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Abstract—In this paper we evaluate the performance of a
large-scale POWER8 symmetric multiprocessor (SMP) sys-
tem with eight processors. We focus our attention on cache
and memory subsystems, analyzing the characteristics that
have a direct impact on high-performance computing and
analytics applications. We provide insight into the relevant
characteristics of the POWER8 processor using a set of micro-
benchmarks. We also analyze the POWER8 SMP at the
system level using the well–known roofline model. Using the
knowledge gained from these micro-benchmarks, we optimize
three applications and use them to assess the capabilities of the
POWER8 system. The results show that the POWER8–based
SMP system is capable of delivering high performance for a
wide range of applications and kernels.

I. INTRODUCTION

We present an early performance evaluation of the

POWER8 processor for large–scale data analytics and high

performance computing applications. We focus on the char-

acteristics of POWER8 that have a direct impact on the

performance of these applications – high memory capacity

and bandwidth, low latency access to irregular data, a high

degree of available parallelism, and more, using a large–

scale symmetric multiprocessor (SMP) system with eight

POWER8 processors.

First, we describe and highlight the new features of

the POWER8 processor in comparison to its predecessor,

the POWER7 [17] (§II-A). Most notably, the number of

hardware threads per core has been doubled from four to

eight, along with the sizes of the caches to maintain a

constant per thread memory footprint. This helps to expose

parallelism, hide instruction and data latency, and keep the

execution resources busy.

We also describe the system architecture of a many–

core SMP system based on the POWER8 processor (§II-B).

The largest POWER8 SMP can host up to 16 processors

(sockets) and 16 TB of memory, which can deliver 6,144

GFLOP/s of performance (double–precision) and 3,686

GB/s of memory throughput when running at 4 GHz.

Second, we use a set of microbenchmarks to conduct

a detailed study of some of the low-level features of

the POWER8 processor (§III). We focus on the memory

subsystem in particular, including the DRAM, the cache,

and the chip-to-chip interconnect. Our results show that

we can achieve over 80% of the theoretical peak DRAM

bandwidth – however, this requires using all available cores

and threads, which emphasizes the need to expose as much

parallelism as possible for data intensive applications. We

also demonstrate the benefit of hardware multithreading

and advanced prefetching mechanisms on random access

performance; on our synthetic microbenchmark, we achieve

as much as 41% of the theoretical peak DRAM bandwidth.

In addition to our low–level evaluation, we analyze a

POWER8 SMP at the system level using the well known

roofline model (§IV). Thanks to its balance, the POWER8

SMP system can deliver a high level of performance even

for data intensive kernels, which include, but not lim-

ited to, sparse matrix–vector multiply, 3D stencil, Lattice–

Boltzmann magnetohydrodynamics, and 3D Fast Fourier

transform.

Lastly, we evaluate the POWER8 SMP system using three

large–scale and data intensive applications (§V); these in-

clude all–pairs Jaccard similarity – a graph analytics kernel

for finding textual similarity, Hartree–Fock calculation –

a quantum chemistry kernel for solving the Schrödinger

equation, and sparse matrix vector multiply – an essential

linear algebra kernel. We show that in all three applications,

an eight socket POWER8 SMP system achieves excellent

performance, comparable to the start-of-the-art results. Our

work demonstrates that POWER8 SMP system can be used

to efficiently handle much larger data sets – an essential

feature for large–scale analytics problems, without the need

for complex distributed algorithms.

II. OVERVIEW OF THE POWER8 ARCHITECTURE AND

ITS SMP SYSTEMS

A. The POWER8 Processor

POWER8 is the latest RISC microprocessor of the IBM

Power architecture family. It is designed to significantly im-

prove socket-level, core-level and thread-level performance

over its predecessor – POWER7, while maintaining per

processor power consumption at the same level. This is

achieved through a combination of a modest increase in

core count per processor and numerous improvements in

the microarchitecture [27], [28].

Compared to POWER7, a notable improvement in the

POWER8 processor core is the hardware thread parallelism,

which has been boosted from 4-way simultaneous mul-

tithreading (SMT) to 8-way SMT per core. This design

choice benefits business and data analytics applications that

require high system throughput. The sizes of the L1 data,

L2 and L3 caches per core has also been doubled in order to
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maintain the same amount of resident memory footprint for

each thread. With more execution pipelines, POWER8 has

a much higher instruction throughput than POWER7: while

a POWER7 core can issue 8 and commit 6 instructions in

a given cycle, a POWER8 core can issue 10 and commit 8

instructions per cycle. A high-level architectural comparison

between POWER7 and POWER8 is given in Table I.

Table I: POWER7 and POWER8 at a glance.

POWER7 POWER8

Threads/core 4 8
Maximum cores/processor 8 12
L1 instruction cache/core 32 KB 32 KB
L1 data cache/core 32 KB 64 KB
L2 cache/core 256 KB 512 KB
L3 cache/core 4 MB 8 MB
L4 cache/processor N/A up to 128 MB
Instruction issue/cycle/core 8 10
Instruction completion/cycle/core 6 8
Load/store operations/cycles 2 load/2 store 4 load/2 store

POWER8 includes four cache levels, with a constant

128–byte line size. The cache hierarchy consists of a store-

through L1 data cache, a store-in L2 cache, and an eDRAM-

based L3 cache with a per-core capacity of 64 KB, 512

KB, and 8 MB, respectively. The L3 cache of POWER8

is a NUCA (Non-Uniform Cache Architecture) design,

with each L3 also serving requests for other cores, and

working as a victim cache for other L3s [29]. With the

largest configuration of 12 cores per processor, a POWER8

processor can host 96 MB of aggregated L3 cache, shared

by all the cores.
In addition, POWER8 includes a fourth cache level of

up to 128 MB, which is implemented in eight external

memory chips called Centaur. Each Centaur chip contains

16 MB of eDRAM, and serves as both L4 cache and

memory controller. By moving the memory controller to

the Centaur chip, both memory bandwidth and capacity

are significantly increased, relative to POWER7. POWER8

connects to Centaur chips using separate links for read and

write operations, with two links for memory reads and one

link for memory writes. Thus, POWER8 has asymmetric

read and write bandwidth, and the peak memory throughput

can be achieved with a read to write ratio of 2 to 1.
A Centaur chip can support up to 128 GB of DRAM and

provides 19.2 GB/s read and 9.6 GB/s write bandwidth.

Each POWER8 processor can be linked to four or eight

Centaur chips, depending on the model, allowing for a

maximum memory capacity of 1 TB per processor, with

up to 128 MB of aggregated L4 cache and 230 GB/s of

sustainable memory bandwidth (using a memory read to

write ratio of 2:1) in and out of the processor.

B. POWER8 SMP Systems
A POWER8 SMP system can host up to 16 processors

(sockets), each of which can contain one or two POWER8

processor chips. We note here that the term “processor chip”

is used to refer to a processor die rather than a physical

processor. A POWER8 processor can contain a maximum

of 12 cores, and this can be either a single chip of 12 cores

or two chips of 6 cores.

With a 4 GHz clock and eight Centaur chips per socket,

the largest POWER8 SMP system (192-way SMP) can

deliver 6,144 GFLOP/s of double–precision performance

and 3,686 GB/s memory bandwidth with an aggregate L4

cache 4 GB in size and memory capacity of 16 TB.
The off-chip SMP interconnect uses two types of links,

X-Bus and A-Bus. The X-Bus link connects processor chips

within a group. The POWER8 processor chip has three such

links, enabling direct connection to 3 other chips, in order

to create a four-chip group. The A-bus link connects each

chip in a group to its corresponding chip in another group.

Three A-bus links are provided per chip to support a total

of four groups. Both the X-bus and A-bus are bi-directional

links with a unidirectional bandwidth of 39.2 GB/s and 12.8

GB/s respectively.

Chip 0 Chip 1 Chip 2 Chip 3

Chip 4 Chip 5 Chip 6 Chip 7

Mem 0 Mem 1 Mem 2 Mem 3

Mem 4 Mem 5 Mem 6 Mem 7

Socket 0 Socket 1 Socket 2 Socket 3

Socket 4 Socket 5 Socket 6 Socket 7

8×19.2GB/s Mem Read

8×9.6GB/s Mem Write

2×12.8 GB/s A-Bus

2×39.2 GB/s X-Bus

Figure 1: High-level block diagram of E870.

Our performance evaluation was done on an 8–socket

SMP system, the IBM Power System E870 (E870), with

each socket containing an 8–core POWER8 chip running at

4.35 GHz. The high-level system architecture of the E870

is shown in Figure 1, and a summary of key parameters is

shown in Table II.

III. MICROBENCHMARK RESULTS

In this section, we use a set of microbenchmarks to

characterize the low-level performance of the POWER8

processor, with a focus on its cache, memory and “chip–

to–chip” interconnect subsystems.

A. Local Memory Performance
We measured the latencies of accessing different cache

levels and local memory banks using the lmbench tool
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Table II: Characteristics of the IBM Power System E870

used in performance evaluation.

E870

Sockets 8
Chips 8
Cores 64
Centaur chips 64
Core-clock rate 4.35 GHz
Memory 2 TB
Peak performance 2,227 GFLOP/s
Peak bandwidth 1,843 GB/s
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Figure 2: Observed memory read latency on E870.

set [24] with the hardware data prefetching disabled. The

results are shown in Figure 2, in which the red and blue

lines shows the measurements of using the regular page

size (64 KB) and the huge page size (16 MB) respectively.

In the figure, the cache hierarchy of the POWER8 can

be clearly differentiated, with each plateau representing a

separate cache level. While each L3 cache can function as

a victim cache of other L3 caches, the results show that

accessing a remote L3 cache incurs greater latency than

accessing the local L3 cache. The gradual slope after the

remote L3 is due to the hits in the L4 cache. We see that an

L4 hit reduces the latency of an L3 miss by over 30 ns. It

also worth noting the differences between the red and blue

curves. We see a small spike at the 3 MB data point for the

blue line, which is caused by the first level TLB misses.

Table III shows the observed memory bandwidth from

local memory with different read to write ratios on E870.

This was measured using a modified STREAM bench-

mark, optimized for the POWER8 processor. The modified

STREAM benchmark uses all the 64 cores of E870 with 8

threads per core. As expected, the best measured memory

bandwidth is achieved when the ratio of memory read to

write is 2:1. The measured peak memory bandwidth is 1,472

GB/s, which represents 80% of the specification’s peak

bandwidth.

Using the same benchmark we also measured how mem-

ory bandwidth scales with the number of threads and cores.

Figure 3 shows the sustained memory bandwidth for two

cases: a) using only one core and increasing the number

of threads per core, and (b) using only one chip and

increasing the number of cores and threads per core. In

this test, we used a memory read to write ratio of 2:1

to maximize bandwidth utilization. For a single core, the

Table III: Observed memory bandwidth with various ratios

of read to write.

Read:Write ratio Bandwidth (GB/s)

Read Only 1,141
16:1 1,208
8:1 1,267
4:1 1,375
2:1 1,472
1:1 894
1:2 748
1:4 658

Write Only 589

measured peak bandwidth is approximately 26 GB/s. The

aggregate memory bandwidth per chip increases with the

number of cores and the number of threads per core, and

the maximum 189 GB/s is achieved when all cores and all

threads are used. These results confirm the need for a high

degree of multithreading to hide the memory latency and

reach the peak memory bandwidth.

B. SMP Interconnect Performance

Table IV shows access latencies and bandwidths (for

memory reads) between different chips. This was measured

by using the lmbench tool set and the modified STREAM

benchmark, allocating memory on specific sockets by ex-

ploiting low-level operating system facilities. Given the bi-

directional nature of the SMP interconnection, we are not

forced to use a particular mix of read and write operations

to fully exploit the chip-to-chip links.

The results confirm the SMP interconnect bandwidth

shown in Figure 1. The measured memory latencies within a

chip group are 2× smaller than those between chip groups.

The memory latency between Chip0 and Chip4 is slightly

lower than that between Chip0 and Chip5-7. This is because

Chip0 and Chip4 are directly connected, while all the others

are connected by a indirect route with at least one hop. We

also see that the latencies within a chip group are slightly

different. This is because of the layout of the chips.

It is interesting to note that the measured bandwidth

within a chip group is lower than that between chip groups.

This result seems counter-intuitive because the X-bus has

higher bandwidth than A-Bus. The routing protocol of the

POWER8 interconnect only allows one route for the traffic

inside a chip group, while multiple routes are used for the

inter-group traffic, explaining the behavior.

We also measured the aggregate bandwidth for all the A-

buses and X-buses. In this benchmark we let all the cores

of the system generate requests, and by carefully allocating

memory on specific nodes we maximized the utilization of

the chip-to-chip links.

The aggregate bandwidth of X-buses is 632 GB/s, which

is 3× higher than that of A-buses. The all-to-all bandwidth

of the entire system, on the other hand, is a number between

the two. This is because a part of the X-bus bandwidth

is used to reach sockets on the other group (chips are

connected with A-buses in couples, so we generally have

to follow both an A-link and an X-link to reach a specific

socket).
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Figure 3: Observed memory bandwidth (with a memory read to write ratio of 2:1) for (a) a single core when varying the

number of threads per core (b) a single chip when varying the number of cores and threads per core.

Table IV: Memory read access latency (nanoseconds) and bandwidth (GB/s).

Latency Latency One-direction Bi-direction
(w/o prefetching) (w prefetching) bandwidth bandwidth

Chip0 ↔ Chip1 123 12 30 53
Chip0 ↔ Chip2 125 15 30 53
Chip0 ↔ Chip3 133 15 30 53
Chip0 ↔ Chip4 213 16 45 87
Chip0 ↔ Chip5 235 22 45 82
Chip0 ↔ Chip6 237 22 45 82
Chip0 ↔ Chip7 243 22 45 82

Latency Bandwidth

Chip0 ↔ interleaved 168 69
All-to-all interleaved - 380
X-Bus Aggregate - 632
A-Bus Aggregate - 206

C. Simultaneous Multithreading

The POWER8 processor is a highly multithreaded mi-

croprocessor with eight threads per core. The use of mul-

tiple threads can hide both instruction latency stalls in the

execution pipelines and memory latency for accessing the

cache and memory. In Figure 4 we show the benefits of

multi-threading with random memory reads. The results

are obtained using a microbenchmark that performs pointer

chasing on a random lists of elements, with each element on

a separate cache line. To increase the number of outgoing

requests per core we can either a) use multiple threads, or

b) scan multiple lists concurrently on a single thread. We

measured both, varying the number of threads, and varying

the number of streams (lists) per thread. In the experiments,

we used all the 64 cores of E870. The bandwidth shown is

for the full system, as a function of the SMT level of each

core.

The maximum bandwidth that was achieved is almost

500 GB/s, 41% of the theoretical peak (memory read).

Increasing the number of threads causes an almost lin-

ear increase in overall bandwidth, using fewer than four

outstanding requests per thread. It is worth noting that

increasing the number of threads allows for better utilization

of the bandwidth, without the need for impractical levels of

unrolling. In other words, from a theoretical point of view

a 4-way SMT would be enough to reach the peak random

bandwidth, but that would require a very complex code that

requests data from 16 lists. Because of the increased number

of threads per core of POWER8, we can reach the peak

bandwidth with only 4 concurrent lists.
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Figure 4: Memory read bandwidth for random access, using

a varying number of threads and of outstanding requests per

thread.

Featuring both large multi-threading and aggressive out-

of-order execution, POWER8 provides several optimization

opportunities using thread-level parallelism, instruction-

level parallelism, or both. However, achieving the optimal

performance on POWER8 usually requires carefully choos-

ing the number of threads per core. It has been shown in [4]

that better performance for POWER8 can be achieved using
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fewer threads per core. To demonstrate this observation,

we use a microbenchmark with multithreading, in which

each thread executes a series of independent fused multiply-

add (FMA) instructions in a loop. Each FMA instruction

multiplies the floating-point vectors from two VSX (the

SIMD implementation of the POWER architecture) registers

and adds the result back to the first register, i. e., each FMA

instruction involves two VSX registers (R1=R1×R2+R1).

Figure 5 presents the performance of the microbenchmark

with different numbers of FMA instructions executed in the

loop and with various numbers of threads per core. We can

see that the peak performance can only be achieved when

the product of the number of FMA instructions and the

number of threads per core is at least 12. This is expected

because the latency of the VSX instructions on POWER8 is

6 cycles [2]. Considering that each POWER8 core has two

symmetric VSX execution pipelines, it requires at least 12

independent VSX instructions in flight at any given cycle

to keep the pipelines saturated.

The results also show that the performance starts to drop

when using large numbers of threads per core. We believe

this is mainly due to the fact that the computing resources

(registers, issue queue entries, execution pipelines, and etc.)

of each POWER8 core are shared among all threads on the

core. With larger numbers of threads per core, it requires

using mpre computing resources, and the overhead can

exceed the benefits of multi-threading. For example, the

performance drop observed in Figure 5 is mainly caused by

register files. Because of the 8-way SMT, the total number
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Figure 5: Performance (percentage of peak) of FMA on

POWER8 when varying the number of threads per core and

the number of registers used per thread.

of registers (including VSX registers) required per core is

very large, and it would be impractical to support all these

registers in the reorder buffer. For this reason the POWER8

employs a two-level register hierarchy. Each POWER8 core

has 128 architected VSX registers, and this is backed up

by a larger number of renames (non-architected registers)

with a higher access cost. Therefore, when the number of

registers used by the threads exceeds 128, the performance

suffers. As seen in the figure, the performance of the 12

FMA case starts to degrade when more than 6 threads per

core are used. The number of register used in this case is

144 (12×2×6).

We notice that in Figure 5, using odd number of threads

per core can reduce performance. This can be explained

by how the POWER8 core manages multithreading; the

POWER8 processor core supports 4 SMT-modes: ST (single

thread), SMT-2 (2 threads), SMT-4 (3–4 threads) and SMT-8

(5–8 threads); it dynamically changes SMT mode depending

on the number of active threads. While all core resources

can be used by the single thread in the ST mode, in the other

SMT modes the hardware threads are split into two thread-

sets, and each thread-set can only use half of the resources

in the core. Thus, using an odd number of threads per core

will cause thread imbalance between thread-sets.

D. Advanced Data Prefetching

Unlike GPUs that have massive multi-threading, the

POWER8 processor also relies on hardware data prefetching

to hide memory access latencies. It provides an aggressive

prefetching engine, which can effectively identify sequential

data access patterns, as well as some non-sequential ones,

to improve memory performance by reducing the impact

of cache miss latency. Table IV also shows the memory

access latencies from Chip0 to the memory banks attached

to the other chips with hardware data prefetching enabled.

The results show that the memory access latencies are

significantly reduced (by an order of magnitude) by the data

prefetching engine regardless of which memory bank Chip0

accesses.

There exist cases where the default hardware data

prefetching may not provide sufficient benefits. For those

cases, the POWER8 processor also provides some special

software facilities to assist the hardware prefetching engine.

Here, we will use three examples to demonstrate those soft-

ware facilities. The first example is to use the Data Stream

Control Register (DSCR) to change the prefetch depth, i. e.,

the number of lines ahead to prefetch. On POWER8 the

DSCR register can be accessed directly by the application

in userspace. The POWER8 processor supports 7 different

depths, from none (DSCR = 1) to the deepest (DSCR =

7). Figure 6 shows the effect of changing the prefetching

depth on the latency and bandwidth of a sequential memory

access. The latencies were measured using the lmbench tool

set. The bandwidth numbers were measured with a memory

read to write ratio of 2:1 with the modified STREAM

benchmark. It is not surprising to see that both the lowest

latency and the highest bandwidth are achieved when the

deepest prefetching is used because the access pattern is

sequential.

The second example is the “stride-N stream” access

pattern, in which the access pattern is still regular, but only

every N cache lines are accessed. While this access pattern

can not be properly detected by the default settings of the

hardware prefetcher, leading to poor memory performance,

one can improve the performance by using the DSCR

register to enable the stride-N stream detection. Figure 7

compares the memory read latency for a stride-256 stream

with the stride-N stream enabled and disabled and with

various depths. As seen in the figure, the average memory

access latency is reduced from 50 ns to 14 ns when the

stride-N stream feature is used.

Finally, we show the case when one needs to sequentially

access many small arrays. This access pattern is very
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common in applications that require dynamic scheduling

of threads that execute small tasks. Although the hardware

data prefetching engine can recognize the sequential access

pattern on each array, it requires several cache line accesses

for the hardware to recognize the pattern. On very small

arrays the prefetcher may kick in too late to improve

performance.

The Data Cache Block Touch (DCBT) instruction can be

used to improve the memory performance in such a case.

With the DCBT instruction, we can indicate the hardware

when a sequential access starts and stops, as well as some

important information about the pattern, such as the starting

address, the direction (increasing address or decreasing

addresses), and the size of the array, which will help the

hardware engine to more quickly identify the stream and

start the prefetch process.

We demonstrated this case by using a microbenchmark

that randomly accesses the blocks of an array. Specifically,

we create an array and divide it into blocks with length of

bsize. The elements within a block are accessed sequentially,

and when the access of a block is finished, we randomly

pick the next block. We continue this until all the blocks

are accessed. Figure 8 presents the results, which shows that

the performance benefits of using the DCBT instruction to

access small arrays is more than 25%. With larger arrays,

as expected, the effect is negligible.
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Figure 9: Roofline for the IBM Power System E870.

IV. ROOFLINE MODEL ANALYSIS

In this section, we use the well-known roofline model to

estimate the performance of the E870 8–socket POWER8

system for various scientific kernels. The roofline model

is a visually–intuitive and throughput–oriented method for

representing a system’s performance characteristics [34],

[9]. The roofline plots a system’s performance (or energy

efficiency) for various operational intensities (floating–point

operations per byte of DRAM traffic) of algorithms. This

visualization and mapping of performance to algorithm

helps to identify and quantify the primary factors that are

limiting the performance of a given application. This style

of “bound and bottleneck analysis,” best exemplified by

the famous Amdahl’s Law, has the advantage of being

more intuitive and user friendly than traditional analytical

or statistical performance models.

The solid blue line in Figure 9 shows the roofline for

the POWER8 server. The system’s double–precision (DP)

and memory throughputs are 2,227 GFLOP/s and 1,843

GB/s, respectively. This gives the system a balance of 1.2

(orange line), given by the ratio of peak compute throughput

to memory throughput; the system’s balance point is the

operational intensity at which an algorithm goes from being

memory bound to being compute bound on that system.

The roofline for the POWER8 system is slightly different

from other systems due to its asymmetric memory read

and write throughputs – the performance of the write–

only bandwidth is 614 GB/s, less than half that of the

total memory bandwidth. As such, if a given algorithm is
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composed of mostly write operations, its performance will

also drop to less than half. This is shown by the dashed

blue line in the figure.

Using the roofline model, we can conduct a performance

analysis for a variety of scientific kernels. As shown in Fig-

ure 9, for four kernels that are frequently used in scientific

applications – sparse matrix–vector multiply (SpMV), 3D

stencil (Stencil), Lattice–Boltzmann magnetohydrodynam-

ics (LBMHD), and 3D fast Fourier transform (3D FFT)

– we can estimate a performance upper–bound on the

POWER8 system. For example, for the LBMHD kernel,

whose operational intensity is approximately one, we can

expect a peak performance of 1,843 GFLOP/s (red dia-

mond). The above analysis, however, assumes the optimal

memory bandwidth use of POWER8, which can only be

achieved by a memory read and write ratio of 2:1. Instead, if

the kernel was composed of only write operations, then the

expected performance would be 614 GFLOP/s (red square)

instead.

Our results show that the POWER8 SMP system is opti-

mized for data intensive applications with low operational

intensities. E870 has a system balance of 1.2 which suggests

that it is well balanced – its compute performance is equally

matched by its memory performance. This is different from

many other systems whose system balance typically ranges

from 6 to 7 and which prefer increasing the number of

processing units rather than memory bandwidth. By taking

the difficult, but effective, strategy of keeping a “balance”

between compute and memory throughputs [23], [5], [15]

the POWER8–based system is capable of delivering excel-

lent performance for a wide range of applications, which

include, but not limited to, the aforementioned kernels.

V. APPLICATIONS

The results from three large-scale, data-intensive appli-

cations are presented and analyzed on the POWER8 SMP

systems. Compared to the state-of-the-art results, we show

that

A. All-pairs Jaccard Similarity

As an instance of graph analytics kernels sharing common

features with fundamental linear algebra operations, we now

consider the all-pairs Jaccard similarity [20]. This kernel

is used in applications that search for textually similar

documents (both duplicates and near-duplicates) in large

corpora such as the Web or collections of news articles [25],

in query refinement [26] for search engines, to suggest alter-

nate formulations, and in the detection of plagiarism [16].

We consider the computation of the Jaccard similarity as

an example of memory-intensive graph analytics kernel,

showcasing many of the traits common to graph processing

applications, often characterized by irregular, fine-grain

memory accesses, and large working sets and problem sizes.

For an undirected graph G= (V,E), the Jaccard similarity

between a pair of vertices (i, j) is defined as the overlap

between the respective sets of neighbors, as shown in

Equation 1, where N(v) = {u ∈ V |(v,u) ∈ E} is the set of

the neighbors of vertex v.

Ji j =
|N(i)∩N( j)|
|N(i)∪N( j)| . (1)

Calculating the Jaccard similarity between vertices i and

j correspond to finding the number of common neighbors

|N(i)∩N( j)|. This number can be obtained for every pair

of vertices by squaring the adjacency matrix A of G, trans-

forming the problem of calculating the Jaccard coefficients

into a matrix multiplication [3], [20]. We have designed and

implemented an efficient locality-aware method for calculat-

ing all-pairs Jaccard Similarity based on linear algebra [8],

and here we present its performance on E870.

Figure 10 shows the execution time and the memory

footprint of our algorithm on E870 for R-MAT graphs of

various sizes, from scale 17 to scale 23, corresponding

to 128 thousand to 8 million vertices, with an average

degree of 16. We ran the algorithm with one thread per

core. As seen in the figure, the output size of the all-pairs

Jaccard Similarity is substantially larger than the input ma-

trices, which exceeds the memory capacity of most shared

memory systems, forcing researchers to seek distributed

implementation alternatives. The POWER8 SMP system,

with extremely large memory capacity and high memory

bandwidth, allows computing all-pairs Jaccard Similarity

for very large graphs on a single node and achieving

performance comparable to distributed algorithms [1].

This goes to show how non-trivial kernels can be affected

by system design parameters, and for applications like graph

analytics, where large memory footprints and high memory

bandwidths are much sought after, POWER8 SMP systems

prove to be an effective solution.

2
4
8
16
32
64
128
256
512
1024
2048

0.4

1.6

6.4

25.6

102.4

409.6

1638.4

17 18 19 20 21 22 23
M

em
or

y
re

qu
ire

m
en

ts
(G

B)

Ti
m

e
(S

ec
s)

R-MAT Scale

Memory Time

Figure 10: Performance of all-pairs Jaccard Similarity on

E870 for different scales of R-MAT graphs.

B. Sparse Matrix-Vector Multiplications

Sparse matrix-vector multiplication (SpMV) is an essen-

tial kernel in linear algebra that is widely used in scientific

and engineering applications. In recent years, there has been

an increasing interest in the use of SpMV in graph analytics,

mainly due to the strong similarities between graphs and

sparse matrices. SpMV exists as the main kernel in many

graph algorithms, such as anomaly detection [6], PageR-

ank [18], HITS [19] and random walk with restart [31]. In

this section, we evaluate the performance of SpMV on the

POWER8 SMP systems using both HPC and graphs.

269



1) SpMV on HPC Matrices: For this kind of matrices we

propose a simple SpMV kernel using the well-known CSR

format. Given the regular structure, and the memory-bound

nature of the problem, there is little point in using complex,

vectorized implementations.

Given the results in Section III, we know we have to

take particular care of the allocation of the data. We used

a static 1D partitioning to assign a group of contiguous

rows to the same thread, and balance the number of nonzero

per partition. Each thread keeps its own partition on the

corresponding local socket, where each partition consists of

a set of rows of the input matrix and the corresponding

elements of the output vector.

Each thread also requires access to the entire input vector.

We could distribute the vector across the machine but,

as seen in Section III, this will significantly lower the

bandwidth. Alternatively, we replicate the input vector. On

first approximation this would require n copies for n threads.

However, considering the architecture and the read-only

nature of the access, we can keep only one replica of the

input vector for each socket, and a share it among all the

threads on the same socket. This requires (at most) 16 copies

of the vector, making the approach feasible (especially

considering that the input vector is generally relatively small

compared to the matrix).
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Figure 11: Performance of different matrices on E870 using

the CSR format.

We show the performance of our CSR implementation

on E870. We used a range of matrices selected from the

University of Florida Sparse Matrix Collection [13] and are

typically tested in SpMV works [22], [33], [10]. We also

used the dense matrix (Dense) as a reference for the peak

performance achievable with SpMV. The results show a very

high peak performance (obtained with Dense), and that most

of the matrices perform similarly to Dense.

2) SpMV on scale-free graphs: Adjacency matrices are

a novel and interesting use case for SpMV. They share very

few structural characteristics with matrices associated with

common scientific problems. Real-world, social network

graphs are much less structured and follow a power-law

(i.e. some rows have an exponentially large number of

elements, while most have very few). In this scenario, a

traditional SpMV implementation struggle to deliver good

performance: given the irregular structure, the access pat-

tern of the input vector x is now highly sparse [8]. New

implementations and matrix representations must be used
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Figure 12: Performance scalability of R-MAT SpMV on

E870.

to better exploit cache-based architectures.

In our previous work [8], we presented a novel algorithm

for SpMV on graphs. In order to improve performance, the

algorithm divides the matrix into blocks and performs two

separate scans on the matrix. With the first scan we scale

the matrix by multiplying each column by the corresponding

value in x. The second scan is used to produce the output

vector by summing all the elements of each row of the

modified matrix. For the first phase we use 1D blocking

of the matrix by columns, which allows us to keep the

relative part of the input vector in cache and thus hide any

sparsity in the access pattern. The second phase, on the

other hand, use a different blocking scheme, still 1D but

this time by rows, which in turn allows the output vector

to fit in cache and hide this second source of sparsity. We

change the partitioning between the two scans, but given the

shared memory nature of the system, we can just exchange

the pointers to the blocks without performing any copy

operations.

The performance of this algorithm is highly dependent on

the characteristics of the POWER8 processor. We leverage

the fact that we can read and write concurrently without

loss in performance, greatly improving the first phase of the

algorithm (for each nonzero we read 10 and write 8 bytes,

while the original CSR algorithm is mostly read-based).

Also, considering that we work with (possibly) small blocks

of data, we explicitly use the advanced data prefetching

facilities presented in Section III to specify, at software, the

beginning and the end of each data stream (i.e. block).

Figure 12 shows the performance of SpMV on E870 for

R-MAT graphs of scale upto 31, corresponding to 2 billion

nodes and 68 billion edges. To the best of our knowledge no

previous work, even using distributed algorithms, presents

SpMV implementations on graphs of this scale [6]. Consid-

ering the performance, our SpMV implementation on E870

is also on par with the state-of-the-art presented in [6].

The decreasing performance with larger graphs depends

on the sparsity of the matrix. As the matrix grows, the

average number of nonzero per row remains the same,

but the number of columns increases, resulting in a much

sparser matrix. For the algorithm, this means that each block

of the matrix will have a constantly decreasing number of

elements, ending up in very small computations that cannot
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achieve the peak performance largely due to prefetching

issues. As an example, a R-MAT 24 has an average block

size of ∼ 12,000 elements, while on R-MAT 31 the value

drops to ∼ 63, corresponding to roughly 4 cache lines per

block.

C. Hartree-Fock Calculations

The Hartree-Fock (HF) method, also known as the self-

consistent field (SCF) method, is a fundamental kernel in

quantum chemistry for solving the electronic Schrödinger

equation [30]. The solution of the equation can be used to

predict properties of molecules. Essentially, the HF method

is an iterative algorithm for computing the molecular orbital

coefficients. Each HF iteration is composed of two major

computational stages. The first stage is the computation of

the Fock matrix F using the density matrix D, which is

given by

Fi j = Hcore
i j +

n f

∑
k

n f

∑
l

Dkl (2(i j|kl)− (ik| jl)) (2)

In the second stage, the spectral projector of F is computed

and is used to construct a new density matrix, which will

serve as the input for the next iteration. The HF iteration

procedure is usually terminated when the change in the

density matrix is less than a given threshold.

In Equation (2), Hcore is a fixed matrix, called the core
Hamilton matrix, and the quantity (i j|kl) denotes an entry

of a four dimensional tensor of electron repulsion integrals
(ERIs) of size n f × n f × n f × n f , where n f is the number

of basis functions used for modeling the molecule. One

important property for ERIs is that many values of (i j|kl)
are negligibly small, which means we do not need to com-

pute all of them. A numerical procedure called screening
can be used to drop small integrals with relatively low

computational cost.

Most quantum chemistry packages that implement the

HF method, including the well-known NWChem [32],

recompute the ERIs at every HF iteration, although the

values of ERIs do not change from one iteration to the

next. This is because the number of non-screened ERIs is

extremely large even for very small molecular systems. The

memory requirements for storing the ERIs usually exceed

the capacity of most commodity HPC machines. In addition,

most quantum chemistry packages use distributed paral-

lelization to speedup HF, because the computation of ERI is

very expensive. However, distributed HF implementations

in general have never been shown to scale well beyond

hundreds of nodes due to the load imbalance and the high

communication cost arising from the irregularity of the ERIs

and the Fock matrix construction [21].

Given the extremely large memory capacity of the

POWER8 SMP systems, it is possible to use a different

algorithm for HF that precomputes and stores the ERIs in

memory. In this work, we implemented both the conven-

tional algorithm of HF that recomputes the ERIs (HF-Comp)

and the alternative algorithm that precomputes and stores

the ERIs (HF-Mem).

Table V lists the five molecular systems for performance

evaluation: a linear alkane, a planar graphene molecule, a

Table V: Test molecular systems using the cc-pVDZ basis

set.

Molecule Atoms Functions
Non-screened Memory

ERIs (GB)

alkane-842 842 6,730 1.87×1011 1391.02

graphene-252 252 3,204 1.76×1011 1308.32

5-mer 326 3,453 2.01×1011 1499.06

1hsg-28 122 1,159 1.42×1010 105.95

1hsg-38 387 3,555 2.09×1011 1558.66

5-mer segment of DNA, and two truncated globular protein-

ligand systems (1hsg). For each molecule, the memory

requirement for storing non-screened ERIs is also listed. All

test molecules used the cc-pVDZ basis set [14]. A screening

tolerance of 10−10 was used for dropping small ERIs.

Table VI shows the timings for the HF implementations

on E870. The table shows the execution time for HF-

Comp (HF-Comp), the number of HF iterations for each

molecule, and the average execution time per iteration for

major components of HF-Mem. These are precomputing the

ERIs (Precomp), which is performed only once; computing

the Fock Matrix (Fock); and computing the density matrix

(Density). For most molecules, HF-Mem is more than

4.5x faster than HF-Comp. It is expected that HF-Mem

is efficient on E870 because the system has a very low

ratio of floating-point to memory throughput (i.e., system

balance,§IV).

Compared to the state–of–the–art on the same molecules

(1hsg-28 and 1hsg-38), the performance of HF-Comp and

HF-Mem on E870 is on par with that was presented in [11],

[12].

VI. CONCLUSION

We have presented an early performance evaluation of

the POWER8 processor and its many–core SMP system.

Our microbenchmarking study exposed the low–level per-

formance characteristics, while our trio of test applications

demonstrated the achievable real–world performance capa-

bility of the POWER8 system. Beyond our experimental

findings, we also conducted a high level analysis of the

POWER8 SMP system using the roofline model on a

suite of important and frequently used scientific kernels to

illustrate the performance potential of the POWER8 system.

Altogether, our results show that the POWER8 system

is highly capable and competitive for high–performance

computing and large–scale data analytics applications.

Perhaps the most interesting feature of the POWER8

system is its “balance”. The POWER8 system design re-

flects the goal of keeping a balance between compute and

memory, focusing on improving its memory throughput

instead of supplying computational capacity that it cannot

harness. By doing so, the POWER8 directly addresses the

primary bottleneck that prevents applications from achiev-

ing good performance and scalability – data movement. This

data-centric approach to system design makes POWER8

a capable platform for high–performance computing and

business analytics.
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Table VI: Timings (in seconds) for HF-Comp and HF-Mem on E870.

Molecule Iters HF-Comp
HF-Mem

Speedup
Precomp Fock Density Total

E870

alkane-842 12 3081.91 218.10 23.73 34.81 1013.39 3.04
graphene-252 23 4476.47 185.35 20.91 6.39 837.73 5.34

5-mer 19 4090.9 209.20 26.77 4.84 859.63 4.76
1hsg-28 15 281.61 18.42 1.78 0.30 54.65 5.15
1hsg-38 17 4079.75 232.90 30.63 5.80 889.76 4.59
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