On Optimizing Distributed Non-Negative Tucker Decomposition

Venkatesan ChakaravarthyShivmaran S PandianSaurabh RajeYogish Sabharwal

IBM Research - India

Presented by Jee Whan Choi University of Oregon

Tensors & Tucker Decomposition

Applications

- Data compression especially for dense tensors
 - Core much smaller compared to input tensor
- Analysis similar to SVD for matrices
 - Principal component analysis, clustering, similarity and anomaly detection

- Features → Top-K1 topics
- Compare and cluster pages based on the features

Non-negative Tucker Decomposition (NTD)

- Generalizes classical non-negative matrix factorization to higher dimensions
- Input tensor is non-negative.
- Imposes constraint that core tensor and factor matrices be non-negative.
- Direct interpretability of the decompositions

- Features are topics
- Entries are non-negative
- Entries can be interpreted as weights (importance) of the features to the page p1

Hidden topic identification

For each feature

- Identify top weight pages
- Analyze them to get the "topic" represented by the page.

For each page

- Identity top weight features
- These are topics relevant to the page

Prior Work

Tucker Decomposition

- HOSVD, ST-HOSVD and HOOI procedures
- Sequential, parallel and distributed settings
- Dense [ABK 16, BK 07, CCJ+ 17, KS 08]
- Sparse [BMVL 12, CCJ+ 18, KU 16]

CP Decomposition

- Special case of Tucker decomposition where core is diagonal
- Sequential, parallel and distributed settings : [KPA+ 16, KKU 16, KU 15, SK 15, SK 16, SK 17]

Non-negative Tensor Decomposition

- Non-negative matrix and tensor factorizations well-studied Cichocki, R. Zdunek, A. Phan, and S. Amari. Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. John Wiley & Sons, 2009
- Non-negative CP decomposition
 - Distributed/Parallel implementation- [BHK 18]

Goal & Shoulders

Goal

• Develop an efficient distributed Non-negative Tucker decomposition for sparse tensors

MU-NTD Procedure

- Based on a procedure of [Mørup, Hansen, Arnfred. Neural computation, 2008]
- Generalizes a classical procedure for non-negative matrix factorization [Lee & Seung. Nature, 1999]
- Given an NTD, produces a refined NTD with lesser error
 - Gradient descent
 - Multiplicative weight update strategy.
 - Alternative least squares paradigm
- Applied iteratively to obtain a local minima

HOOI Procedure

- A method based on element-wise Kronecker products [Kaya & Ucar, ICPP, 2016]
- Compressed sparse fiber (CSF) [Smith & Karypis, Euro-Par, 2017]
 - Tree-based representation of sparse tensors
 - Shares common computations across elements
 - Optimizes and reduces the computational load.

Our Contributions

• First distributed implementation for non-negative Tucker decomposition of sparse tensors

KronBU

- Processes CSF-trees in bottom-up manner
- Via Kronecker products
- Incorporates known optimizations from HOOI
- Serves as baseline

CoreTD

- New operation called core contraction
- Unique to MU-NTD
- Processes CSF-trees in top-down manner

Hybrid procedure

- Contrasting traversals lead to tradeoffs in computational load
- Utilizes both Kronecker products and core contraction operations
- Processes CSF-trees simultaneously bottom-up and top-down
- Significant reduction in load and execution time

KronBU algorithm

CoreTD algorithm

Hybrid approach

Our Contributions

Distributed Implementation

- Efficient distributed implementation based on above procedures.
- Distribution policy
 - Lite [CCJ+ 18] developed for HOOI works well for our setting as well.

Experimental evaluation

Tensors

- Large real-life sparse tensors
- From FROSTT repository.

System

• 32 to 512 MPI ranks

Performance

- CoreTD outperforms baseline KronBU
- Hybrid offers overall 4x gain over baseline

Scaling:

- 12x speedup
- Ideal 16 x

Memory and Pre-processing Time

- KronBU and CoreTD use N CSF-trees one along each mode
- Hybrid uses a single tree
- Hybrid reduces memory and time for CSF-tree construction

MU-NTD Procedure – ALS Paradigm

F3

MU-NTD Procedure – Updating F1

Current:
$$T \approx G \times F_1 \times F_2 \times F_3 = R$$

Multiplicative weight update – gradient descent Generalized from NMF

Fnr – KronBU Algorithm

$$Fnr = T \cdot P^{T}$$
$$= T \cdot (G \times F_{2} \times F_{3})^{T}$$

 $\overrightarrow{Reformulation}$ $Fnr = (T \times F_2^T \times F_3^T) \cdot G^T$

F3

L3 x K3

TTM Chain Z
$$Z = T \times F_2^T \times F_3^T$$

- TTM Chain Z occurs in HOOI procedure
 - Element-wise Kronecker product [KU '16]
 - CSF-tree based optimization [SK '17]

Element-wise Kronecker Product

Т	c1	c2	c3		F1	
e1	1	1	2	1		
e2	2	2	3	2		1
e3	1	1	1	3	1.1 1/1	L3 2
e4	2	2	4		LIXKI	3
e5	3	1	3		F2	4
				1		
Z = L1 x (K2 K3))	2		
					L2 x K2	

Action of element e

$$Z[c_1(e)] += F_2[c_2(e)] \otimes F_3[c_3(e)]$$

Fnr – KronBU Algorithm

KronBU Algorithm – Compressed Sparse Fiber (CSF) Trees

Alternative CSF-trees

Mode Ordering

Load Analysis

- Kronecker product expands output
 - $v_3 \leftarrow (v_1 \otimes v_2)$
 - $l_1 \otimes l_2 \rightarrow (l_1 \cdot l_2)$
- N! trees are possible
- Exhaustive search

Ideal greedy ordering [SK 17] : Sort by increasing order of length

Mode Placement Constraint

- Factor matrices get computed along each mode F1, F2, ..., F_N
- The output gets produced at the top
 - Mode n under consideration must be placed at the top.
 - Assuming L1 < L2 < L3 < L4

Longer modes \rightarrow More load

- Along the long mode, high fan-in
- More nodes at the top

	Mode	Length	KronBU
Elickr	1	731	6.1
Load	2	319 K	9.3
GFLOPS	3	1.6 M	29
	4	28 M	313

Top-Down Approach – CoreTD Algorithm

$$Fnr = T \cdot (G \times F_2 \times F_3)^T$$

• Directly evaluate Fnr

Element-wise Core Contraction

$$F_1[c_1(e)] += G \times F_2[c_2(e)] \times F_3[c_3(e)]$$

•
$$G = K_1 \times K_2 \times K_3$$

• $G \times F_2[c_2(e)] = K_1 \times K_2$

 $\cdot G^T$

• $G \times F_3[c_3(e)] = K_1$

3

TTM Chain Z

Reformulation

 $Fnr = (T \times F_2^T \times F_2^T)$

CoreTD Algorithm – CSF-trees

- **Top-down process** •
- Output gets generated at the leaf level
- Mode under processing must be placed at the bottom ٠

Т	c1	c2	c3
e1	1	1	2
e2	2	2	3
e3	1	1	1
e4	2	2	4
e5	3	1	1

Mode Placement Constraints

- All trees have same load pattern
- Mode n must be placed at ٠ bottom or top

Hybrid Algorithm

Element-wise contribution

• Combines Kronecker product and core contraction. $F_1[c_1(e)] \otimes F_2[c_2(e)]$ •

Meet in the Middle

- No mode placement constraints
- Any tree can be used along any mode
- Ideal greedy ordering for all modes

Flickr – Load (GFLOPS)

Mode	Length	KronBU	CoreTD	Hybrid
1	731	6.1	28	6.1
2	319 K	9.3	22	6.1
3	1.6 M	29	6.5	6.1
4	28 M	313	6.1	6.1
Total	-	357.4	62.6	24.4

Kronecker product

Core contraction

 $G \times F_4[c_4(e)] \times F_5[c_5(e)]$

Distributed Implementation – Distribution Policy

- Elements are distributed among the processors
- Distribution policy is critical

Load Balance:

- Processor should receive an equal number of elements
- Load imbalance = max-load / avg-load
- **Distributional Redundancy**
- Processors build local trees
- Aggregate load / sequential load

• Lite [CCJ +18] : designed for HOOI has good performance for us as well

Experimental Evaluation

- R92 cluster 2 to 32 nodes.
- 16 MPI ranks per node, each mapped to a core. So, 32 to 512 MPI ranks
- Dataset : FROSTT repository

Tensor	L_1	L_2	L_3	L_4	nnz
delicious	532K	17.2M	2.4M	1.4K	140M
enron	6K	5K	244K	1K	54M
flickr	319K	28M	1.6M	731	112M
nell1	2.9M	2.1M	25.4M	-	143M
nell2	12K	9K	28K		77M

Comparison of Algorithms

- 32 ranks
- Up to 4x improvement over baseline KronBU

Computational Load

Evaluation of Distribution Policy

• Optimal value for both = 1

	Re	edundan	cy	Load imbalance		
-	32	128	512	32	128	512
delicious	1.00	1.00	1.00	1.03	1.08	1.19
flickr	1.00	1.00	1.00	1.03	1.08	1.27
nell1	1.00	1.00	1.00	1.01	1.01	1.03
enron	1.01	1.02	1.06	1.06	1.15	1.36
nell2	1.00	1.00	1.00	1.01	1.01	1.02

Tree Construction Time

- KronBU and CoreTD N trees one along each mode
- Hybrid a single tree

Strong Scaling (for Hybrid)

- Speedup from 32 to 512 ranks
- Ideal speedup = 16x

NTD Speedup

FNR Speedup

• Factor matrix transfer time – does not scale

Conclusions

- First distributed implementation of non-negative Tucker decomposition
- Based on MU-NTD procedure
- Hybrid algorithm

Future Work

- Improve factor matrix transfer \rightarrow better overall scaling
- Other NTD procedures