding πn . Hence, for multi-
policy schemes, the factor matrix volume cannot be determined
from our metrics. We shall measure the volume empirically.

The above metrics measure the efficacy of a scheme along a
given mode n. The cumulative performance across all modes can be
computed via suitable aggregation, considering the mode-specific
factors such as the number of queries Qn and the core length Kn .

4.3 Computation vs Communication
It is useful to understand the breakup of the HOOI execution time in
terms of computation and communication time. Here, we present an
intuitive comparison, taking as example 3-D tensors and uniform
core size of K1,K2,K3 = K . Along mode n, the TTM and SVD
components involvem ·K2 andQn ·K

2 · Rsumn units of computation
(FLOPs), respectively (m is the number of non-zero elements). On
the other hand, the SVD component and the factor matrix transfer
components incur Qn · (R

sum
n − Ln ) and Kn (R

sum
n − Ln ) units of

communication, respectively. We can observe that the amount of
computation is significantly larger than communication, especially
for distribution schemes with low redundancy (Rsumn being close
to Ln ). The intuition is confirmed by our experimental evaluation,
which shows that the computation time is dominant even for the
multi-policy schemes considered in the study.

Remark: It is of interest to compare the CP and the Tucker
decompositions. Both follow the ALS paradigm and the elements
get distributed using a suitable scheme. The factor matrix transfer
step is similar, but the other operations are significantly different. As
an illustration, consider a 3-D tensor of size L×L×L and core of size
K×K×K . Themain computation in CP is thematricized tensor times
Khatri-Rao product (MTTKRP): for each element, the operation
computes the Hadamard product of two K-length vectors (O(K)
FLOPs). The corresponding operation in HOOI is the Kronecker
product (O(K2) FLOPs). In addition, HOOI computes the SVD of a
large penultimatematrix of sizeL×K2. As a result, computation time
is the dominant factor in HOOI. In the case of CP, load balance and
communication volume are important. In the case of Tucker, load
balance (Emaxn and Rmaxn ) and SVD redundancy (Rsumn ) are important,
and it is crucial to have low SVD redundancy, perhaps even at the
cost of higher communication. Hence, design considerations for
distribution schemes for Tucker become different. Schemes that
work best for CP may not work as well for Tucker, and vice versa.

5 PRIOR DISTRIBUTION SCHEMES
Three types of schemes have been proposed in prior work.

Coarse Grained Schemes. These are multi-policy schemes. Along
each mode n, the policy πn is constructed by assigning each slice
in its entirety (all its elements) to a suitably chosen processor. All
the slices are good and the metric Rsumn (capturing SVD load) attains
the optimal value of Ln . However, these schemes typically perform
poorly on the metric Emaxn (capturing TTM load balance), since
real-life tensors tend to have slices that are much larger than the
average ⌈|E|/P⌉. The imbalance can be somewhat mitigated via
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careful slice assignement strategies such as below [25]: arrange the
mode-n slices in a random order and allocate contiguous blocks of
slices to the processors. Other strategies similar in spirit have been
proposed in prior work [7, 15, 23]. We denote the above scheme as
CoarseG. Even with the above heuristics, coarse grained schemes
tend to incur high TTM load imbalance.

Fine Grained Schemes. These are uni-policy schemes that address
the TTM load imbalance by assigning individual elements, rather
than entire slices. Here, the key issue is to ensure that each slice
is shared by few processors so that SVD redundancy is low. To-
wards that goal, building on prior work [14], Kaya and Uçar [15]
devised a fine grained scheme via reduction to hypergraph parti-
tioning, a well-studied NP-hard problem. The idea is to construct a
hypergraph by taking the elements as vertices and the slices (along
all modes) as hyperedges. Then, we construct a (uni-policy) π by
finding a balanced min-cut partitioning. The formulation models
both the metrics Emax and Rsumn . Though the scheme achieves good
performance on the HOOI execution time, the time taken for hyper-
graph partitioning is significantly higher than the HOOI execution
time (single invocation). Consequently, the scheme is used offline.
We denote the schme as HyperG.

MediumGrained Scheme. For CP decomposition, Smith andKarypis
[25] proposed a lightweight, a medium-grained scheme that strikes
a tradeoff between the above to schemes. The idea is to factorize the
number of processors P in a suitable manner P = q1 ×q2 × · · · ×qN
and overlay a processor grid of the above size over the tensor. Then,
each sub-tensor is assigned to a processor. The indices along each
mode are randomly permuted to offset any skew in element dis-
tribution within the input tensor. Along mode n, each slice can be
shared by up to P/qn processors in the worst case and so, qn is
fixed in proportion to Ln . We denote the scheme as MediumG.

6 DISTRIBUTION SCHEME LITE
Among the prior schemes, CoarseG is optimal on the metric Rsumn ,
whereas MediumG and HyperG are superior on the metric Emaxn .
Uni-policy schmes (such as MediumG and HyperG) suffer from
higher SVD redundancy, since they try to construct a single policy
that can perform well on all the modes simultaneously. Multi-policy
schemes can optimize the process better by constructing N distri-
bution policies, each customized for the computation along a single
mode. In this section, we present a lightweight, multi-policy scheme
called Lite, which is provably near-optimal on all the three metrics
Emaxn , Rsumn and Rmaxn , resulting in better computation time. Though
the scheme may incur higher communication volume, it achieves
better HOOI time, since computation time is the dominant factor.

6.1 Lite Scheme
The intuition behind Lite is drawn from coarse grained schemes,
which have optimal Rsumn , but suffer from TTM load imbalance,
because the elements may get distributed in a non-uniform manner.
We can attempt to address the issue by carefully assigning the
slices so that the maximum number of elements received by the
processors (i.e., Emaxn ) is minimized. The problem is the same as the
classical makespan minimization on identical parallel machines
[29]: assume that the processors are machines and each slice S

is a task with execution time equal to |S |; we wish to assign the
tasks to the machines so that the makespan (overall completion
time) is minimized. The problem is NP-hard and heuristics with
approximation guarantees are known. For instance, a well-known
heuristic is the best processor fit (BPF) procedure: scan the slices
and assign each slice to the currently least loaded processor. The
above heuristic is guaranteed to output a solution within factor 2
of the optimal solution.

There are two issues with the above approaches. The first is
that the tensor may have very large slices, in which case, even
the optimal assignment of slices would incur high value of Emaxn
and TTM load imbalance. Secondly, the processors may receive
an uneven number of slices, leading to high value of Rmaxn and
SVD load imbalance. In designing Lite, we address the first issue
by sharing the large slices among multiple processors, and show
that the second issue can be addressed by sorting the slices in the
increasing order of their sizes.

We next describe the Lite distribution scheme along mode n.
Imagine that the processors are bins that need to be filled by the
elements. We wish to achieve the optimal value on the metric Emaxn ,
given by the average ⌈|E|/P⌉. We consider the above value to be a
hard limit on the number of elements that can be added to a bin.
The construction first sorts the mode-n slices by their cardinalities
and proceeds in two stages.

In the first stage, we consider the slices in the increasing order
of cardinalities and assign them to the processors in a round-robin
fashion. We stop the process, if assigning a slice to the current bin
would make it violate the limit. At this point, we move to the second
stage. The remaining slices are large in size and we fill the bins to
their limit by sharing the large slices among multiple processors.
To this effect, we scan the large slices and the bins concurrently. If
the whole of the current slice can be assigned to the current bin
without violating the limit, we do so and move to the next slice.
Otherwise, we arbitrarily select elements from the current slice and
add to the current bin till the limit is reached, and then move to the
next bin. Thus, the elements of each large slice get assigned to a
contiguous set of processors.

In the above scheme, towards achieving fast tensor distribution
time, we sort the slices using the parallel sample-sort algorithm
[10], a divide-and-conquer strategy similar to quicksort. Figure
5 provides an illustration. A pseudocode is given in Figure 6; it
outputs the set of elements Epn assigned to each processor p.

6.2 Performance Guarantee and Discussion
Theorem 6.1. For the scheme Lite, along any mode n,

(1) Emaxn ≤ ⌈|E|/P⌉.
(2) Rsumn ≤ Ln + P .
(3) Rmaxn ≤ ⌈Ln/P⌉ + 2.

A proof sketch is provided in Section 6.3. At a high level, the
first metric is explicitly ensured by setting the hard limit. Regarding
the other two metrics, all the slices processed in the first stage are
good and the round-robin process implies that every bin receives
the same number of slices. We shall argue that at most P slices can
remain in the second stage and that each processor can share at
most two of them.
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Figure 5: Illustration of Lite. Here, |E| = 100 and P = 5. The
limit is ⌈|E|/P⌉ = 20. We have ten slices with sizes in the
sorted order as: 5, 5, 5, 5, 5, 5, 5, 18, 22 and 25. The first stage
processes the first seven slices. For the three slices processed
in the second stage, the number of elements assigned to each
processor is also shown.

L ← Ln
Sort Slice1n, Slice2n, . . . , SliceLn in increasing order of cardinality.
Let S1, S2, . . . , SL be the slices in sorted order.
limit← ⌈|E |/P ⌉.
For all l ∈ [1, L], Epn ← ∅.
Stage 1:
p ← 0
For t = 1, 2, 3, . . .
If ( |Epn ∪ St | > limit) then GOTO Stage 2
else
Assign all elements of St to p : E

p
n ← E

p
n ∪ St .

p ← (p + 1) mod P
Stage 2:
p ← 0
while(p < P )
д ← limit − |E

p
n |. // gap with respect to limit

If( |St | ≤ д) then
Assign all elements of St to p : E

p
n ← E

p
n ∪ St .

t ← t + 1 // Move to next slice
else
X ← Select any д elements from St .
Assign selected elements to p : Epn ← E

p
n ∪ X

Remove selected elements from St : St ← St \ X
p ← p + 1 // Move to next processor

Figure 6: Lite: Distribution along mode n

The theorem shows that the scheme is optimal on the metric
Emax and achieves perfect TTM load balance. Recall that the optimal
values for the metrics Rsumn and Rmaxn are Ln and ⌈Ln/P⌉, respectively.
On the above two metrics, Lite is away from optimality only by
additive factors of P and 2, respectively.Within the SVD component,
the communication volume per matrix-vector product is given by
Rsumn −Ln and so, the scheme incurs only P units of communication
per matrix-vector product. Thus, the scheme is near-optimal on
the computational load, load balanace and communication volume
associated with the SVD component. We note that the scheme may

incur overall higher communication volume, due to higher factor
matrix data transfer. However, as shown in our experimental study,
Lite outperforms the prior schemes on the overall HOOI execution
time, since the computation time is the dominant factor.

We next consider thememory requirements. Being amulti-policy
scheme, Lite needs to store N copies of the input tensor, one along
each mode. However, due to low SVD redundancy, the scheme
requires lesser space for storing the penultimate matrices. Conse-
quently, as shown by our experimental evaluation, Lite is better or
comparable to the prior schemes in terms of the memory usage.

A recent work on the CP decomposition [27] tries to handle
the large slices by uniformly distributing the elements of slices
larger than a heuristically determined threshold. Our algorithm
Lite solves the isuse by using a principled approach yielding near-
optimal bounds.

6.3 Theorem 6.1: Proof Sketch
Part (1) is readily true, since the scheme explicitly ensures that the
number of elements assigned to any processor is at most ⌈|E|/P⌉.
We next prove part (2). Let t̂ denote the iteration in which the
procedure switched to the second stage. Let S1 and S2 denote the
slices processed in the first and the second stages, respectively; i.e.,
S1 = {S1, S2, . . . , St̂−1} and S2 = {St̂ , St̂+1, . . . , SL}, where L = Ln .

By the construction of the second stage, each slice S ∈ S2 is
assigned to a set of contiguous processors. We call the first among
these processors as the head of S and the others are said to form
the tail of S . As an illustration, in Figure 5, for slice 9, processor 1
is the head and the processors 2 and 3 form the tail. Observe that
any processor can participate in the tail of at most one slice.

Let num(S1) denote the aggregate number of times the slices from
S1 are shared; define S2 similarly. The slices in S1 are all good and
so, num(S1) = |S1 |. The quantity num(S2) is same as the number of
times the processors act as the heads plus the number of times they
participate in tails. The first quantity is |S2 |, since every slice has a
single head. The second quantity is at most P , since as we observed
earlier, every processor participates in the tail of at most one slice.
Therefore, num(S2) ≤ |S2 | + P . Put together, we get that Rsumn is
at most Ln + P , proving part (2) of the theorem. Moreover, since
every slice is shared by at least one processor, the above result also
implies that there can be at most P bad slices.

We next prove part (3) of the theorem by showing that for any
processor p, Rpn ≤ ⌈Ln/P⌉ + 2. The first stage assigns the slices in a
round-robin fashion and so, the number of slices from S1 assigned
to p is at most ⌈|S1 |/P⌉ ≤ ⌈Ln/P⌉. Regarding slices from S2, an
important issue is that while the slices in S1 are good, those in S2
can be potentially good or bad. We say that a slice S is ugly, if S ∈ S2
and it is good. The ugly slices pose a difficulty: it is hypothetically
possible that a large number of ugly slices get assigned to the
processor p in the second stage, leading to a high value of Rpn and
load imbalance in the oracle computation. We shall argue that ugly
slices do not exist. The following two claims are useful for this
purpose (due to space limitations, we defer their proofs to the full
version of the paper). The claim below shows that the first stage
follows the best processor fit strategy.

Claim 1: In any iteration t , the slice St gets assigned to the
processor having the least number of elements.
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Tensor L1 L2 L3 L4 nnz Sparsity
delicious 532K 17.2M 2.4M 1.4K 140M 4.2 × 10−15
enron 6K 5K 244K 1K 54M 5.4 × 10−9
flickr 319K 28M 1.6M 731 112M 1.0 × 10−14
nell1 2.9M 2.1M 25.4M - 143M 9.1 × 10−13
nell2 12K 9K 28K - 77M 2.4 × 10−5

amazon 4.8M 1.7M 1.8 M - 1.7B 1.1 × 10−10
patents 46 239 K 239 - 3.5B 1.3 × 10−3
reddit 8.2M 176K 8.1M - 4.6B 3.9 × 10−10

Figure 7: Tensor datasets

For a processor p, let ĥ(p) denote the number of elements as-
signed to p at the end of the first stage and let д̂(p) = ⌈|E|/P⌉ − ĥ(p)
denote the gap to the limit. Using the first claim, we can argue that
any slice S ∈ S2 is too big to fit the gap of any processor.

Claim 2: For any S ∈ S2 and processor p, |S | > д̂(p).
The claim above shows that the second stage cannot assign any

slice from S2 in its entirety to a single processor; namely, ugly slices
do not exist. Thus, all the slices in S2 are shared by at least two
processors. Hence, any processor p can act as the head of at most
one slice from S2. We observed earlier that p can participate in the
tail of at most one slice from S2. Therefore, p can share at most two
slices from S2. Since p shares at most ⌈Ln/P⌉ from S1, we get that
R
p
n ≤ ⌈Ln/P⌉ + 2. Part (3) of the theorem is proved.

7 EXPERIMENTAL EVALUATION
7.1 Experimental Setup

System. The experiments were conducted on a cluster of Power-
8 nodes (20 cores, 256 GB, 4 GHz) connected via InfiniBand in a
fat-tree topology. We launch 16 MPI ranks per node, each mapped
to a core. We use 2 to 32 nodes, leading to 32 to 512 MPI ranks.

Tensor Datasets: The dataset consists of eight real-world tensors
drawn from the FROSTT repository [24]. Of the eight tensors, five
are medium-sized with at least 50 million elements and the other
three are big tensors with more than billion elements. For each
tensor, Figure 7 shows the length along each mode, the number of
non-zero elements (nnz) and the sparsity (ratio of the number of
non-zero elements to the total size of the tensor). While the first
three are 4-dimensional, the others are 3-dimensional.

Implementation: Our implementation is based on MPI. We use
the iterative Lanczos bidiagonalization method [9] for SVD opera-
tion. In accordance with SLEPc [9], we set the number of Lanczos
iterations to be 2K , where K is the number of singular vectors re-
quested.We use ATLAS 3.10.1 for dense linear algebra. The compiler
used is gcc 4.8.5.

For the HyperG scheme, we obtained the hypergraph partition-
ing using the parallel Zoltan library [4], used in prior work [25]
as well. We could not obtain the partitioning for the three big ten-
sors using the library. So, we consider the scheme only on the
medium-sized tensors.

Core Size: The HOOI time is dependent on the size of the core
tensor. As in prior work [3, 15, 18], we use a uniform core length
of Kn = K for all modes n and set K = 10 in all the experiments,
except one, where we study the effect of increasing the core size.

7.2 HOOI Execution Time
We first compare the different schemes on the HOOI execution time
(single invocation) on the medium-size tensors; the big tensors
are considered separately later in the section. We consider three
different configurations. SettingK = 10, the first two configurations
consider the smallest (32) and the largest (512) number of ranks in
our setup. The third configuration studies the effect of increasing
the core size, and sets K = 20 and number ranks as 512.

HOOI Execution Time. The execution times are shown in Figure
8. Among the prior schemes, the scheme offering the least execu-
tion time varies across the test cases and overall HyperG has better
performance. We can see that Lite offers the best performance on
all the datasets and configurations. It outperforms CoarseG, Medi-
umG and HyperG by factors upto 12x, 4.5x and 4.1x, respectively.
Compared to the best prior scheme in each test case, the perfor-
mance improves by a factor of up to 3x, with the performance gain
increasing with increase in number of ranks and core size.

Towards understanding the above phenomenon, we analyze the
HOOI components and the underlying metrics. For this purpose,
we use the second configuration (K = 10 and ranks= 512) and the
first three tensors as illustrative example.

Time Breakup. Figure 9 provides the breakup of HOOI execution
time in terms of TTM and SVD computation time, and the total
communication time (SVD plus the factor matrix transfer). We can
see that the computation time dominates the overall execution time.
While CoarseG is better on SVD, MediumG and HyperG are better
on TTM computation. Lite performs well on both the components.

Computation Metrics. The computation time is determined by
the TTM load balance, SVD computational load and load imbalance.
We measure the computational load (FLOPs) by taking the aggre-
gate along all the modes. The load balance is given by the ratio of
maximum to the average across the processors, with the optimal
value being one.

From Figure 10 (a), we can see that MediumG, HyperG and Lite
achieve near-perefct TTM load balance. The CoarseG scheme per-
forms poorly, because it assigns entire slices to the processors and
as a result, the processors receiving large slices induce load imbal-
ance. For instance, Enron has 54M elements yielding an average of
105K elements per processor at 512 ranks, but the tensor has slices
of size 5M elements.

The optimal SVD load is attained when each slice is owned by a
single processor. We measure the redundancy in the SVD computa-
tion by normalizing the load with respect to the optimal value; the
normalized load in shown in Figure 10 (b). Being uni-policy schemes,
MediumG and HyperG have to contend with computations across
multiple modes simultaneously, leading to high redundancy. Re-
call that underMediumG, each mode-n slice can be shared by up
to P/qn processors in the worst case. Though not reaching the
worst case bound, we can see that the redundancy is high under
MediumG, resulting in higher HOOI execution time. In contrast,
CoarseG achieves the optimal redundancy of one unit, since all the
slices are good under the scheme. Being near-optimal on the metric
Rsumn , Lite attains redundancy close to one.
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(a) K = 10, ranks = 32 (b) K = 10, ranks = 512 (c) K = 20, ranks = 512

Figure 8: HOOI execution time comparison on the medium-sized tensors.

(a) delicious (b) enron (c) flickr

Figure 9: HOOI execution time breakup for K = 10, number of ranks 512

(a) TTM Load Imbalance (b) SVD Computational Load (c) SVD Load Imbalance

Figure 10: Analysis of computation time parameters at K = 10 and ranks = 512

(a) delicious (b) enron (c) flickr

Figure 11: Communication volume for K = 10, number of ranks 512

382



ICS ’18, June 12–15, 2018, Beijing, China V. Chakaravarthy et al.

Speedup CG MG HG Lite
delicious 7.4 6.8 8.8 13.4
enron 1.7 9.0 7.4 11.1
flickr 6.7 6.4 9.8 12.9
nell1 6.4 7.6 7.9 8.6
nell2 2.4 8.4 7.5 12.2

amazon 1.8 11.0 x 13.5
patents 2.7 14.5 x 15.5
reddit 1.8 14.2 x 14.6

Time (s) CG MG HG Lite HOOI
delicious 6.8 9.3 345 3.9 5.2
enron 0.1 0.08 125 0.1 1.1
flickr 10.9 14.0 203 5.5 6.0
nell1 10.5 13.9 356 6.2 2.7
nell2 0.07 0.05 91 0.07 0.3

amazon 2.9 5.5 x 2.5 8.7
patents 3.2 0.9 x 2.0 14.2
reddit 7.8 11.6 x 5.7 21.6

Memory (MB) CoarseG MediumG HyperG Lite
delicious 383 1748 881 385
enron 17 53 61 17
flickr 533 1813 625 533
nell1 112 197 151 113
nell2 12 6 19 12

amazon 348 371 x 350
patents 445 158 x 447
reddit 814 543 x 812

Speedup from 32 to 512 ranks, K = 10 Distribution time at 512 ranks Memory (avg per rank) at 512 ranks, K = 10.

Figure 12: Scaling, Distribution Time and Memory Usage (CoarseG, MediumG and HyperG abbreviated as CG, MG and HG.)

Time(s) CoarseG MediumG Lite
amazon 89.0 13.1 8.6
patents 96.4 15.5 14.2
reddit 232.1 23.6 21.6

Figure 13: HOOI execution time on the big tensors

Regarding SVD load balance, we can see from Figure 10 (c) that
Lite performs well, since it is guaranteed to be near-optimal on the
metric Rmaxn . The MediumG scheme also performs well.

Communication Volume. We observed that the computation time
dominates the HOOI time. Here, we analyze the small communi-
cation time by considering the communication volume. Figure 11
shows the breakup in terms of the SVD and the factor matrix trans-
fer (FM) components. The SVD component involves communication
during oracle query answering and other communication that are
common across the schemes. The oracle communication volume
along mode n is given by Rsumn − Ln . The metric Rsumn is Ln for the
CoarseG and close to Ln for Lite. Hence, the two schemes incur
little SVD communication, but being multi-policy schemes, they
have higher FM volume. In contrast, MediumG and HyperG incur
lesser FM volume, but higher SVD volume. The HyperG scheme
achieves good tradeoff and performs the best on the overall commu-
nication volume. Nevertheless, Lite outperforms HyperG on HOOI
execution time, since the computation time is the dominant factor.

Big Tensors. We next consider the three big tensors at 512 ranks
and K = 10. As mentioned earlier, we could not obtain the hyper-
graph partitioning for the big tensors. The execution times for the
other three schemes are shown in Figure 13. The CoarseG scheme
performs poorly due to TTM load imbalance, since these tensors
have very large slices. We can see that Lite achieves the best execu-
tion time on all the three tensors and outperforms MediumG by a
factor of up to 1.5x.

7.3 Scaling, Distribution Time and Memory
Strong scaling. We studied the scaling behavior of the HOOI

procedure under the different schemes by varying the number of
ranks from 32 to 512. The speedup results are reported in Figure
12 (a). As the number of ranks increases, the average TTM load
decreases, but the sizes of the large slices remain the same. As
a result, CoarseG suffers from severe load imbalance and scales
poorly. The other schmes scale better, with Lite exhibiting the

best scaling behavior: as against an ideal value of 16, Lite achieves
speedup in the range 8.6 − 15.5x, which translates to a scaling
efficiency of 55 − 97%.

Distribution Time. We next evaluate the schemes on the time
taken for distributing the input tensor under the configuration of
K = 10 and 512 ranks; see Figure 12 (b). We implemented the three
lightweight schemes in parallel as part of the HOOI procedure and
obtained the HyperG partitioning by executing the Zoltan library
in parallel in an offline fashion. For the Lite scheme, the distribution
time refers to the time spent in executing a parallel implementation
of the procedure given in Figure 6. The HOOI execution time the
under Lite scheme is also included for the sake of comparison. We
can see that the distribution times of the three lightweight schemes
are lesser or comparable to the HOOI execution time, whereas
HyperG takes significantly higher time.

Memory Usage. Finally, we evaluate the memory used by HOOI
under the different schemes on the same test configuration; see
Figure 12 (c). Th procedure needs to store the input tensor, the
penultimate matrices and the factor matrices. Being multi-policy
schemes, CoarseG and Lite store N copies of the input tensor, and
they do not actively minimize the factor matrix storage. However,
due to low redundancy, they take lesser amount of space to store
the penultimate matrices. In contrast, MediumG and HyperG store
only a single copy of the tensor and are better on factor matrix
storage, but due to higher redudancy, they take more space for
storing the penultimate matrices. We see that Lite achieves a good
tradeoff and it is competitive on the overall memory usage.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed an improved lightweight distribution
scheme for the Tucker decomposition of sparse tensors. We identify
two avenues for future work related to shared memory systems.
While the new scheme is near-optimal on the TTM and the SVD
components, it does not explicitly optimize the factor matrix com-
munication volume. Since the above communication does not arise
in shared memory systems, the new scheme may provide optimal
strategies for partitioning work among the threads. Conversely, re-
cent work on shared memory systems [26] has shown that the TTM
computational load can be reduced using the compressed sparse
fiber representation. The strategy may be useful in optimizing the
TTM computations local to the processors.
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