
Model-driven Autotuning of Sparse
Matrix-Vector Multiply on GPUs

Jee W. Choi
Georgia Institute of Technology, School
of Electrical and Computer Engineering

Atlanta, Georgia, USA
jee@ece.gatech.edu

Amik Singh
Indian Institute of Technology Roorkee,
Department of Electronics and Computer

Engineering,
Roorkee, India

amiksuec@iitr.ernet.in

Richard W. Vuduc
Georgia Institute of Technology,

Computational Science and Engineering
Division

Atlanta, Georgia, USA
richie@cc.gatech.edu

Abstract
We present a performance model-driven framework for automated
performance tuning (autotuning) of sparse matrix-vector multi-
ply (SpMV) on systems accelerated by graphics processing units
(GPU). Our study consists of two parts.

First, we describe several carefully hand-tuned SpMV imple-
mentations for GPUs, identifying key GPU-specific performance
limitations, enhancements, and tuning opportunities. These im-
plementations, which include variants on classical blocked com-
pressed sparse row (BCSR) and blocked ELLPACK (BELLPACK)
storage formats, match or exceed state-of-the-art implementations.
For instance, our best BELLPACK implementation achieves up
to 29.0 Gflop/s in single-precision and 15.7 Gflop/s in double-
precision on the NVIDIA T10P multiprocessor (C1060), enhanc-
ing prior state-of-the-art unblocked implementations (Bell and
Garland, 2009) by up to 1.8× and 1.5× for single- and double-
precision respectively.

However, achieving this level of performance requires input
matrix-dependent parameter tuning. Thus, in the second part of this
study, we develop a performance model that can guide tuning. Like
prior autotuning models for CPUs (e.g., Im, Yelick, and Vuduc,
2004), this model requires offline measurements and run-time es-
timation, but more directly models the structure of multithreaded
vector processors like GPUs. We show that our model can iden-
tify the implementations that achieve within 15% of those found
through exhaustive search.

Categories and Subject Descriptors C.4 [Computer Systems Or-
ganization]: Performance of Systems—Modeling Techniques

General Terms Algorithms, Performance

Keywords GPU, sparse matrix-vector multiplication, performance
modeling

1. Introduction
We consider the sparse matrix-vector multiply (SpMV) operation
for platforms based on graphics processing units (GPUs). Our moti-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright c© 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

vation comes from two well-known facts: (1) To first order, stream-
ing the matrix should dominate SpMV performance, and so SpMV
is largely memory bandwidth-bound; and (2) current and emerg-
ing GPUs are bandwidth-rich computing platforms, today offer-
ing peak bandwidths an order of magnitude higher than those of
conventional multicore platforms based on general-purpose CPUs.
Thus, SpMV and GPUs should be a perfect match.

The challenge is that SpMV is an irregular computation that, in
addition to streaming, requires many indirect and irregular memory
accesses. This memory behavior contrasts starkly to that of dense
linear algebra kernels, such as LU, QR and Cholesky factorizations,
for which highly efficient implementations exist that achieve hun-
dreds of Gflop/s on a single GPU [17]. An SpMV incurs the over-
head of moving integer indices (meta-data) that track which non-
zeros are stored, and furthermore performs many indirect loads.

Indeed, from a productivity perspective, the dense and sparse
cases for matrix-vector multiply differ markedly. Without prior
knowledge of NVIDIA GPUs and using only the information pro-
vided in the CUDA programming guide [1], we wrote a dense
matrix-vector multiplication kernel that achieves 92% of the band-
width measured using the bandwidthTest program provided with
the CUDA SDK.1 Achieving even half the performance for SpMV
required significantly more effort, including designing a suitable
data structure as well as careful tuning. Our SpMV implementation
contains roughly twice the number of lines of CUDA code as the
dense counterpart.

Findings and contributions. This paper makes several contribu-
tions.

First, we implement the classical blocked version of CSR
(BCSR) and study the effects of common GPU optimizations on
the kernel. Tuning BCSR for GPUs differs markedly from an equiv-
alent CPU implementation. From this experience, we design and
implement a new sparse matrix compression format, called BELL-
PACK, tuned for GPUs. This format extends ELLPACK/ITPACK
format [14] with (a) explicit storage of dense blocks to compress
the data structure, and (b) row permutation to avoid unevenly dis-
tributed workloads. The absolute performance achieved, up to 29.0
Gflop/s in single-precision and 15.7 Gflop/s in double-precision
on a single NVIDIA T10P multiprocessor-based GPU, enables
improvements over the best unblocked state-of-the-art implemen-
tation by up to 1.8× and 1.5× for single and double-precision
computations respectively [3].

However, BELLPACK requires careful tuning. Thus, we pro-
pose a novel and accurate performance model-driven framework

1 At the time, up to over twice the performance of the cublasSgemv kernel
in the CUBLAS library.

115

for autotuning SpMV, based on an abstract execution model of a
GPU. This framework, based on the paradigm of offline bench-
marking combined with a model instantiated at run-time [11], se-
lects the correct tuning parameters with a median error relative to
exhaustive search of less than 15%.

Limitations. Our study is encouraging but not without limita-
tions. First, the improvements due to BELLPACK apply only to
matrices that have small dense block sub-structures; however, this
class is still fairly broad as it includes matrices arising in applica-
tions based on the finite-element method. Also, using BELLPACK
involves re-packing the data from its original form, such as CSR,
which incurs a run-time cost. However, this cost is inherent in any
autotuning scheme that considers transformations of the data struc-
ture [11, 18].

Our execution model of the GPU is our first attempt, and does
not directly model some costs, such as thread block scheduling
costs, which we believe to be small. Also, although the autotuning
framework can be extended to other GPU-like multithreaded SIMD
architectures, we test it in this paper on only two NVIDIA Tesla
series GPUs on two different kernels. Extending this framework
to other architectures may require some modifications or additions
to the model. Nevertheless, we believe that, by validating on an
irregular computation, we complement the most sophisticated GPU
models developed to date [10].

2. Related Research
The literature on SpMV optimization and tuning is extensive. We
review the most relevant work here, and refer the interested reader
to other surveys [7, 11, 19].

This paper follows in the spirit of the paper by Williams, et
al., which evaluates SpMV for several multicore platforms, includ-
ing the Sony-Toshiba-IBM Cell/Broadband Engine (STI Cell/B.E.)
but excluding GPUs [21]. Bell and Garland consider several meth-
ods, including a variation of ELLPACK that differs from ours [3].
They split the storage between an ELLPACK and coordinate for-
mat to reduce its footprint, a novel variant of other previously pro-
posed splitting methods [9, 13, 20]. At the same time, Baskaran and
Bordawekar proposed a general compile- and run-time infrastruc-
ture, evaluated for SpMV [2]. They seem to achieve performance
roughly comparable to Bell and Garland on similar hardware.

Bolz, et al., published the first paper in 2003 on GPU-based
SpMV (plus higher-level multigrid and conjugate gradient solvers)
of which we are aware [4]. They achieved a high fraction (∼
1/3) of GPU peak for structured grids. Sengupta, et al., developed
more generic approaches using parallel prefix/scan primitives [16],
though this implementation did not at the time outperform CPU-
based codes [8, 16]. Christen and Schenk accelerate the dense part
of a sparse direct solver, whereas SpMV-centric studies implicitly
target iterative solvers [5].

The row permutation employed by our proposed BELLPACK
format is directly inspired by early work on vectorized SpMV,
which is especially relevant to GPUs. This prior work includes
jagged diagonal or clever row/column permutations combined with
traditional formats [6, 12, 13].

3. NVIDIA CUDA and Experimental Setup
NVIDIA’s CUDA is a programming model designed for the data-
parallel processing capabilities of NVIDIA GPUs. A CUDA pro-
gram consists of a host program that runs on the CPU host, and a
kernel program that executes on the GPU itself. The host program
typically sets up the data and transfers it to and from the GPU,
while the kernel program processes that data.

The CUDA model has two key components. The first is the
concept of fine-grained threads, which are grouped into coarser-

Testbed 1 Testbed 2
GPU Tesla C1060 Tesla C870

GPU Clock 1.44 GHz 1.35 GHz
Compute Capability 1.3 1.0

CUDA Version 2.2 2.0
bandwidthTest 72 GB/s 57 GB/s

Table 1. NVIDIA GPU testbeds used in our study.

grained thread blocks. Threads within a block share a local-store
and may synchronize via barriers. There is no such synchronization
mechanism for threads in different thread blocks.

The second component is the memory hierarchy. The main
memory in a GPU is a high-bandwidth DRAM in a shared ad-
dress space. There is also a low-latency per-thread-block on-chip
memory called the shared memory and a per-thread private local
memory in the form of registers. There are also two types of read-
only memory called constant memory and texture memory, also
uniformly addressable by all threads.

The CUDA Programming Guide offers several tips for maxi-
mizing performance [1]. (1) Maximize the bandwidth from global
memory using coalesced loads. (2) The latency from the on-chip
shared memory is comparable to that of the register file. Therefore,
shared memory should be used to store data that is shared amongst
the threads and/or reused frequently. (3) Resource usage—the num-
ber of threads, amount of shared memory, and the number of reg-
isters used by a single thread block—determines multiprocessor
utilization, and kernels must carefully balance usage of these re-
sources. Other “folk” methods include loop unrolling, interleaving
memory accesses and processing to hide memory latencies. Volkov
and Demmel offer additional techniques, and argue that a suitable
machine abstraction for GPUs is that of a multithreaded local-store
vector architecture [17].

Experiments. All experiments in this paper were run on either
or both of the two systems listed in Table 1, and using the sparse
matrix benchmark suites in Table 2, which are used in prior work
by others [3, 21].

4. Hand-optimizing Baseline BCSR
This section describes a basic blocked compressed sparse row
(BCSR) implementation that extends the state-of-the-art GPU CSR
implementation [3]. From this basic implementation, we identify
key factors that prevent the algorithm from achieving better perfor-
mance and hand-optimize the kernel accordingly.

4.1 CSR and BCSR
The conventional CSR format stores anm×n sparse matrix having
k non-zero elements using three one-dimensional arrays: the arrays
val and col ind, each of size k, to store the non-zeros values and
column indices, respectively; and an array row ptr of size m + 1
to store pointers to the first element of each row in the val and
col ind arrays. In the implementation by Bell and Garland, a warp
of threads is assigned to each row of the matrix, with each thread
performing a multiply-accumulate on the non-zeros in the row in
an interleaved manner. After all non-zeros have been processed
and stored in the shared memory (local-store), the warp executes
a parallel reduction to produce the final value.

In the blocked variant of CSR, BCSR, we store r × c dense
subblocks of non-zeros rather than storing each non-zero individ-
ually [15], as illustrated in Figure 1. Depending on the matrix, we
can in principle reduce the column index storage by up to roughly
1
r·c , since we need only store 1 column index per block.

116

Name Dimensions Non-
zeros Description

Dense 2K×2K 4.0M Dense

Protein 36K×36K 4.3M Protein data
bank 1HY2S

QCD 49K×49K 1.9M Quark
propagation

Cantilever 62K×62K 4.0M Cantilever

Spheres 83K×83K 6.0M Concentric
spheres

Harbor 47K×47K 2.37M
3D CFD of
Charleston

Harbor
Ship 141K×141K 3.98M Ship section

Wind Tunnel 218K×218K 11.6M Pressurized
wind tunnel

Cop 121K×121k 2.6M Accelerator

Epidemiology 526K×526K 2.1M
2D Markov

model of
epidemic

Economics 207K×207K 1.27M
Macro-

economics
model

Circuit 171K×171K 959K
Motorola

circuit
simulation

Webbase 1M×1M 3.1M Web
connectivity

LP 4K×1M 11.3M Linear
programming

Table 2. Overview of sparse matrices used in evaluation study. See
also Williams, et al. [21].

X X

 X

X

 X

X X

X X

X X

 X

X X

X

 X

X

 X

8

8
0 3 4 5 7

X X X 0 X 0 0 X X X X X X X 0 0 X X 0 X X 0 0 X 0 X 0 X

0 2 6 2 0 2 4

B0 B1 B2

B3

B4

B5

B6

row_bptr

bval
col_bind

B0 B1 B2 B3 B4 B5 B6

2

2

Figure 1. The BCSR compression format.

Given a matrix in CSR, we implement BCSR by statically
dividing the matrix into (m

r
)× (n

c
) sub-blocks of size r × c each,

with explicit padding of zeros as needed.
Our initial BCSR implementation begins with a straightforward

adaptation of the CSR baseline of Bell and Garland [3]. In par-
ticular, we store elements of each r × c block contiguously and
assign each thread to an r× c block, combining the results within a

block row via parallel reduction. The pseudocode for SpMV when
r = c = 2 appears in Algorithm 1.

Algorithm 1: 2×2 BCSR kernel to compute y ← y +A · x
Input: m× n matrix A, stored in BCSR(r × c) format as

(bval, col bind, row bptr);
vectors x as x[1 . . . n], y as y[1 . . .m]

Output: Modifies y
Let TB = thread block size (1-D)
Let tid = local thread ID
Initialize sdata[TB][2]
for each block row, I do1

row start = row bptr[I]2
row end = row bptr[I + 1]3
for k = row bptr[I];k<row bptr[I + 1];k=k+TB do4

for each thread do5
j0 = col bind[k+tid]6
float4 tmp = bval[k+tid]7
sdata[tid][0] += tmp.x × x[j0] + tmp.y ×8
x[j0+1]
sdata[tid][1] += tmp.z × x[j0] + tmp.w ×9
x[j0+1]

parallel reduction in shared memory to sdata[0][0]10
parallel reduction in shared memory to sdata[0][1]11
Y [I×2] += sdata[0][0]12
Y [I×2+1] += sdata[0][1]13

The performance of this baseline implementation is poor, owing
largely to uncoalesced memory accesses. We address this issue
through the transformations described below.

4.2 Short Vector Packing
Because each thread is assigned to a particular r × c block and
each block is stored contiguously as r × c floats, threads within
a warp will access data in a non-contiguous manner, leading to a
deterioration in performance.

We can partially alleviate this problem by first loading data in
larger granularities. In particular, we exploit CUDA’s built-in short-
vector data types, float2, float3, and float4, which correspond
to 32-, 64-, and 128-bit vectors. When r × c is small, e.g., 2 × 2,
3 × 1, or 1 × 4, the entire block will fit into a single short vector,
so that threads within a warp issue contiguous short-vector loads,
thereby reducing the instruction count and improving bandwidth
utilization.

If an r× c block requires more than 1 short vector, we will still
have non-contiguous loads if we store the multiple short vectors
contiguously (addressed below). For 1×3, 3×1, and 3×3 blocks,
we find empirically that it is generally better to use float4 storage
with padded zeros, since float4 is automatically aligned [1].

4.3 Row Alignment
When the number of r × c blocks in any block row do not sum
to multiples of the word boundary required for alignment and
coalesced access, all subsequent accesses to the matrix will become
uncoalesced. This problem can be easily solved by padding each
row block with explicit r×c blocks containing all zeros, at the cost
of extra storage and flops.

117

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

5

10

15

20

25

Dense

Protein
QCD

Cantile
ve

r

Spheres

Harbor
Ship

Wind Tu
nnel

Accelerator

Epidemiology

Economics

Circ
uit

Web LP

Fraction of E
stim

ated
 E

m
p

irical P
eak

G
fl

o
p

/s

BCSR + Short vec. pack +Align & Interleave CSR NVIDIA (best)

Figure 2. Single-precision performance (Gflop/s) of the best
BCSR kernels for each test matrix. The estimated empirical peak
(secondary y-axis on right) assumes an ideal 2 flops per 4 bytes
streamed at the empirical peak bandwidth of 72 GB/s. This band-
width is reported by the CUDA SDK bandwidthTest benchmark.

4.4 Interleaved Memory Accesses
When multiple short-vector words are required to store an r × c
block, we can avoid non-contiguous short vector access within a
warp by interleaving words from consecutive blocks.

4.5 Experimental Results
We compare the BCSR implementations to the NVIDIA imple-
mentations [3] on the NVIDIA C1060 (T10P-based) platform in
Figure 2. The block size is tuned exhaustively up to 4 × 4, report-
ing the best case. Not surprisingly, the final BCSR implementation
outperforms the baseline CSR implementation for matrices with
natural dense block substructure—Protein through Accelerator, as
these matrices come predominantly from simulations based on the
finite-element method.

However, the NVIDIA’s best implementations using other for-
mats (e.g., the hybrid ELLPACK+coordinate (COO) scheme) still
outperform our best BCSR code in several cases. Our best BCSR
rarely exceeds 50% of the estimated peak for single-precision dense
matrix-vector multiply. Thus, even if the application is bandwidth-
limited like SpMV, simply reducing the data size is inadequate—
special optimizations are also necessary to achieve still higher per-
formances on GPUs.

5. Blocked ELLPACK
Although the BCSR improves over CSR, it still falls far short of
NVIDIA’s best implementation (Figure 2). The major bottleneck
comes from the parallel reduction step, whose performance is sen-
sitive to the number of blocks available in a particular block row,
which can be small (e.g., less than 20). Given the similarity be-
tween current GPUs and vector architectures [17], we might in-
stead prefer a vector-friendly format such as the classical ELL-
PACK/ITPACK format [14]. Indeed, the best NVIDIA format is
often (but not always) their hybrid ELLPACK+COO scheme [3].
Therefore, we also consider a blocked ELLPACK (BELLPACK)
format that combines the advantages of the dense subblock storage
of BCSR and the vector-friendly ELLPACK format.

In classical ELLPACK, we store anm×nmatrix using twom×
L arrays, for the values and column indices, respectively, where

X

X

X

 X

X X

X X

X X

 X

X

X

X X

X

 X

X

 X

X

X

R

R

Λ0

Λ1

...

RΛi

B0,0 B0,1

B1,0 B1,1

B1,1

B1,1[0] B1,1[1]

B1,1[2] B1,1[3]

B0,0[0] B1,0[0]

B0,0[1] B1,0[1]

B0,0[2] B1,0[2]

B1,0[3]B0,0[3]

R

B1,1[0]B0,1[0]

B1,1[1]B0,1[1]

B1,1[2]B0,1[2]

B1,1[3]B0,1[3]

K0

r

c

Ki × r × c

thread 0 thread 1
Processed by
thread block i

...
Ki

K0

K1

r × c blocks per TB

...

column index

CI0

CI1

CIi

Figure 4. Storage of block rows in BELLPACK

L is the maximum number of non-zeros in any row. That is, an
ELLPACK matrix is stored using twom×L arrays V and J such that
V[i,k] is the matrix entryA(i, J[i,k]). Rows with fewer than L non-
zeros are padded with zeros, which results in unnecessary storage
and flops (work). However, this format suits GPUs well because it
is easy to (a) vectorize SpMV within a column V[·,k], given indirect
addressing support; (b) align the matrix data for efficient global
memory transfers; and (c) do 1-D block row-based partitioning.
Storing r × c dense subblocks is a straightforward adaptation,
helping to reduce column index storage as with BCSR. However,
ELLPACK peforms poorly when the variance in the number of non-
zeros per row is high, thereby necessitating excessive zero-padding.

5.1 Our Blocked ELLPACK Implementation
Conceptually, we construct a BELLPACK matrix from a m × n
input matrix A as sketched in Figure 3(a) and described as follows.

Basic storage scheme. First, we logically reorganize A into a
new matrix, A′, stored using r × c dense subblocks. This step
helps reduce column index storage, as with BCSR. We then sort
the block-rows in descending order of number of blocks per row,
resulting in a new matrix A′′. The sort step is identical to what is
done for the so-called jagged diagonal format [15], and corresponds
to applying a row permutation,Pr , toA′, i.e.,A′′ = Pr ·A′. Finally,
we partition the rows of A′′ into m

R
non-overlapping submatrices,

each of size R × n
c

. We store each submatrix in ELLPACK or
r × c blocked ELLPACK format. This partitioning step helps to
reduce the padding that would otherwise result in matrices with a
high variance in the number of non-zeros per row, as suggested in
Figure 3(b).

Block row-partition layout. To encourage coalescing, we store
each R × n

c
block row, Λi, as illustrated in Figure 4. In particular,

the values of Λi are laid out in a 2-D row-major array (middle of
Figure 4). Each column contains all of the data to-be-accessed by
a particular thread, laid out r × c block-by-block. The unit-stride
dimension is across rows of this array, to ensure coalescing. This
array is aligned and padded as necessary. A parallel structure is
used to store the block column indices (right side of Figure 4).

The pseudocode for a 2 × 2 kernel appears in Algorithm 2.
Blocking and processing the data as described above leads to an
implementation that is easily unrolled and structured to reuse val-
ues of the x vector.

118

X X

 X

X

 X

X X

X X

X X

 X

X X

 X

X X

X

 X

X

 X

X

X

X

 X

X X

X X

X X

 X

X

X

X X

X

 X

X

 X

X

X

ReorderBlocking

X

X

X

 X

X X

X X

X X

 X

X

X

X X

X

 X

X

 X

X

X

ELLPACK

r

c

R

R

m

n

(a) Construction.

A ELLPACK
padding = 7

BELLPACK
padding = 13

X X

X

X X X

X X

X X

X

X X

X

X X X

X X

X X

X

X X

X

X X X

X X

X X

X

(b) Severity of padding.

Figure 3. BELLPACK format.

Our implementation uses the texture cache to load the values of
vector x, as done by Bell and Garland [3]. We also tried explicit
blocking and use of the local-store shared memory but found the
texture cache approach to be both simpler and more effective em-
pirically.

Algorithm 2: 2×2 BELLPACK kernel to compute y ← y +
A · x

Input: array of arrays Ad values for values and Ad index for
indices, array Ad numBlocks for block sizes, vector x
as x[1 . . . n], and blocking sizes r and c

Output: Modifies y
Let bid = block ID
Let tid = local thread ID
Let TB = thread block size (1-D)
if tid == 0 then1

numBlocks = Ad numBlocks[bid]2
A values = Ad values[bid]3
A index = Ad index[bid]4

for i = 0 to numBlocks do5
col Index = A index[TB×i+tid] × c6
xval = x[col Index]7
rs 1 += A values[TB×4×i+tid] × xval8
rs 2 += A values[TB×4×i+TB×2+tid] × xval9
xval = X[col Index++]10
rs 1 += A values[TB×4×i+TB×1+tid] × xval11
rs 2 += A values[TB×4×i+TB×3+tid] × xval12

y[TB×bid×2+tid×2] = rs 113
y[TB×bid×2+tid×2 + 1] = rs 214

5.2 Experimental Results
The performance results for BELLPACK format appear in Fig-
ures 5(a) (Gflop/s for single- and double-precision) and 5(b) (esti-
mated effective GB/s in single-precision). We show results on just
the subset of matrices which actually have dense block substruc-
ture; for the remainder, we would expect the best NVIDIA imple-
mentation to deliver the best results.

By “estimated effective bandwidth,” we mean the best perfor-
mance one would expect given (a) an effective sustainable band-
width as given by the CUDA SDK bandwidthTest benchmark,
shown in Table 1; and (b) an optimistic flop:byte ratio of 2 flops
for every 4 bytes read, which accounts only for the minimum mem-
ory traffic required just to transfer the matrix values (i.e., assuming
the “maximum index compression” possible). For example, on the
NVIDIA C1060, we observe a bandwidthTest measurement of 72
GB/s, which corresponds to an estimated empirical peak perfor-
mance of (72 GB/s)×(2 flops / 4 bytes) = 36 Gflop/s.

Figure 5 show the best performance found by exhaustively
searching through 11 different blocking sizes and 4 different thread
block sizes and choosing the best results. Similarly, the “NVIDIA
Best” implementation is that of Bell and Garland, showing the best
result that we observed over all of the formats available in their
implementation [3]. Our BELLPACK implementation is between
1.3× to 1.8× faster for single-precision, and between 1.1× to 1.5×
faster for double-precision, achieving a bandwidth utilization that
approaches the peak measured bandwidth.

6. Model-based Autotuning
Achieving the best performance from BELLPACK requires care-
fully tuning the block size parameters, r, c, and R. These param-
eters are matrix-dependent, meaning we may need to choose them
at run-time. In the spirit of our prior work, we select these param-
eters using an autotuning framework based on empirical model-
ing [11, 19, 22]. This model combines off-line benchmarking and
a run-time model instantiated with the benchmark data. In contrast
to this prior SpMV autotuning work, our model attempts to more
directly model GPU hardware features, rather than abstracting the
hardware away completely [11, 19].

6.1 A Generic Model of GPU Execution Time
Our model is based on a simple abstraction of an NVIDIA GPU
architecture and its execution model, illustrated in Figure 6.

Basic model: Iterations. We consider a GPU as consisting of M
identical streaming multiprocessors (SMs) that execute in parallel.
These SMs, which use simultaneous multithreading, can at a given
instant in time hold and context-switch among at most T thread

119

0

5

10

15

20

25

30

Dense

Protein
QCD

Cantile
ve

r

Spheres

Harbor
Ship

Wind Tu
nnel

G
fl

o
p

/s

BELLPACK (double) BELLPACK (single) BCSR Best (single)

NVIDIA Best (double) NVIDIA Best (single)

(a) Performance on “naturally blocked” matrices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0

10

20

30

40

50

60

70

80

Dense

Protein
QCD

Cantile
ve

r

Spheres

Harbor
Ship

Wind Tu
nnel

Fraction of b
and

w
id

thTest

E
ff

ec
ti

ve
 G

B
/s

 (M
at

ri
x

d
at

a
o

nl
y)

(b) Effective bandwidth (single-precision)

Figure 5. BELLPACK performance on NVIDIA C1060 (T10P multiprocessor)

GPU
CROSSBAR

DRAM
Bank

DRAM
Bank

DRAM
Bank

...

...SM #1 SM #2 SM #3 SM #M

Workload L

... ...

I

Workload L

T

M

Figure 6. A diagram of NVIDIA GPU architecture and execution
model

blocks. Importantly, T depends on characteristics of both the hard-
ware and the compute kernel (e.g., via the so-called occupancy);
we discuss how to compute T in Section 6.2 below.

We model the GPU’s execution as all SMs executing its thread
blocks in iterations. During each iteration, an individual SM exe-
cutes up to T thread blocks that it has been assigned.

If the computational workload consists of a total of L thread
blocks, we can compute the total number of iterations I under some
assumptions. Let us assume that the SMs are “perfectly synchro-
nized” in the sense that, during a given iteration, all SMs on thread
blocks consisting of identical work can proceed in close unison.
Then, during each iteration, all M SMs will execute up to T thread
blocks each, meaning the total number of such iterations is

I =

‰
L

T ×M

ı
. (1)

We consider the total execution time to be the sum of the
execution times of the individual iterations. Under the assumption

of roughly identical work during an iteration, the total time t is

t =

IX
i=1

ti (2)

where ti is the time of each iteration. We model this iteration time
using a simple linear function of the maximum number of thread
blocks, k, assigned to any SM during iteration i as follows:

ti(k) = σi + αi × (k − 1), (3)

where 1 ≤ k ≤ T ; σi models the iteration’s startup time, which
includes some overhead plus the time to compute the first iteration;
and αi measures the degree to which the SM can hide the latency
of each thread block through context switching. The first iteration’s
startup cost, σ1, could include things like the kernel startup time.
Regarding the latency hiding, the smaller the value of αi, the better
the SM is able to hide the thread block latency.

Homogeneous execution. For the kernels we consider in this pa-
per, we make an additional simplification. Suppose that the thread
blocks are largely homogeneous in the sense that αi = α is the
same for all iterations and that only the first iteration may have a
different overhead term, i.e., σ2 = σ3 = · · · = σI = σ but σ1 may
or may not equal σ. Then, assuming I ≥ 2, we can write the total
time in three terms, namely, the time τ1 for the first iteration, the
time τ for each of the middle I − 2 iterations, and the time τI for
the last iteration:

t = τ1 + (I − 2)× τ + τI (4)
τ1 = σ1 + α× (T − 1) (5)
τ = σ + α× (T − 1) (6)

τI = σ + α×
—

(L mod (T ×M))− 1

M

�
. (7)

Comment: Active warps. One last important factor to consider on
a GPU is the number of active warps in a single thread block. All
operations are done in the granularity of warps, including the in-
terleaving of thread blocks to hide memory latency. If there is only
1 thread block available for each SM and if there are not enough
warps in the thread block for latency-hiding via multithreading,
then there will be a slight skew in the curve for ti (or τi). That
is, the cost of executing the first thread block in an iteration could

120

Variable
Name Description Dependence

W warp size GPU
K # threads per TB kernel

WSM maximum # warps per SM GPU
WTB # warps per TB Both

TW
thread blocks limited Both
by warps

TSM max # thread blocks per SM GPU
RSM max # registers per SM GPU
RTB # register usage per TB kernel

TR
thread blocks limited Both
by registers

SSM max shared mem per SM GPU
STB shared mem usage per TB kernel

TS
thread blocks limited Both
by shared mem

Table 3. Table of variables used to calculate T

be much larger than the cost of computing the subsequent thread
block. This skew will depend on kernel features such as the num-
ber memory operations and the number of warps in a single thread
block and hardware factors such as the bandwidth and the number
of banks in the memory system [10]. We illustrate this phenomenon
in Figure 7.

Illustration of the model. The overall execution model described
in this section can be summarized graphically, as shown in Figure 8.

6.2 Computing T (Max. Thread Blocks per Multiprocessor)
The execution time model of Section 6.1 assumes that at most T
thread blocks (TBs) can co-exist on the same SM. This value, which
is related to the CUDA’s kernel occupancy [1], can be computed for
a given GPU and kernel using Equations 8 through 12 below. These
equations depend on a number of GPU- and kernel-dependent
parameters, which are summarized in Table 3.

WTB =
K

W
(8)

TW = min

„
TSM ,

—
WSM

WTB

�«
(9)

TR =

—
RSM
RTB

�
(10)

TS =

—
SSM
STB

�
(11)

T = min(TW , TR, TS) (12)

6.3 Instantiating the Model for SpMV
To use the model for autotuning SpMV, we need to instantiate an
SpMV-specific model. Like related work, we use offline bench-
marking [11, 19], but in contrast, we use this data to determine
various parameters in the model (e.g., σ, α). In this section, we in-
stantiate a model for the BELLPACK kernel, using the homogenous
model (Section 6.1).

Computing the startup cost, σi. All of the BELLPACK kernels
(one for each value of r and c) have the same structures. For
instance, the kernels all load thread block related data such as
the thread and block ID; index into the main data structures; and
declare variables. The main portion of the kernel loops over all
the r × c blocks that the thread block is assigned and computes

the necessary values. The kernel ends by copying the accumulated
values back to the vector Y .

The first iteration’s startup cost, σ1, is mainly determined by the
number of r × c blocks it reads. For a r × c kernel of thread block
size R, where each thread processes N blocks of size r × c each,
σ1 and σ can be approximated as follows:

σ1(N) = σ1,o + γ ×N (13)
σ(N) = γ′ ×N. (14)

Observe that Equation 13 further decomposes the σ1 startup into a
“base” overhead, σ1,o plus the time γ×N to process theN blocks.

We determine the various factors in Equations 13–14 using of-
fline benchmarks on dense matrices. Specifically, we first estimate
σ1,o by measuring the time to execute the kernel on a (M×R×r)-
by-c dense matrix stored in BELLPACK format. We then execute
the kernel on a (M × R × r)-by-(c × β) dense matrix, for some
value of β (below), and measure its execution time, φM·R·r×c·β .
From these data, we determine γ via

γ =
(φM·R·r×c·β − σ1,o)

β
. (15)

We compute the subsequent iteration times, γ′, as follows:

γ′ =
(φM·(T+1)·R·r×c·β − φM·T ·R·r×c·β)

β
(16)

The value β can be chosen arbitrarily, but should be kept small (≤
100).

Estimating the latency-hiding factor, α. The variable α is used
to estimate the increase in the execution time as additional thread
blocks are added to the SM, and its value reflects the ability to hide
latency (Section 6.1). We estimate α by

α(N) =

„
φM·T ·R·r×c·β − φM·R·r×c·β

(T − 1)× β

«
×N, (17)

using previously estimated values.

Final execution time model. The preceeding benchmarks are
enough to estimate the execution time for a particular r × c kernel
with thread block size R and N BELLPACK blocks as shown
below, again assuming I ≥ 2. Having the equation vary with N
creates a more flexible model and estimates the range of errors that
may occur due to variance in blocking size estimation, discussed in
a subsequent section.

τ1(N) = σ1(N) + α(N)× (T − 1) (18)
τ(N) = σ(N) + α(N)× (T − 1) (19)

τI(N) = σ(N) + α(N)×
—

(L mod (T ×M))− 1

M

�
(20)

t(N) = τ1(N) + (I − 2)τ(N) + τI(N) (21)

6.4 Blocking Size Estimation
As SpMV is a bandwidth limited application, one simple way of
eliminating potential blocking sizes is to estimate the total amount
of data that would be generated by using those sizes. For exam-
ple, for the “Protein” matrix, a blocking size of 3×3 generates
4.9M data elements on average, approximately 1.13× more data
elements than the original matrix, whereas blocking sizes of 7×7
and 8×8 generate 2.1× and 2.2× more data respectively. Since
7×7 and 8×8 blocking sizes produce significantly more data, they
can be safely eliminated from consideration as long as they can be
roughly estimated.

The total data size can be estimated simply randomly sampling
a fraction of the matrix and interpolating the results for the rest of
the matrix, or by using a fill ratio estimation algorithm [19], that can

121

Memory Op Arithmetic Op

1 Thread Block 2 Thread Block 4 Thread Block

1 warp/
TB

10 + 1 = 11 cycles
10 + 2 = 12 cycles

10+ 4 = 14 cycles

4 warp/
TB

10 + 4 = 14 cycles

...

10 + 8 = 18 cycles

...

10 + 16 = 26 cycles

0	

5	

10	

15	

20	

25	

30	

0	 1	 2	 4	

Ex
ec
u&

on
	 T
im

e	
(c
yc
le
s)
	

#	 Thread	 Blocks	 Processed	

1	 warp/TB	 4	 warp/TB	

Figure 7. Effect of # warps per thread block on tI

σ1,ovhd

γ× N2

σ1(N2)

...

...

...

first iteration

last iteration

second iteration

third iteration

α(N2) × (T-1)
τ1(N2)

N1

N2

L = I iterations
α(N2) × (T-1)

τ(N2)
α(N2) × ⎣((L mod
(T × M))-1)/M⎦

E
xe

cu
tio

n
T

im
e

Number of Thread Blocks

σ(N2)

Figure 8. Execution Model Graph

relatively accurately measure the ratio of number of stored values
to the number of non-zeros by sampling only 1% of the matrix.

6.5 Autotuning Framework
Once a list of potential optimal blocking sizes has been created, we
can use the equations described in the previous sections to compute
the models for the different blocking sizes and thread block size R.
A flowchart showing the process is shown in Figure 9.

The framework is flexible as many of these parameters can be
fine-tuned to suit the needs of the application. For example, the size
of the list of potential blocking sizes can be controlled by tightening
the range of total data size allowed, and if certain thread block
sizes result in consistently poor performance numbers, those can
skipped.

6.6 Experimental Results
Dense matrix in sparse format. As partial validation of the
model, we compare the model predictions against measurements
for a dense matrix in BELLPACK format, shown in Figures 10–12.
These measurements are taken on two different GPUs with very
different hardware specs to verify that the functional form of the
model was not specifically tied to either one of the GPUs.

The model estimates the performance closely with average and
median error of 3.74% and 2.73% respectively, and maximum error
of 14.89% for the 1×2 kernel for R=32. The 3×3 kernel for
R=128 has higher average and median error of 13.56% and 2.95%
respectively, and maximum error of 61.41%. This higher value of
average error but low median error value for the 3×3 kernel is due
to a particular value of N having consistently large error (≥60%).

122

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

30	 90	 150	 210	 270	 330	 390	 450	 510	 570	 630	 690	 750	

Ex
ec
u&

on
	 T
im

e	
(m

s)
	

Number	 of	 Thread	 Blocks	

N=10	 Model	 N=10	 Measured	 N=50	 Model	

N=50	 Measured	 N=100	 Model	 N=100	 Measured	

0	

1	

2	

3	

4	

5	

30	 90	 150	 210	 270	 330	 390	 450	 510	 570	 630	 690	 750	

Ex
ec
u&

on
	 T
im

e	
(m

s)
	

Number	 of	 Thread	 Blocks	

N=100	 Model	 N=100	 Measured	 N=50	 Model	

N=50	 Measured	 N=10	 Model	 N=10	 Measured	

Figure 10. Comparison of model to real data for BELLPACK on T10

Start

read
matrix A

estimate
fill

more (r, c, R)
to model?

No

Yes

estimate
execution

time for (L,N)
 for all
models

find (r,c,R)
with smallest

execution
time

End

measure
σ1,o

measure
ΦM⋅R⋅r×c⋅β

measure
Φ

M⋅(T+1)⋅R⋅r×c⋅β

measure
ΦM⋅T⋅R⋅r×c⋅β

Figure 9. Autotuning Framework

Figure 11. Comparison of model to real data for BCSR on T10

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	
0.4	
0.45	

16	 32	 48	 64	 80	 96	 112	 128	 144	 160	 176	 192	 208	 224	 240	 256	 272	

Ex
ec
u&

on
	 T
im

e	
(m

s)
	

Number	 of	 Thread	 Blocks	

N=100	 Model	 N=100	 Measured	 N=50	 Model	

N=50	 Measured	 N=10	 Model	 N=10	 Measured	

Figure 12. Comparison of model to real data for BELLPACK on
C870

The same model was tested on a Tesla C870 also, which has a
different number of SM and hardware resources. Figure 12 shows
that the same performance model works across different hardware.
The average and median error rates were 2.18% and 2.06% respec-
tively, and the maximum error was 6.18%.

Tests on the matrix suite. The results obtained by autotuning as
compared to the best performance found by exhaustive search is
shown in Figure 13. Since BELLPACK is designed only for matri-
ces with dense block substructure, we evaluate only against those
8 matrices. Such structure can be quickly and easily detected [19].
Figure 13 shows that we find near-optimal block sizes in 5 of 8
cases, with the non-optimally tuned kernels achieving 86.5% of the
best performance numbers on average (median of 92.6%).

The autotuning was done over 1×2, 2×2, 2×3, 3×2, 3×3, 3×4,
4×4, 5×5, 6×6, 7×7, and 8×8 kernels, for R sizes of 32, 64, 128,
and 256 each, a total of 44 possible combinations. Some blocking
sizes such as 7×7 and 8×8 were eliminated by fill estimation for
most matrices, as they yielded extremely large data sizes.

An 86.5% average accuracy (92.6% median) relative to exhaus-
tive search leaves room for improvement. Nevertheless, even for the
worst mispredictions, the performance of the selected optimization
is still at least as fast as the best NVIDIA implementation.

6.7 Alternatives to our model-based approach
There are a number of other approaches. Exhaustive search is one
example. However, the relatively high cost of transforming the data
structure (e.g., up to 40 SpMVs [19]) rules out this technique for
use at run-time. A second example is a memory footprint mini-
mization heuristic. Since SpMV is memory bandwidth-bound and,
to first order, limited by the time to stream the matrix, one might

123

10.8
19.1 23.8 24.6 25.3

12.2
22.2

16.1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Dense
Protein

QCD

Cantilever

Spheres
Harbor

Ship

Wind Tunnel

Autotuned Exhaustive

Figure 13. Performance of the implementation found using our au-
totuning model, as a fraction of the performance of the implemen-
tation found by exhaustive search. The numerical values on each
bar indicate the Gflop/s of the autotuned implementation.

reasonably expect the optimal block size to be the one that min-
imizes the matrix data structure footprint. However, in our ex-
haustive search-based experiments, we found this heuristic to yield
mixed results. The main cause is is that this heuristic ignores the
actual kernel performance, since each data structure we consider
has an associated kernel computation, and that kernel performance
can vary widely and in unintuitive ways depending on register al-
location, alignment, and other issues.

7. Conclusions and Future Work
Our findings lend further support to the intuition that a memory
bandwidth-rich GPU platform can deliver excellent absolute per-
formance on SpMV, at least for the class of matrices with dense
block substructure, such as those arising in finite element method
applications. The absolute performance numbers we achieve are
among the best published thus far across a wide spectrum of single-
node multisocket multicore platforms, including prior GPU SpMV
results [2, 3] and the STI Cell Broadband Engine [21].

To make our BELLPACK-based SpMV practical, however, re-
quires a judicious choice of data structure tuning parameters, a
problem not addressed in prior GPU SpMV work. We contribute a
GPU-specific execution time model, inspired by the general CUDA
programming model, that can accurately predict suitable tuning pa-
rameters. The main limitation of our study is that we have thus far
only validated it with respect to our BELLPACK and BCSR SpMV
implementations on GPUs. However, as part of our on-going work,
we continue to validate and refine the model on additional kernels.
We believe that with the appropriate level of additional refinement,
we could provide insight into the performance of more general
GPU-like architectures, providing both a way to “tune” an archi-
tecture via modeling as well as providing an analytical modeling
tool for designing algorithms and their implementations.

Acknowledgments
This work was supported in part by the National Science Founda-
tion (NSF) under award number 0833136, NSF TeraGrid alloca-
tion CCR-090024, joint NSF 0903447 / Semiconductor Research
Corporation (SRC) Award 1981, and a grant from the Defense Ad-
vanced Research Projects Agency (DARPA). Any opinions, find-

ings and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect those of
NSF, SRC, or DARPA.

References
[1] NVIDIA CUDA (Compute Unified Device Architecture): Program-

ming Guide, Version 2.1, December 2008.
[2] Muthu Manikandan Baskaran and Rajesh Bordawekar. Optimizing

sparse matrix-vector multiplication on GPUs using compile-time and
run-time strategies. Technical Report RC24704 (W0812-047), IBM
T.J. Watson Research Center, Yorktown Heights, NY, USA, December
2008.

[3] Nathan Bell and Michael Garland. Efficient sparse matrix-vector
multiplication on CUDA. In Proc. ACM/IEEE Conf. Supercomputing
(SC), Portland, OR, USA, November 2009. (to appear).

[4] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder.
Sparse matrix solvers on the GPU: Conjugate gradients and
multigrid. In Proc. Special Interest Group on Graphics
Conf. (SIGGRAPH), San Diego, CA, USA, July 2003. doi:
http://dx.doi.org/10.1145/882262.882364.

[5] Matthias Christen and Olaf Schenk. Genera-purpose sparse matrix
building blocks using the NVIDIA CUDA technology platform.
In Proc. Workshop on General-Purpose Processing on Graphics
Processing Units (GPGPU), Boston, MA, USA, October 2007.

[6] Eduardo F. D’Azevedo, Mark R. Fahey, and Richard T. Mills.
Vectorized sparse matrix multiply for compressed row storage. In
Proc. Int’l. Conf. Computational Science (ICCS), volume 3514/2005
of LNCS, pages 99–106. Springer Berlin / Heidelberg, 2005. doi:
http://dx.doi.org/10.1007/11428831 13.

[7] James Demmel, Jack Dongarra, Viktor Eijkhout, Erika Fuentes,
Antoine Petitet, Richard Vuduc, R. Clint Whaley, and Kather-
ine Yelick. Self-adapting linear algebra algorithms and soft-
ware. Proc. IEEE, 93(2):293–312, February 2005. doi:
http://dx.doi.org/10.1109/JPROC.2004.840848.

[8] Michael Garland. Sparse matrix computations on many-
core GPUs. In Proc. ACM/IEEE Design Automation
Conf. (DAC), pages 2–6, Anaheim, CA, USA, 2008. doi:
http://dx.doi.org/10.1145/1391469.1391473.

[9] Roman Geus and Stefan Röllin. Towards a fast sparse symmetric
matrix-vector multiplication. Parallel Computing, 27(7):883–896,
June 2001. doi: http://dx.doi.org/10.1016/S0167-8191(01)00073-4.

[10] Sunpyo Hong and Hyesoon Kim. An analytical model for
a GPU architecture with memory-level and thread-level paral-
lelism awareness. In Proc. ACM Int’l. Symp. Comp. Arch.
(ISCA), pages 152–163, Austin, TX, USA, June 2009. doi:
http://dx.doi.org/10.1145/1555815.1555775.

[11] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. SPARSITY:
Optimization framework for sparse matrix kernels. Int’l J. of High
Performance Computing Applications (IJHPCA), 18(1):135–158,
February 2004. doi: http://dx.doi.org/10.1177/1094342004041296.

[12] Hiroshi Okuda, Kengo Nakajima, Mikio Iizuka, Li Chen, and Hisashi
Nakamura. Parallel finite element analysis platform for the Earth
Simulator: GeoFEM. In Proc. Int’l. Conf. Computational Science
(ICCS), volume 2659 of LNCS, pages 773–780. Springer, 2003. doi:
http://dx.doi.org/10.1007/3-540-44863-2 75.

[13] Ali Pinar and Michael T. Heath. Improving performance
of sparse matrix-vector multiplication. In Proc. ACM/IEEE
Conf. Supercomputing (SC), Portland, OR, USA, 1999. doi:
http://dx.doi.org/10.1145/331532.331562.

[14] John R. Rice and Ronald F. Boisvert. Solving elliptic problems using
ELLPACK. Springer Verlag, 1984.

[15] Yousef Saad. SPARSKIT: A basic tool kit
for sparse matrix computations, version 2.
http://www-users.cs.umn.edu/ saad/software/SPARSKIT
/sparskit.html, March 2005.

[16] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D.
Owens. Scan primitives for GPU computing. In Proc. ACM

124

SIGGRAPH/EUROGRAPHICS Symp. Graphics Hardware, San
Diego, CA, USA, 2007.

[17] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In Proc. ACM/IEEE Conf. on Supercomputing
(SC), Austin, TX, USA, November 2008.

[18] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A
library of automatically tuned sparse matrix kernels. In Proc. SciDAC,
J. Phys.: Conf. Series, volume 16, pages 521–530, 2005. doi:
http://dx.doi.org/10.1088/1742-6596/16/1/071.

[19] Richard W. Vuduc. Automatic performance tuning of sparse matrix
kernels. PhD thesis, University of California, Berkeley, CA, USA,
January 2004.

[20] Richard W. Vuduc and Hyun-Jin Moon. Fast sparse matrix-vector
multiplication by exploiting variable block structure. In Proc. High-
Performance Computing and Communications Conf., volume LNCS
3726/2005, pages 807–816, Sorrento, Italy, September 2005. Springer.
doi: http://dx.doi.org/10.1007/11557654 91.

[21] Sam Williams, Richard Vuduc, Leonid Oliker, John Shalf,
Katherine Yelick, and James Demmel. Optimizing sparse
matrix-vector multiply on emerging multicore platforms. Jour-
nal of Parallel Computing, 35(3):178–194, March 2009. doi:
http://dx.doi.org/10.1016/j.parco.2008.12.006.

[22] Kamen Yotov, Xiaoming Li, Gang Ren, Marı́a Jesús Garzarán, David
Padua, Keshav Pingali, and Paul Stodghill. Is search really necessary
to generate high-performance BLAS? Proc. IEEE, 93(2):358–386,
February 2005. doi: http://dx.doi.org/10.1109/JPROC.2004.840444.

125

