
High-Performance Lattice QCD for Multi-core Based
Parallel Systems Using a Cache-Friendly Hybrid

Threaded-MPI Approach

Mikhail Smelyanskiy1, Karthikeyan Vaidyanathan1, Jee Choi4, Bálint Joó2,
Jatin Chhugani1, Michael A. Clark3, Pradeep Dubey1

1 Parallel Computing Labs, Intel 2 Thomas Jefferson National Accelerator Facility
3 Harvard-Smithsonian Center for Astrophysics 4 Georgia Institute of Technology

ABSTRACT
Lattice Quantum Chromo-dynamics (LQCD) is a computationally
challenging problem that solves the discretized Dirac equation in
the presence of an SU(3) gauge field. Its key operation is a matrix-
vector product, known as the Dslash operator. We have devel-
oped a novel multicore architecture-friendly implementation of the
Wilson-Dslash operator which delivers 75 Gflops (single-precision)
on an Intel R© Xeon R© Processor X5680 achieving 60% computa-
tional efficiency for datasets that fit in the last-level cache. For
datasets larger than the last-level cache, this performance drops to
50 Gflops. Our performance is 2-3X higher than a well-known im-
plementation from the Chroma software suite when running on the
same hardware platform. The novel implementation of LQCD re-
ported in this paper is based on recently published the 3.5D spatial
and 4.5D temporal tiling schemes. Both blocking schemes signif-
icantly reduce LQCD external memory bandwidth requirements,
delivering a more compute-bound implementation. The perfor-
mance advantage of our schemes will become more significant as
the gap between compute flops and external memory bandwidth
continues to grow. We demonstrate very good cluster-level scal-
ability of our implementation: for a lattice of 323×256 sites, we
achieve over 4 Tflops when strong-scaled to a 128 node system
(1536 cores total). For the same lattice size, a full Conjugate Gra-
dients Wilson-Dslash operator, achieves 2.95 Tflops.

1. INTRODUCTION
Lattice Quantum Chromo-dynamics (LQCD) is the lattice dis-

cretized theory of the strong force, that which binds together quarks
in the nucleon. In LQCD, the propagation of quarks is given by
the inverse of a large, sparse matrix known as the Dirac operator.
Hence, many systems of linear equations must be solved involving
this matrix; it is this requirement that makes LQCD a grand chal-
lenge subject. In such linear solvers, the application of the Dirac
operator to a vector is the most compute intensive kernel.

On the other hand, modern central processing units (CPUs) have
continued to evolve, as the number of on chip transistors continues
to grow. Their compute capacity has increased through progres-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11 November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

sively higher core counts and, more recently, wider Single Instruc-
tion Multiple Data (SIMD) vector units. Current CPUs feature be-
tween 6-8 cores on the same die. SIMD units have increased from
128-bit SSE to 256-bit AVX [16]. Thus comes the first challenge
of efficiently utilizing available compute resources.

However, memory bandwidth is increasing at a slower rate than
compute capability. To reduce bandwidth requirements of memory
intensive applications, such as LQCD, modern architectures fea-
ture large on-die caches, with capacities of O(10) MB. The second
challenge is how to take full advantage of these caches, which may
require changing the algorithm to improve data reuse, otherwise
the algorithm will not be able to take full advantage of the available
floating point power.

Finally, the third challenge is parallelizing the algorithm on large
scale systems, on which LQCD computation is usually deployed.

In this paper we address all three challenges. Specifically, we
develop a highly optimized single precision implementation of the
Wilson-Dslash operator, which on a single-socket, six-core West-
mere CPU delivers close to 75 Gflops of performance for datasets
which fit into last level cache (LLC). Furthermore, we apply a re-
cently published 3.5D spatial and 4.5D temporal blocking scheme
to QCD, which takes full advantage of large LLC available on mod-
ern CPUs [25]. For large realistic datasets, which do not fit into
LLC, our 3.5D blocking scheme achieves close to 42 Gflops perfor-
mance on a single-socket CPU which is within 13% of the achiev-
able memory bandwidth. We further show that in cases where
Wilson-Dslash operators are applied consecutively, as in the con-
text of an even-odd preconditioned linear operator, such as one
would use in a Krylov subspace solver like Conjugate Gradients
[12], we can apply a 4.5D blocking scheme to take advantage of the
temporal locality between these operators to further reduce Wilson-
Dslash bandwidth requirements. This scheme, allows us to achieve
up to 50 Gflops on a single socket. In addition, we show that the
advantages of the 4.5D scheme will continue to increase as the gap
between memory bandwidth and compute density is expected to
widen in the next generation architectures. Lastly, we demonstrate
that our Wilson-Dslash implementation shows good scaling to mul-
tiple nodes. For a problem of volume 323×256 sites our imple-
mentation achieves over 4 Tflops when strong scaled to a 128-node
(1536 cores) cluster.

Throughout this work we use as a reference the Wilson-Dslash
implementation distributed with the Chroma [10] software suite for
LQCD. In our single-socket implementation, for problems that fall
outside LLC and in our multi-node implementation we typically
outperform the reference implementation by a factor of 3X. In the
single-socket case, where the problem does fit into LLC the perfor-
mance advantage in favor of our implementation is 2X.



Figure 1: Example of 2D lattice with even-odd labelling

The rest of this paper is organized as follows. In Section 2 we
present basic details of Wilson-Dslash, as well as our experimen-
tal environment. Section 3 provides details of our implementation.
Section 4 presents performance results and analysis. We consider
previous and related work in Section 5. Finally, we conclude and
present our future work in Section 6.

2. BACKGROUND

2.1 Lattice QCD
LQCD is a formulation of QCD amenable to calculations on

computers. It is a relativistic quantum field theory describing the
interaction of quarks which are mediated by gauge bosons known
as gluons. A full description of LQCD is beyond the scope of this
work and the reader is referred to excellent textbooks on the sub-
ject [9, 27, 24]. Details of the QCD interactions are captured in the
differential operator which couples quarks to the gluons. In terms
of numerical computation the key task is the solution of systems of
equations involving this operator, known as the Dirac operator.

In the standard prescription to move QCD from a continuum to
a lattice, quark fields are placed on lattice sites and gluon fields
are ascribed to the the links of the lattice connecting the sites. In
particular, on the lattice, the gauge fields are represented as the
parallel-transporters between the sites which are members of the
SU(3) group. In other words, the gauge fields are represented as
3×3 complex unitary matrices of unit determinant ascribed to the
lattice links.

The quark fields are ascribed to the sites of the lattice. A naive
first order finite difference discretization of the Dirac operator, how-
ever, results in the infamous fermion doubling problem and the
need to avoid this has lead to several alternative definitions of the
quark fields and the Dirac operator in LQCD. In the following
work, we consider the Wilson formulation [32] where a second-
order difference is added to the first order one. This formulation
requires the quark fields on the sites to be stored as 12 component
complex vectors, where the 12 components are a product of 4 spin
components and 3 color indices. The quark objects are also referred
to as 4-spinors or just spinors.

The Dirac operator; M; then looks like: M = 1−κD, where κ
is a real parameter related to the quark mass and D is the Wilson
Dslash term:

D =
1

2

4

∑
µ=1

(
(1− γµ)⊗Uµ

x δx+µ̂,x′ +(1+ γµ)⊗Uµ†
x−µ̂ δx−µ̂,x′

)
. (1)

In the above Uµ
x refers to the gauge link emanating from site x in

the µ direction, where µ is one of x,y,z or t. The δx±µ̂ Kroenecker-
delta symbols correspond to the use of the spinor from the neigh-
boring site in the positive/negative µ direction and the

(
1± γµ

)
terms are projector operators acting on spin indices (but leaving
color indices alone).

The spin projectors reduce the effective number of spin degrees
of freedom from four to two. In particular, P±µ =

(
1± γµ

)
can be

written as P±µ = R±µ Q±µ , where Q±µ acting on a spinor reduces it to
have only two spin components (of 3 vectors so 6 complex num-
bers). The gauge link matrix U then needs to be multiplied only
with the two remaining 3-vectors making up the 2 spin compo-
nents. The action of R±µ then reconstructs a four component repre-

sentation. Hence the operation Uµ
x (1± γµ) on a 4 spinor ψ is com-

puted as: R±µ Uµ
x χ with χ = Q±µ ψ. The decomposition operators

Q±µ typically involve 12 Flops, and permutations of the complex

components or flipping their sign. The reconstruction operators R±µ
only flip signs or permute complex components and have no float-
ing point costs.

It is typical to partition the lattice into sub lattices, which are
referred to as either “even”, or “odd” respectively. Sites are consid-
ered “even” if their co-ordinates sum to an even number; or “odd”
if instead the sum of their co-ordinates is odd. This is equivalent to
a red-black checkerboard labeling of the lattice sites. We show, by
way of an example, a 2D lattice in Fig. 1. The lattice has 6x4 sites.
which are appropriately colored to reflect their parity (e.g. red for
“even”, black for “odd”). In this 2D example, there are 2 gauge
field links, emanating from each site in the positive direction: from
odd to even as well as from even to odd. Effectively, each site has
4 links (8 in 4D): 2 (4 in 4D) in the positive and 2 (4 in 4D) in the
negative direction. Note that the link in the negative direction for
the site is defined as the positive link of its negative neighbor. Each
odd (even) site is updated using 4 (8 in 4D) neighboring sites using
all 4 (8 in 4D) links.

It can be seen that a nearest neighbor operator such as D will
gather sites of one parity (e.g. even) and write to sites of the other
(e.g. odd). Hence it is customary to label the operator as Doe or
Deo to indicate that it takes even sites to odd ones or odd sites to
even ones respectively. An even-odd preconditioning then gives the
preconditioned matrix operator: M̃oo = 1oo−κ2DoeDeo, which is
the Schur complement of M acting only on one parity of the lattice
(in this case the odd one). This is typically the operator one would
use in a Krylov subspace solver such as Conjugate Gradients [12]
or BiCGStab [30].

A high-level view of the Wilson-Dslash kernel is given in Fig-
ure 2. For each output site of the even (odd) sub-lattice, we gather
neighboring spinors from odd (even) sub-lattice (Step 1). We then
apply the appropriate spin projector for each neighbor, and multi-
ply by the gauge link matrix connecting the target and source sites
(Step 2, 3 and 4). Finally, for each neighbor we reconstruct the
appropriate 4-spinor representation and accumulate the results to-
gether to form the output (Step 5).

When performance is limited by memory bandwidth, gauge field
compression may be employed [8], wherein only the first two rows
of the color matrices are stored in device memory, and using uni-
tarity, the third row is reconstructed in registers from complex con-
jugate of the cross product of the first two rows.

Thus the Wilson-Dslash algorithm performs 1320 flops (480 fmadds
and 360 fadds) and reads 1440 bytes of data, in single precision,
when no gauge field compression is used. If 2-row gauge field com-
pression is used, the algorithm performs 1656 flops (624 fmadds
and 408 fadds) and reads 1248 bytes of data.

2.2 Intel Multi-core CPU



for each output site do
for each of 8 neighbors do
1. Gather neighbor spinor (24 numbers)
2. Spin project from 4 to 2 spinor

components (12 flops)
3. Load gauge matrix for neighbor

direction (18 numbers or 12 with
gauge compression)

4. Multiply the 2-spin components by
the SU(3) link matrix (2x66=132 flops
or 174 with 2-row gauge compression)

5. Reconstruct the result of 4 and
accumulate to output spinor
(24 numbers, 24 flops)

endfor
endfor

Figure 2: The structure of the Wilson-Dslash kernel.

Our experimental testbed consists of a single-socket Intel R© Xeon R©

Processor X5680, which is based on Intel R© CoreT M i7 microarchi-
tecture.

LLC DRAM

Read 122 21

Write 32 11

Non-temporal write n/a 20

Table 1: Measured achievable bandwidth (in GB/s) for LLC
and memory on Intel R© CoreT M i7.

This is an x86-based multi-core architecture, which provides six
cores on the same die. Each core is running at 3.3GHz. The archi-
tecture features a super-scalar out-of-order micro-architecture sup-
porting 2-way hyper-threading. In addition to scalar units, it has
4-wide SIMD units that support a wide range of SIMD instructions
called SSE4 [17]. In a single cycle, it can issue a 4-wide floating-
point multiply and add to two different pipelines. Compared to ar-
chitectures which only have fused multiply-add unit, such as [19],
it can achieve full hardware utilization, even in case when multiply
and add can not be fused. Each core is backed by a 32 KiB L1 and
a 256 KiB L2 cache, and all six cores share an 12 MiB last level L3
cache. Together, the six cores can deliver a peak performance of
158 Gflop/s of single-precision arithmetic using SSE. The system
has 6 GiB DDR3 memory. It consists of three channels running
at 1333 MHz, which can deliver 32 GB/s of peak main memory
bandwidth.

Table 1 summarizes the achievable bandwidth for both memory
as well as last level cache (LLC). The data in the table was mea-
sured using a microbenchmark, similar to the one in [23]. Our
results are also similar to the results reported in this work. Note
that LLC read bandwidth is almost 4x higher than main memory
read bandwidth and LLC write bandwidth. We can also see that the
DRAM write bandwidth with regular (write back) stores is half the
write bandwidth compared to using non-temporal stores.

2.3 Multi-node CPU
Lattice QCD problems cannot normally be realized on just a few

nodes, due to the extremely large number of floating point oper-
ations required (current simulations require O(10) Tflops/s years
worth of computation). As a result, we have mapped our LQCD
implementation to a multi-node cluster. In particular, we use a
128-node cluster. Each node consists of a dual-socket CPU with
the same configuration to the one described in the previous section,
except it runs at the frequency of 2.9GHz. The nodes are connected
via an InfiniBand interconnect that supports a one-way latency of
1.5 usecs for 4 bytes, a uni-directional bandwidth of up to 3380
Million bytes/sec and bi-directional bandwidth upto 6474 Million
bytes/sec. Such a system is typical of clusters used in the analy-
sis phase of LQCD calculations and is similar to clusters deployed
at Fermi National Accelerator Laboratory and Thomas Jefferson
National Accelerator Facility as part of the National Lattice QCD
Computational Facility project.

The so called gauge generation phase of LQCD requires scal-
ing to leadership scale facilities and to simulate scaling to such
large partitions we have carried out weak scaling tests with local,
per-node problem sizes such as those that would be expected when
running on partitions of O(10,000) cores.

3. QCD IMPLEMENTATION
Achieving high performance on modern CPU requires algorithms

which take full advantage of its compute resources and memory hi-
erarchy. In this section we describe our SIMD- and cache-friendly
data lay-out and our implementation of the Wilson-Dslash operator.

3.1 Compute Kernel

SIMD-friendly Data Lay-out: the data ordering typical in appli-
cations such as Chroma [10], running on a CPU, is to place the
space–time site indices running slowest with the internal dimen-
sions (color, spin, and real/imaginary) running fastest. The ad-
vantage of this layout is that accesses to nearest neighbors require
fetching only a small number of cache lines. For example, access-
ing a spinor requires fetching at most three cache lines on our CPU.
However such implementation constraints SIMD to be exploited
within a single site, as done in [21, 14]. This approach will not
scale to a wider SIMD on current and emerging architectures [19,
16] due to high overhead of shuffles and limited amount of data
level parallelism (DLP).

One SIMD-friendly lay-out is to create one stream per field (e.g.
spinor, or gauge) component. Such a lay-out is also known as
“structure of arrays” (SOA) [33]. Each stream length is equal to the
number of lattice sites. This exposes large amount of DLP, wherein
SIMD can be exploited across adjacent sites. However, the large
number of streams (24 for spinors and 18 for gauges) can exhaust
read and write buffers and cause TLB conflicts. Storing subset of
components together, as done on GPU [8], requires gather support,
which is not available on our CPUs.

We propose novel SIMD-friendly ordering that exploits SIMD
across sites, yet avoids two of the aforementioned problems. Specif-
ically, we store NX spinors (or gauge fields) in an SOA format: one
array per component. Here, NX is number of lattice sites in the X
dimension. As the result, sites are stored contiguously in X for
each field component. Now we can work on v sites using v-wide
SIMD (v=4 in our case). This is illustrated in Fig. 3(a). The shaded
regions show the components of the even spinors e14− e17 suit-
able to be held in a vector registers, their neighbors o15− o18 in
the positive X (X+) direction, and the neighbors o24− o27 in the
positive Y (Y+) direction.

As can be seen from the figure, accessing component of Y+ di-
rection, requires an aligned SSE load (MOVAPS) instruction. This



Figure 3: SIMD-friendly data layout: (a) NX spinors are stored contiguously for each component; (b) partition un-friendly data
layout, (c) partition-friendly data layout.

is true for all other directions, except for X which requires un-
aligned loads. The unaligned loads incur no extra penalty on our
Intel Core i7 architecture, compared to aligned accesses, as long
the data being loaded does not span two cache lines. Only when
we are at the boundary do the accesses become non-contiguous,
as they require data from the opposite boundary, due to periodic
boundary conditions. We handle this situation as a special case by
reading the scalar value and blending it with the other three val-
ues using the Packed Align (PALIGNR) instruction from the SSE4
instruction set.1

Partition-friendly boundary lay-out: While this lay-out exposes
DLP across sites, it can result in fragmentation in situations where
the lattice is partitioned along the X dimension. This can occur
both in our 3.5D blocking scheme (see Section 3.2) as well as in a
multi-node implementation (see Section 3.4). Figure 3b) illustrates
the situation. Here the grid is divided into two sub-grids along
X . Accessing neighbors in the X+ direction requires fetching a
new cache line for each component. This will result is substantial
amount of memory traffic. To avoid this, we store the boundaries
in an array of structure (AOS) format for each partition, as shown
in Figure 3(c). Now, accessing the neighbors only requires fetch-
ing at most 3 cache lines for all the spinor components. To access
the boundary we use (PALIGNR) instruction, as described earlier.
This adds a small overhead, most notably for very small sub-lattices
where boundary accesses can not be amortized by the large amount
of computation in the rest of the sites along the X dimension.

Memory organization and single socket parallelization: Our im-
plementation stores even and odd sub-lattices of both gauge and
spinor fields in separate data structures. This reduces the stride
between accesses and allows them to be easily captured with the
hardware pre-fetcher. We exploit three-level parallelization of our
code: within socket, across sockets in dual-socket node, and across
nodes. Here we describe parallelization on a single socket, while
Section 3.4 describes the other two. To parallelize the code for
large problem sizes on a single socket, we divide a single XYZ
slice among all the cores as evenly as possible. The cores then si-
multaneously work on one XYZ slice at a time before moving on
to the next slice along T dimension. This maximizes data reuse

91PALIGNR takes two registers, concatenates their values and
pulls out a register length subset from the result starting at a speci-
fied offset.

of spinors in cache as discussed in the next Section 3.2. However,
such partitioning increases the amount of inter-core communica-
tion due to shared boundary sites, compared to dividing the lo-
cal 4 dimensional volume into equal contiguous chunks amongst
the cores (as is done, for example in the reference implementation
from Chroma). Note that inter-boundary communication happens
between cores on the same socket and is therefore faster than com-
munication across sockets. Furthermore, inter-boundary communi-
cation is amortized by the large amount of work within the Dslash
kernel. Nevertheless, for smaller problem sizes which fit entirely
into LLC the inter core communication becomes more significant
and we take an approach similar to Chroma to reduce this overhead.

Finally, we assign Simultaneous Multi-Threading (SMT) threads
within a core to work on alternating NX lines. This increases the
constructive data sharing among the SMT threads.

3.2 3.5D Blocking
Figure 4(a) shows an example of the flow of our algorithm when

computing a single Wilson Dslash gathering from odd-sites and
writing to even ones for an example with 8 XY Z slices and peri-
odic boundary conditions. In the rest of the paper, we refer to this
algorithm as WDS1. Each step i computes slice SEi of the even
sub-lattice. Columns 3-5 show three spinor slices from the odd
sub-lattice required for this computation (from the previous, cur-
rent and following values of T ). We see two of the slices are reused
across two iterations. For example, SO1 and SO2 required by SE1
at time 1, are also required by SE2 at time 2. Columns 6 and 7 show
corresponding gauge slices from odd and even sub-lattices required
at each time step. We see that there is no re-use among gauges due
to parity. Hence, in order to take advantage of spinor reuse in LLC,
it must be large enough to hold at least two spinor slices. How-
ever this assumes a perfect LRU policy for cache eviction 2 as well
as full associativity. Since modern caches implement pseudo-LRU
and have limited associativity, we conservatively require the LLC
to hold total of 5 slices, 3 spinor and 2 gauge slices, to guarantee
full reuse of spinor slices across the iterations. We rely on stream-
ing stores, which are available on modern CPUs, to write output
spinors directly to memory, thus bypassing LLC.

If the LLC can hold the required number of slices, every input
spinor is only brought in once from memory. In the cases where the

92Perfect LRU evicts the data from the cache as soon as it is no
longer used.



Figure 4: Computation pipeline: (a) single dslash, (b) two dslashes combined with intermediate grid stored in LLC

Figure 5: Example of 3.5D blocking: (a) geometric view, (b)
pseudo-code

LLC is too small to hold the required number of XY Z slices, addi-
tional (redundant) memory traffic will result. To minimize this traf-
fic, we apply 3.5D blocking [25] to Wilson-Dslash. Specifically, we
perform 3D blocking within a full XY Z slice of size NX×NY ×NZ
and stream along the fourth dimension (T ), as shown geometrically
in Figure 5(a). Figure 5(b) also shows the pseudo-code, which is
the generalization of the example in Figure 4(a). For the clarity
of exposition, we explicitly load XYZ spinor and gauge slices into
LLC. In reality they will be implicitly loaded into LLC during ac-
cess in Wilson-Dslash. Note also, as described in Section 3.1, com-
putation proceeds in parallel on v sites using v-wide SIMD (v=4 in
our case). Following the notation in [25], let dim3.5D

x , dim3.5D
y , and

dim3.5D
z be the blocking dimensions in X , Y and Z of the spinor

sub-lattice, respectively. We refer to the block region with these
dimensions in each XYZ slice as an XYZ sub-slice. To capture the
reuse of two sub-slices, we require that

(nsslices ∗S+ngslices ∗4∗G)∗dim3.5D
x ∗dim3.5D

y ∗dim3.5D
z ≤C (2)

Here C is the size of the LLC, and nsslices and ngslices are the mini-
mum number of required XY Z spinor and gauge slices that the LLC
must hold to guarantee spinor reuse. The factor of 4 is due to the
fact that odd (even) gauge slice contains 4 gauges per site, one in
each direction. The parameters S and G are the sizes of an individ-
ual spinor (96 bytes in SP) and gauge link matrix (48 bytes in SP
when 2 row compressed, 72 when uncompressed), respectively.

Once all sub-slices are in the LLC, the computation can be per-
formed on an (dim3.5D

x −1)× (dim3.5D
y −1)× (dim3.5D

z −1)×NT
sub-lattice, so that each spinor is only fetched once from mem-
ory. Spinors within the boundary spinors (referred to as the ghost
layer) will be fetched twice, once for each sub-slice. Thus the
amount of redundant traffic from memory (referred to as the over-

estimation κ3.5D in [25]) due to the spinor ghost layer is equal to
dim3.5D

x
dim3.5D

x −1
×

dim3.5D
y

dim3.5D
y −1

×
dim3.5D

z
dim3.5D

z −1
. Note that due to parity, there is

only a single boundary spinor in both directions, compared with
two boundary elements in case of seven-point stencil, for example.
The redundant traffic is minimized when all blocking dimensions
are the same and equal to

dim3.5D
≤ 3

√
C/(nsslices ∗S+ngslices ∗4∗G) (3)

Note that κ3.5D redundant memory accesses refer only to the in-
put spinor sub-lattice; accesses to the output spinors and the input
gauge fields do not incur extra traffic. Hence the total redundant
memory traffic is (S∗ (1+κ3.5D)+S+8∗G)/(2∗S+8∗G).

3.3 4.5D Blocking
In the previous section, we showed how to minimize memory

traffic in the Wilson-Dslash by capturing the reuse between spinors
in the input sub-lattice. However, as Figure 4(a) showed, there is
no reuse of the gauge fields. Note that in a real calculation the
Dslash operator forms part of the preconditioned Dirac operator
M̃ = 1−k2DoeDeo wherein the Dslash kernel is applied twice. The
first application maps a spinor from an odd sub-lattice to a tem-
porary even sub-lattice, and the second one maps this temporary
sub-lattice back to the odd sub-lattice. We refer to two such ap-
plications of Dslashes as WDS2 in the rest of the paper. Note the
temporary sub–lattice is not required outside this operation. As the
result, it does not need to be written back to memory and therefore
can be held in LLC. Gauges can also be reused, as explained next.

Figure 4(b) shows an example combining two Dslash operations
for NT = 8. At each step t we compute the t-th SEtmp slice (the re-
sult of applying the first Dslash) which requires three spinor slices
from the old sub-lattice, as shown in the columns 4-6. At the same
time we also compute t − 2-th slice of the output Sout which re-
quires SEtmp slices from three previous time steps already com-
puted, as shown in the columns 7-9. The first application maps a
spinor from an odd sub-lattice Sin to a temporary even sub-lattice
SEtmp, and the second one maps SEtmp back to the odd sub-lattice
Sout.

Due to the fact that going from odd to even and even to odd
sub-lattices exercises overlapping sub-sets of gauges fields, these
are also re-used as shown in the last 4 columns of Figure 4(b).
For example, positive and negative links G2oe and G3eo, required
by SEtmp3 at t = 3, are also required by SEtmp0 at time 4 and
SEtmp2 at time time 6. In summary, each step of the WDS2 algo-
rithm does twice as much computation as WDS1, but with the same
number of memory accesses. However, for this up to 14 slices, 7
for spinors and 10 for gauges, may need to fit into LLC in the worst
case.

To reduce redundant memory traffic which arises when the LLC



is too small to hold required number of XYZ slices, we further ap-
ply 4.5D blocking to Wilson-Dslash [25]. Specifically, we perform
4D blocking within XYZ slice, as well as across consecutive ap-
plications of Dslash, and stream along the fourth dimension (T ).
Note in this work we only combine two Dslash operators (blocking
factor of two). To capture the reuse of both spinors and gauges,
we use Equations 2 and 3, except that required number of spinors
and gauge slices (nsslices and ngslices) has increased. To estimate

redundant memory traffic, note that WDS2 starts with dim4.5D
x ×

dim4.5D
y ×dim4.5D

z XYZ slice, and after two application of Dslash,

only the data within (dim4.5D
x −2)× (dim4.5D

y −2)× (dim4.5D
z −2)

XYZ sub-slice is correct. Hence redundant memory traffic κ4.5D is

equal to
dim4.5D

x
dim4.5D

x −2
×

dim4.5D
y

dim4.5D
y −2

×
dim4.5D

z
dim4.5D

z −2
. Since gauges are reused,

they also incurs redundant memory traffic. Therefore, the total re-
dundant memory traffic is (S+(1+κ4.5)∗ (S+8∗G))/(2∗S+8∗
G).

There are several ways to parallelize the 4.5D computation. The
simplest is to assign each of the slices, SEtmp and SOout to a non-
overlapping subset of cores. The problem with this implementa-
tion is that it would create a load imbalance, because as explained
earlier, computing SEtmp takes all of its input data from memory,
while computing SOout takes all of its input data from LLC. To ad-
dress this problem, computation of SEtmp slice is merged with the
computation of SOout slices. The work is further evenly divided
among all the cores, such that each core works on a portion of both
slices simultaneously. This way each core will perform roughly the
same number of accesses to both LLC as well as memory. Also
note, that due to the reuse of SEtmp, we require a barrier synchro-
nization after every step. The overhead of synchronization is not
an issue for larger data sets, because in these cases there is enough
work per thread to amortize the overhead. The barrier overhead can
limit the scalability for smaller datasets. However, small datasets
typically fit into LLC and in such cases there is little advantage to
be gained from using the WDS2 approach.

3.4 Scaling beyond one socket
To scale the WDS1 and WDS2 implementations across multiple

sockets within a node, we partition the Dslash grid across sockets
and use the OpenMP (OMP) model for parallelization. For scal-
ing across nodes, we use the Message Passing Interface [22] (MPI)
model.

With the migration of memory controllers (MC) on-chip (per
socket), modern processors are subject to non-uniform memory ac-
cess (NUMA) latencies. Fetching the data from the local MC is
faster than accessing the remote MC. To achieve best performance,
minimizing accesses to remote MCs is critical. Operating systems
map memory in different MCs based on a first touch policy, i.e.,
the data is mapped to a particular MC if the request to touch the
data for the first time is initiated from that MC. Our approach uses
this policy to partition the Dslash grid (spinor and gauge) equally
across sockets. First, we affinitize the OpenMP threads to hard-
ware threads in the following order: threads per core, cores per
socket and sockets per node. Next, we pick all the OpenMP threads
that are mapped to each socket and use it to initialize their portion
of the Dslash grid. This process ensures that all threads on each
socket fetch data from their local MC most of the time to process
the internal volume. The remote MC is accessed only when these
threads process the ghost region.

For scaling across multiple nodes, we use a multi-dimensional
partitioning and parallelization strategy based on the MPI model.
Our approach follows the standard bulk synchronous computational
pattern. Broadly, we partition the problem in all four dimensions

(T , Z, Y and X). Then, we identify the local surfaces (boundaries)
to be shared amongst nodes and their corresponding neighbors in
each dimension. Next, we exchange the boundaries through ex-
plicit message passing to the neighbors on each dimension. After
receiving the boundaries, each MPI process concurrently calculates
the Wilson-Dslash kernel as well as the linear solver on its own par-
tition.
Handling Multi-dimensional Partitioning: The simplest approach
of scaling the Dslash operator is to partition the problem along one
dimension, typically the longest one available which is most often
(but not always) the time dimension. However, with the increas-
ing number of nodes available in modern clusters, one-dimensional
partitioning can limit the scaling capability only up to the size of
the single dimension.

On the other hand, partitioning the problem on multiple dimen-
sions brings in many challenges. Firstly, the boundaries become
non-contiguous and exchanging them raises additional issues such
as packing the data at the source and unpacking the data at the
destination using memory copies. Modern networks such as Infini-
Band [15] have the ability to gather the data from non-contiguous
buffers and send the data using scatter/gather operations. Using this
capability, the MPI model supports features such as defining new
data types to specify non-contiguous buffers with constant stride
and avoid the need to perform explicit copying. This feature works
well only for boundaries that belong to T and Z dimension parti-
tioning. The boundaries for other partitions do not have a constant
stride. In such cases, we explicitly pack the data at the source and
unpack at the destination.

In our implementation, we distribute the problem across the nodes
using MPI processes. Each MPI process internally uses OpenMP
threads to take full advantage of the cores as well as the cache.
Next, we divide the problem along the time dimension (T ), because
compared to dividing the problem along other dimensions, this has
lower computation to communication ratio when T is large, com-
mon case in the lattices we studied. As number of nodes grows, T
partition becomes smaller than other dimensions. In this case, we
start partitioning the problem along Z, Y, and X, repeating the same
process as needed.

To seamlessly perform the Wilson-Dslash kernel on the local par-
tition even on boundaries, we oversize the local partition to accom-
modate the boundaries (ghost layer) exchanged from neighboring
nodes. During the exchange process, this buffer is either directly
specified, if applicable. Otherwise, data is explicitly copied to the
boundary especially for non-contiguous slices.
Handling Overlap of Communication with Computation: To over-
lap communication with computation, we initiate the data transfer
of boundaries and ghost layers using non-blocking send and re-
ceive MPI calls. While the underlying network performs the data
transfer, we process the internal volume to achieve the desired over-
lap. Modern networks can accelerate this data transfer by directly
placing the data in the receive buffer at the destination using DMA
without the need for multiple buffering. However, the address of
the destination buffer should be known to the sender before initi-
ating the data transfer. Typical MPI implementations use a hand-
shake message between the communicating processes to exchange
the address of destination buffers. Thus, to achieve best overlap,
it is critical that this handshake message reaches the sender before
initiating the data transfer. One approach is to pre-post the receive
buffers (potentially many such buffers) prior to the send operation.
However, this can result in cases where a process may have posted
its send before the receiving process has posted its receive, thereby
not achieving the desired overlap. To achieve effective overlap of
communication with computation even if processes go out-of-sync,



we exploit the non-blocking MPI_Iprobe feature, in addition to pre-
posting the buffers, to periodically check for outstanding messages
and initiate data transfers.

4. PERFORMANCE RESULTS
In this section we evaluate the performance of both versions of

Wilson-Dslash, WDS1 and WDS2, as well as a full Conjugate Gra-
dients solver application for lattice QCD on a single socket Intel
Core i7 processor (Intel microarchitecture code name Westmere)
as well as multi-node system and analyze the measured results. We
compare our performance results with the reference implementa-
tion from the Chroma software [10] suite running on the same sys-
tem.

4.1 Expected Performance
To help understand the performance of the Wilson-Dslash opera-

tor, we derive several bounds on achievable performance which are
summarized in Table 2. Here and in the rest of the paper the re-
ported performance numbers are effective Gflops that may be com-
pared with implementations on other architectures. In particular,
the nominal number of flops per lattice site is 1320, which does not
include the extra work done in the SU(3) reconstruction when link
compression is performed.

Bounds Compression No Compression
Compute bound (WDS1) 101 126

LLC bound (WDS1) 239 186

DDR bound (WDS1) 48 37

DDR bound (WDS2) 96 74

Table 2: Compute, LLC and DDR performance bounds in
Gflops on single socket.

As mentioned in Section 3.1, uncompressed gauge Wilson-Dslash
performs 480 fmadds and 360 fadds. The fadds only utilize 50%
of floating point hardware. Since our implementation works on 4
sites, for uncompressed gauge fields we can achieve the compute-
bound performance of 21 Gflops (= 4 sites*1320/((480+360) cy-
cles/3.3 GHz)) on single core or 126 Gflops on 6-core system. This
is 80% of the peak floating-point performance (see Section 2.3).
Using compressed gauge fields, the code performs 624 fmadds and
408 fadds. Using similar calculation, as in case of full gauge, we
derive a compute-bound performance of 17 Gflops on single core or
101 Gflops on 6-core system. This is 64% of the peak. The loss of
efficiency comes from the extra work done in the SU(3) reconstruc-
tion. This bound is idealized and does not account for other over-
heads, such as register spills, address calculation, and instruction
scheduling. Actual achieved compute-bound performance, which
depends on these factors, will be lower.

Let us assume, in the case of WDS1, that the entire lattice resides
in memory. With perfect spinor reuse in LLC, there is only a sin-
gle memory access for each piece of data. Therefore, not counting
the flops for gauge decompression (these are ’extraneous’ flops),

the memory-bound performance of WDS1 is 1320 flops
(96+G×8)/Rbw+96/Wbw

,

where Rbw and Wbw are the memory read and write bandwidths re-
spectively, and G is the size of a gauge-field matrix: 48 bytes with
compression and 72 without compression. Assuming non-temporal
writes, used in our implementation, we plug corresponding values
from Table 1. We find that memory-bound performance using com-
pressed gauge fields is 48 Gflops. A similar computation for un-
compressed gauge fields gives 37 Gflops.

Similar analysis can be done for LLC-bound performance, when
the entire lattice resides in LLC and spinors are reused in L2. Us-

Figure 6: Performance for small problems which fit into LLC.

ing Table 1, we find, that based purely on the available LLC band-
width, were flops available, the LLC-bound performance could be
as high as 186 Gflops for compressed gauges and 239 Gflops for
full gauges. However, in actuality there are not enough compute
resources to sustain such a rate. Thus computation will be the lim-
iting factor in performance for datasets which fit entirely into LLC.
On the other hand, memory-bound performance is a bottleneck for
datasets which do not fit into LLC.

For WDS2, when temporal locality is exploited, the memory
bandwidth is reduced by half for input spinor and gauge lattices. As
the result, the memory-bound performance is twice that of WDS1.
Specifically, it is 96 Gflops for compressed, and 76 for uncom-
pressed gauge fields, respectively. The actual achieved performance,
which we will talk about next, is limited by the above bounds. As
before, memory-bound performance of WDS2 assumes unlimited
flops. In reality, its performance is bound by compute, as will be
shown in Section 4.3.

4.2 Small Problem Size
In this section we provide the performance results and analysis

for small problems which fit entirely into LLC. Such problems are
important in the context of leadership class systems where the prob-
lem is partitioned among very large number of CPUs and the local
problem becomes small enough to fit into the LLC of each CPU.

Figure 6 shows performance for a range of small problem sizes.
The middle bar shows the performance of the implementation using
two row compressed gauge fields. For larger problem sizes, such
as 8x8x8x32 sites, the performance reaches 72 Gflops. The black
line shows the speed-up using 6 cores compared to a single one.
For 8x4x4x4, the speed up is only 3.4X, which is low on 6-core
system. This is due to inter-core communication. As the problem
size increases, inter-core communication is reduced, compared to
an increased amount of computation and the speed-up reaches over
5.4X for the 8x8x8x32 problem resulting in a single core perfor-
mance of 13.3 Gflops/core. This is 80% of the achievable perfor-
mance bound of 17 Gflops, derived in Section 4.1. The remaining
20% is overhead due to spills, fills, and register moves generated
by the compiler to address high register pressure, inherent to the
Wilson-Dslash implementation. We expect this overhead to be sig-
nificantly reduced in AVX [16], which introduces non-destructive
source operands.

The left-most bars in Figure 6 shows the performance using un-
compressed gauge fields. According to our model in Section 4.1,
we expect this case to achieve 20% higher performance than when



using compression. However, we achieve only between 2%-9%
higher performance, than the compressed case, with the highest
achieved performance of 75 Glops for 8x8x8x32. This is due to ex-
tra loads required to load the third row of the uncompressed SU(3)
matrix. These loads as well as loads that come from register fills put
more pressure on a single load port and reduce benefits of uncom-
pressed approach. On the other hand, Intel Core i7 has two ports for
issuing floating point operations, which mitigates the overhead of
row reconstruction in compressed approach. Note that for a prob-
lem of size 8x16x16x16, without compression, performance drops
down to 50 Gflops, and becomes lower than the performance ob-
tained using compression for the the same problem size. This is
due to the fact that in this case, the problem size reaches the LLC
capacity and starts resulting in an extra number of LLC evictions.

The right bar shows performance of reference Chroma imple-
mentation. We achieve an average of 2X speedup over Chroma for
LLC-bound problems. This is due to the fact that Chroma exploits
SSE only within a single site. In addition, it incurs the overhead of
run-time data rearrangement to convert data back and forth between
native Chroma layout and the layout used by SSE code.

Note that the performance of LLC-resident problems is lower
than memory-bound performance of WDS2 scheme, which estab-
lishes a lower bound on is achievable performance of 75 Gflops, as
opposed to 96 Gflops, projected in Section 4.1.

4.3 Large Problem Size
In this section we present performance results for WDS1 with

and without 3.5D blocking, as well as WDS2 with 4.5D blocking.
We use four large lattices which do not fit into LLC of single CPU.
Here and in the rest of the paper we use gauge compression.

As discussed in Section 3.2, in the worst case, to guarantee spinor
reuse in case of 3.5D blocking, LLC must hold 3 spinor and 2 gauge
slices. While smaller number of slices is possible, we obtained our
best results using these number of slices. From Equation 3 we get
dim3.5D = 3

√
12MiB/(4∗96+2∗4∗48) = 26. Redundant mem-

ory traffic for input spinors, κ3.5D evaluates to 1.12X. This corre-
sponds to around 1.02X of redundant traffic for the entire problem.

For 4.5D blocking, in the worst case, 7 spinors slices and 10
gauge slices are needed. Using the same equation, we compute
find dim4.5D = 17. For this value of dim4.5D, κ4.5D is 1.46X, which
translates to overall redundant memory traffic of around 1.38X. As
LLC size continues to grow in future architectures, κ4.5D will de-
crease. For comparison, if size of LLC were to quadruple, κ4.5D

would go down to 1.26 and overall redundant memory traffic would
go down to 1.22X.

Performance results are shown in Figure 7. First bar on the left
shows WDS1 without 3.5D blocking. For the two smallest prob-
lems (163×64 and 243×128), we achieve close to 43 Gflops. This
is 90% of the memory-bound performance of 48 Gflops (see Sec-
tion 4.1). The 163 × 64 problem needs 3 MiB to reuse spinors,
while 243 × 128 needs 9 MiB. This can be accommodated by 12
MiB LLC. As the result, no blocking is required. For the two largest
problems (323× 256 and 403× 256), performance drops down to
36 Gflops and 30 Gflops, respectively. Note that 323×256 problem
requires 22 MiB and the 403× 256 requires 43 MiB to guarantee
the reuse of spinors. This exceeds the capacity of LLC and results
in additional memory traffic.

Second bar shows performance of WDS1 with 3.5D blocking.
As expected, for two smallest lattices, performance is the same
as when no 3.5D blocking is used. For 323 × 256, performance
has improved to 41 Gflops, which is 1.14X speedup over no 3.5D
blocking performance on the same lattices. 403×256 performance
has improved to 40 Gflops, which is 1.33X speedup over no 3.5D

Figure 7: Performance for large problems

blocking. We also see that with 3.5D blocking, performance of
WDS1 on two largest lattices is within 6% compared to two small-
est problem sizes.

The third bar shows performance of WDS2 scheme with 4.5D
blocking. Performance has improved significantly in all cases. Com-
pared to WDS1 without 3.5D, performance improved 1.24X for the
smallest lattice and 1.6X for the largest lattice. Compared to WDS1
with 3.5D, performance has improved by 1.2X on average. While
WDS2 can achieve up to 53 Gflops, its performance is lower than
expected performance bound of 76 Gflops (see Table 2). The rea-
son for this is as follows. As described in Section 3.3, our 4.5D im-
plementation merges together computation of even and odd slices
(Etmp and Oout in Figure 4(b)). While this improves load-balance,
it decreases single-core performance to under 10 Gflops, compared
to 13.3 Gflops reported in previous section. The decrease is due
to several reasons. Firstly, there is an increase in L1 miss rate that
comes from twice the number of lattice sites that must now be pro-
cessed, as well as increase in register spills and fills due to higher
register pressure. Secondly, there is an increase in I-cache miss
rate, which comes from doubling code size, as the result of merging
the computation. As the result, full system performance becomes
bound by compute, reaching 53 Gflops.

The right bar shows performance of Dslash reference code. Its
performance does not vary much with lattices size and is about
3.4X slower than out 4.5D blocking scheme and 2.8X slower than
3.5D blocking.

Note as the compute continues to scale at a faster rate then mem-
ory bandwidth, performance of 4.5D will improve. We demonstrate
this with an experiment shown in Figure 8. Shown are four plat-
form configurations of different byte:flop ratios, obtained by scal-
ing up frequency and removing memory channels on our system.
Left and right bars show performance of 3.5D and 4.5D configu-
rations, respectively, while the line graph shows the 4.5D speedup
over 3.5D schemes. Results are shown for 163 × 64 lattice. Sec-
ond set of two bars shows performance on current configuration, as
reported in Figure 7. 4.5D achieves 1.24 speedup over 3.5D. First
set of bars shows performance on the CPU with the same memory
bandwidth but slower compute (achieved by running at half the fre-
quency). We observe that 4.5D has no benefit over 3.5D, as both
schemes as compute bound. Third set of bars shows configuration
with faster compute (overclocked to 4 GHz), but slower memory (1
channel removed). We see that 3.5D slowed down slightly, because
it is bandwidth bound, while 4.5D improved, because it is com-



Figure 8: Performance scaling of 4.5D on 163x64 lattices for
different platform configurations.

pute bound. The fourth set of bars shows same configuration as the
third with another memory channel removed (memory bandwidth
is now reduced to 10 GB/s, while byte:flop ratio dropped to 0.06).
As a result, the performance of 3.5D scheme has further decreased
to almost half of the previous configuration, as expected. Moreover
4.5D has also decreased, as it is also now memory bound, however,
it is close to 2X faster than 3.5D, because faster compute allowed
4.5D to run at full bandwidth capacity. Hence while 4.5D does not
realize its full potential on current CPU, its performance will im-
prove on future CPUs, as the number of cores continues to increase
at a faster rate than memory bandwidth.

4.4 Multi-node Performance
In this section, we describe the strong and weak scaling perfor-

mance of our implementation across multiple nodes. As mentioned
in Section 3.4, we use OMP model across sockets within a node
and MPI across nodes. We found it to be 10% faster than using
MPI across sockets within a node.

For all experiments, we use the 128-node cluster system as de-
scribed in Section 2.3. The version of icc compiler used for evalua-
tions is 12.0.2 and we use Intel MPI [18] version 4.0.1.007. We ex-
tend the single-socket WDS1 implementation, optimized with 3.5D
blocking, for the cluster. We refer to this scheme as WDS1-MPI.
We compare its performance with the reference implementation
from the Chroma software suite. We have also extended WDS2
scheme with 4.5D blocking for the cluster referred to as WDS2-
MPI. According to Section 4.3 WDS2 delivers 1.2X faster perfor-
mance than WDS1 on 3.3GHz CPU. However, each CPU within
the cluster runs at 2.9GHz, which reduces the benefits of WDS2
to only 5%. As the result, we omit results for WDS2-MPI from
the performance results. As we pointed out in Section 4.3, as com-
pute capacity continues increasing, WDS2-MPI will deliver up to
the factor of 2 higher performance, compared to WDS1-MPI for
problems which are not communication-bound.

Figure 9 demonstrates the strong scaling performance for two
problem sizes, 243×128 and 323×256, using two sockets per node
(12 cores) up to 128 nodes (1536 cores). As Figure 9(a) and Fig-
ure 9(b) show, we achieve over 64 Gflops for a single node (dual
socket). This is close to linear speedup over single socket running
at 2.9GHz. In Figure 9(a), we see that the performance of WDS1-
MPI using the 323×256 lattice scales close to linear for up to 64

nodes. However, the efficiency drops to 50% on 128 nodes, which

corresponds to 4 Tflops. For 243×128 lattice performance scales
well up to 16 nodes, achieving only 30% efficiency on 128 nodes,
which corresponds to 2.7 Tflops. The reason for the loss of linear
scalability for both problem sizes is as follows. As the number of
nodes increases, the problem size per each socket decreases. This
exposes the overhead of copying and communicating boundaries.

For example, for 243×128 lattice on 128 nodes 46% of commu-

nication overhead is exposed. For 323×256 lattice the overhead is
25% for the same number nodes. The rest of the overhead is due to
boundary copying.

Figures 9(a) and (b) also show that in most cases WDS1-MPI
achieves more than a factor of two performance improvement as
compared to Chroma for both the problem sizes. This improve-
ment is due to faster computation, especially for smaller number of
nodes, as demonstrated in Sections 4.2 and 4.3. The performance
improvement for the larger number of nodes is due to the combina-
tion of faster computation and the use of non-blocking MPI_Iprobe
feature, as described in Section 3.4: the feature currently not ex-
ploited in Chroma. Note however that the gap between Chroma
and WDS1-MPI decreases, as number of nodes increases for both
problem sizes. This is expected, as for large number of nodes both
implementations become communication-bound.

The weak scaling performance is shown in Figure 9(c). We
see that both WDS1-MPI and Chroma show linear scaling up to
128 nodes for the 324 lattice. We also see that WDS1-MPI does
not show significant performance benefits as compared to Chroma
when using the 84 lattice. The reason being this lattice completely
fits in the cache and becomes communication bound even on small
number of nodes. Also, we observe that WDS1-MPI using the
324 lattice shows better performance as compared to the 84 lattice.
This is expected, because 84 lattice has large and frequent amount
of communication, compared to computation, which stresses the
underlying network and increases the communication delay.

Lattice Nodes=32 Nodes=64 Nodes=128

243×128 994 1466 1948

323×256 821 1649 2951

Table 3: Performance of LQCD Parallel CG Solver.
Finally, Table 3 demonstrates the performance of a QCD Con-

jugate Gradients (CG) solver using our Wilson-Dslash operator in
an even-odd preconditioned Dirac operator, on both lattices. We
see that the peak sustained performance is up to 3 Tflops for the
323×256 lattice. We also see that the CG solver has a 25% slow-
down as compared to the peak sustained performance of the Wil-
son-Dslash kernel of 4 Tflops as shown in Figure 9(a). This slow-
down is due to the additional computation incurred by the linear
solver in level 1 BLAS operations and the synchronization over-
heads incurred in global reduction operations (global sums) per-
formed across the MPI cluster. Although beyond the scope of this
work, we note significant improvement would be obtained using a
variant of pipelined CG [29].

5. COMPARISON WITH PREVIOUS WORK
There are several implementations of LQCD Dslash implemen-

tations in the literature, many of them targeting novel architectures
(of the time of their writing) such as GPUs [8, 1], the QCDSP su-
percomputer [6] or the QCDOC [4] and BlueGene/L supercomput-
ers [31]. In particular [6] and [31] won Gordon Bell prizes for cost
effective supercomputing in 1998 and 2006 respectively. The latest
in the area of custom built machines is the QPACE computer [2]



 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

1 2 4 8 16 32 64 128

S
u

s
ta

in
e

d
 G

F
L

O
P

S

Number of Nodes

Chroma
WDS1-MPI

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

1 2 4 8 16 32 64 128

S
u

s
ta

in
e

d
 G

F
L

O
P

S

Number of Nodes

Chroma
WDS1-MPI

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

1 2 4 8 16 32 64 128

S
u

s
ta

in
e

d
 G

F
L

O
P

S

Number of Nodes

Chroma (32x32x32x32)
WDS1-MPI (32x32x32x32)

Chroma (8x8x8x8)
WDS1-MPI (8x8x8x8)

Figure 9: Strong and weak scaling performance of Wilson-Dslash kernel on 128 nodes, 12 cores per node cluster: (a) strong scaling
with 323×256 lattice, (b) strong scaling with 243×128 lattice, and (c) weak scaling.

build using Cell processors, and Dslash implementations for the
Cell are described in [28, 3] and [14].

Work with LQCD in commodity clusters is discussed in [13] and
[11]. However, both these contributions come from before the era
of multi-core CPUs with large shared caches such as considered
here, and the prime focus was on exploiting the SSE registers and
using aggressive prefetching to hide memory latencies or to find
the correct combination of commodity components to produce the
most cost effective system in terms of Flops/$. The first use of SSE
vectorization in QCD was reported by [20].

In [5] and [26] code generators are presented to aid the user in
making use of architectural features. In [5] the code generator sim-
ulates pipelines on a variety of RISC architectures, provides regis-
ter and floating point abstractions to the user and can generate code
for a variety of architectures. This has proved very fruitful on both
the QCDOC and BlueGene architectures. Memory abstractions are
in terms of streams and the code generator takes care of memory
prefetching to provide efficient streaming and strided memory ac-
cess. Managing cache and reuse are still left to the user of the pack-
age. The author of [5] also makes available a Wilson-Dslash pack-
age (BAGEL Wilson Dslash) which provides high performance on
QCDOC and BlueGene architectures. The most recent evolutions
feature a hybrid multi-threaded MPI approach. However, we do not
know how shared caches are handled.

In [26] a register transfer language (QA0) is described. The QA0
compiler can then generate efficient code from code written in the
QA0 language on a range of back ends. Again, cache manage-
ment is left to the user, however the authors describe their MDWF
package for implementing the domain-wall formulation of Dirac
Operator. In this package, the site ordering comes from a cache-
oblivious, successive recursive bisection of the lattice along its di-
mensions. The resulting domain-wall Dirac operator achieves high
performance and excellent weak scaling BlueGene & P architec-
tures.

The reference Dslash is an offshoot of the one described in [21],
which was originally crafted from the freely available code from
Martin Lüscher [20]. The reference code had incorporated thread-
ing through either OpenMP or the QMT [7] lightweight threaded
library. However the lattice is always divided amongst threads lex-
icographically and no cache blocking is performed. Further, the
multi-node version of the code is performed with a different struc-
ture, which has more memory traffic than the work presented here.
Correspondingly, while the reference Dslash should perform com-
parably to WDS1-MPI (and does, see Fig. 9(a) at 1536 cores) at
the strong scaling limit when the local problem size is small, it
is expected that the better cache reuse in the work presented here
should result in much better performance for larger local volumes
(this too is borne out in the previous section).

6. CONCLUSIONS AND FUTURE WORK
In this work, we developed a highly optimized single-precision

implementation of the Wilson-Dslash operator which on single-
socket CPU delivers close to 75 Gflops of performance for datasets
which fit into last level cache (LLC). This is more than 2X faster
than the reference implementation available to us running on the
same system. Furthermore, we have applied recently published
3.5D blocking scheme to QCD, which takes full advantage of large
last level cache (LLC) available on modern CPU. For large realistic
datasets, which do not fit into LLC, our implementation achieves
over 42 Gflops performance on a single socket CPU. This is close
to 90% of achievable memory bandwidth and is more than 2.5X
faster than the reference Chroma implementation of Wilson-Dslash
running on the same system. We further show that in cases where
two Wilson-Dslash operators are applied consecutively, as in the
context of a preconditioned linear operator, we can take advantage
of the temporal locality between these operators to further reduce
memory bandwidth requirements. This scheme, called 4.5D, al-
lows us to achieve close 50 Gflops on a single socket. While this
turns QCD into compute-bound problem, its performance is lim-
ited by overheads. However, we also show that advantage of the
4.5D scheme will continue to increase as the gap between mem-
ory bandwidth and compute density is expected to widen in the
next generation of architectures. Lastly, we demonstrate that our
Wilson-Dslash implementation is scalable. In particular for a prob-

lem of volume 323×256 problem our implementation achieves
over 4 Tflops on a 128-node (1536 cores) cluster. This is more
than 2X faster than our reference implementation running on the
same system. For the same lattice size, a full Conjugate Gradients
[12] solver using our implementation of Wilson-Dslash operator,
achieves 2.95 Tflops.

We believe that the techniques described here can be usefully
employed in other architectures which feature multiple cores and
large shared caches.

7. ACKNOWLEDGEMENTS
Bálint Joó is funded through U.S. DOE project grants DE-FC02-

06ER41440 and DE-FC02-06ER41449 (USQCD SciDAC project)
and DE-AC05-06OR23177 under which Jefferson Science Asso-
ciates LLC manages and operates Jefferson Lab. The U.S. Gov-
ernment retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce this manuscript for U.S. Govern-
ment purposes. Michael A. Clark acknowledges funding under
NSF grant OCI-1060067.

8. REFERENCES
[1] R. Babich, M. A. Clark, and B. Joó. Parallelizing the QUDA

Library for Multi-GPU Calculations in Lattice Quantum



Chromodynamics. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[2] H. Baier et al. QPACE – a QCD parallel computer based on
Cell processors. PoS, LAT2009:001, 2009.

[3] F. Belletti et al. QCD on the Cell Broadband Engine. PoS,
LAT2007:039, 2007.

[4] P. Boyle, D. Chen, N. Christ, M. Clark, S. Cohen, Z. Dong,
A. Gara, B. Joo, C. Jung, L. Levkova, X. Liao, G. Liu,
R. Mawhinney, S. Ohta, K. Petrov, T. Wettig, A. Yamaguchi,
and C. Cristian. QCDOC: A 10 Teraflops Computer for
Tightly-Coupled Calculations. In Proceedings of the
ACM/IEEE SC2004 Conference, SC ’04, page 40, 2004.

[5] P. A. Boyle. The bagel assembler generation library.
Computer Physics Communications, 180(12):2739 – 2748,
2009. 40 YEARS OF CPC: A celebratory issue focused on
quality software for high performance, grid and novel
computing architectures.

[6] D. Chen, P. Chen, N. H. Christ, R. G. Edwards, G. Fleming,
A. Gara, S. Hansen, C. Jung, A. Kahler, S. Kasow, A. D.
Kennedy, G. Kilcup, Y. Luo, C. Malureanu, R. D.
Mawhinney, J. Parsons, C. Sui, P. Vranas, and Y. Zhestkov.
Qcdsp machines: design, performance and cost. In
Proceedings of the 1998 ACM/IEEE conference on
Supercomputing (CDROM), Supercomputing ’98, pages 1–6,
Washington, DC, USA, 1998. IEEE Computer Society.

[7] J. Chen and W. W. Iii. Multi-threading performance on
commodity multi-core processors. In In Proceedings of 9th
International Conference on High Performance Computing
in Asia Pacific Region (HPCAsia, 2007.

[8] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and
C. Rebbi. Solving Lattice QCD systems of equations using
mixed precision solvers on GPUs. Comput. Phys. Commun.,
181:1517–1528, 2010.

[9] M. Creutz. QUARKS, GLUONS AND LATTICES.
Cambridge, Uk: Univ. Pr. ( 1983) 169 P. ( Cambridge
Monographs On Mathematical Physics).

[10] R. G. Edwards and B. Joo. The Chroma software system for
lattice QCD. Nucl. Phys. Proc. Suppl., 140:832, 2005.

[11] A. Gellrich, D. Pop, P. Wegner, H. Wittig, M. Hasenbusch,
and K. Jansen. Lattice qcd calculations on commodity
clusters at desy, 2003.

[12] M. R. Hestenes and E. Stiefel. Methods of Conjugate
Gradients for Solving Linear Systems. Journal of Research
of the National Bureau of Standards, 49(6):409–436, Dec.
1952.

[13] D. J. Holmgren. PC clusters for lattice QCD. Nucl. Phys.
Proc. Suppl., 140:183–189, 2005.

[14] K. Z. Ibrahim and F. Bodin. Efficient simdization and data
management of the lattice qcd computation on the cell
broadband engine. Sci. Program., 17:153–172, January 2009.

[15] InfiniBand Trade Association. 2004,
http://www.infinibandta.org.

[16] Intel Advanced Vector Extensions Programming Reference.
2008,
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-
AVX-Programming-Reference-31943302.pdf.

[17] Intel SSE4 programming reference. 2007,
http://www.intel.com/design/processor/manuals/253667.pdf.

[18] Intel Corporation. Intel MPI: Message-Passing Interface

Library.
http://software.intel.com/en-us/articles/intel-mpi-library/.

[19] N. Leischner, V. Osipov, and P. Sanders. Fermi Architecture
White Paper, 2009.

[20] M. Luscher. Schwarz-preconditioned HMC algorithm for
two-flavour lattice QCD. Comput. Phys. Commun.,
165:199–220, 2005.

[21] C. McClendon. Optimized lattice qcd kernels for a pentium 4
cluster. Technical Report JLAB-THY-01-29, Thomas
Jefferson National Laboratory, 12000 Jefferson Ave,
Newport News, VA 23606, USA, 2001.

[22] MPI: A Message-Passing Interface Standard. Mar 1994.

[23] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller.
Memory performance and cache coherency effects on an
intel nehalem multiprocessor system. Parallel Architectures
and Compilation Techniques, International Conference on,
0:261–270, 2009.

[24] I. Montvay and G. Munster. Quantum fields on a lattice.
Cambridge, UK: Univ. Pr. (1994) 491 p. (Cambridge
monographs on mathematical physics).

[25] A. D. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey.
3.5-d blocking optimization for stencil computations on
modern cpus and gpus. In SC, pages 1–13, 2010.

[26] A. Pochinsky. Writing efficient QCD code made simpler:
QA(0). PoS, LATTICE2008:040, 2008.

[27] H. J. Rothe. Lattice gauge theories: An Introduction. World
Sci. Lect. Notes Phys., 74:1–605, 2005.

[28] J. Spray, J. Hill, and A. Trew. Performance of a Lattice
Quantum Chromodynamics Kernel on the Cell Processor.
Comput. Phys. Commun., 179:642–646, 2008.

[29] R. Strzodka and D. Göddeke. Pipelined mixed precision
algorithms on FPGAs for fast and accurate PDE solvers from
low precision components. In IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM
2006), pages 259–268, Apr. 2006.

[30] H. A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly
Converging Variant of Bi-CG for the Solution of
Nonsymmetric Linear Systems. SIAM Journal on Scientific
and Statistical Computing, 13(2):631–644, 1992.

[31] P. Vranas, G. Bhanot, M. Blumrich, D. Chen, A. Gara,
P. Heidelberger, V. Salapura, and J. C. Sexton. The
bluegene/l supercomputer and quantum chromodynamics. In
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[32] K. G. Wilson. Quarks and Strings on a Lattice. In Zichichi,
A., editor, New Phenomena in Subnuclear Physics, page 69.
Plenum Press, New York, 1975.

[33] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array
regrouping and structure splitting using whole-program
reference affinity. In Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and
implementation, PLDI ’04, pages 255–266, 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /SABAEN44
    /SAKURAalp
    /Shruti
    /SimSun
    /STSong
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


