
Optimizing Tensor Decomposition on HPC
Systems – Challenges and Approaches

Jee Whan Choi
Dept. of Computer and Information Science

University of Oregon

IPDPS HIPS 2019
May 20th 2019, Rio de Janeiro, Brazil

Two popular tensor decomposition algorithms

X ≈ GU(1) U(2)

U(3)

R3

R2R1

X ≈ + ���+ +

Canonical Polyadic (CP)

Tucker

R

2

Why tensor decomposition (TD)?

• Natural way of representing data with multi-way relationship
– Social networks, healthcare records, product reviews, and more

• Latent variable modeling
– Hidden Markov Model
– Mixture of Gaussian
– Latent Dirichlet Allocation (LDA)

Tensor decomposition is analogous to SVD

4

Netflix movie
ratings

movies

users

Netflix movie
ratings

movies

users

⇡

movies

users

Tensor decomposition is analogous to SVD

5

6

Netflix movie
ratings

movies

users

⇡

movies

users

Aladdin (1992) Jane

Tensor decomposition is analogous to SVD

Estimating the “score” is as simple as taking the dot product

• Let’s say movies only have two “latent” properties – action and
romance

7 9Aladdin (2019)

7

0

Action Romance

Jane
Action

Romance

49 Estimated score

7

Why tensor decomposition?

• Pros
– Matrix factorization is not unique whereas tensor decomposition is

unique (given some conditions)
– Retains the multi-way relationship that is typically lost when

formulated as a matrix problem

• Cons
– Determining the rank is NP-hard
– Thinking in higher dimensions is difficult

8

Applications of tensor decomposition

• Signal processing
– Signal separation, code division

• Data analysis
– Phenotyping (electronic health record), network analysis, data

compression
• Machine learning
– Latent variable model (natural language processing, topic modeling,

recommender systems, etc.)
– Neural network compression

9

My prior work has covered both dense and sparse
data for CP and Tucker

• Sparse tensors
– Blocking sparse tensors on shared- and distributed-memory systems

for CPD
– Workload balancing for sparse Tucker on distributed-memory

systems

• Dense tensors
– Using GPUs to accelerate dense Tucker algorithms
– Workload balancing for dense Tucker on distributed-memory systems

10

In 2015, HPC research in sparse TD focused on flops

• Naïve kernel
• Regular: 3 * m * R flops (2mR for initial product + scale, mR for accumulation)

• CSF
• 2R(m + P) flops, P is # of non-empty fibers
• typically p <<< m

• DFacTo
• Formulates kernel as SpMV
• Each column is computed independently via 2 SpMV
• 2R(m + P) flops

• GigaTensor
• MapReduce
• Increased parallelism, but more flops
• 5mR flops

m = # of non-zeros
P = # of non-empty fibers
R = rank

11

Does this make sense for sparse data?

• Sparse computations are generally memory bandwidth-bound
• So, why was CSF, DFacto giving better performance?

12

• Let’s calculate the # of flops and # of bytes and compare
• Flops: W = 2R(m + P)
• Data: Q = 2m (value + mode-2 index) + 2P (mode-3 index + mode-

3 pointer)
+ (1-ɑ)Rm (mode-2 factor) + (1-ɑ)RP (mode-3 factor)

• Arithmetic Intensity
• Ratio of work to communication I = W/Q
• I = W / (Q * 8 Bytes) = R / (8 + 4R(1-ɑ))

13

Roofline model applied to CSF MTTKRP

0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048
Rank

Perfect cache hit

Cache hit = 0.99

Cache hit = 0.95

Arithmetic intensity vs. system balance (on the latest CPU)
Arithmetic
Intensity

14

15

0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048
Rank

Perfect cache hit

Cache hit = 0.99

Cache hit = 0.95

Arithmetic intensity vs. system balance (on the latest CPU)
Arithmetic
Intensity

System balance –
22-core CPU

• Pressure point analysis
– Probe potential bottlenecks by creating and eliminating

instructions/data access
– If we suspect that # of registers is the bottleneck, try

increasing/decreasing their usage to see if the exec. time changes.
– Source code & assembly instrumentation – e.g., inline assembly to

prevent dead code elimination (DCE)

16
Kenneth Czechowski, Performance Analysis Using the Pressure Point Analysis, PhD dissertation

Pressure point analysis (PPA) reveals the bottlenecks

17

We start from the baseline implementation

Time Pressure point

2.6s Baseline (2R(m + P) flops)

18

Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R flops)

Increasing flops
only changes time
by < 2%

Using COO instead of CSF only increases exec. time by < 2%

19

Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R flops)

2.43s Access to C removed
Removing per-fiber
access to matrix C has
a bigger impact than
increasing flops

Removing access to C (accessed once per fiber):
exec. time down by 7%

20

Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R flops)

2.43s Access to C removed

1.81s Access to B limited to L1 cache Limiting our
suspect has a
huge impact

Suspicion confirmed: memory access to B is the bottleneck

21

Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R flops)

2.43s Access to C removed

1.81s Access to B limited to L1 cache

1.63s Access to B removed completely

Eliminating it
completely gives
us an extra 6%
boost

Completely removing it give us an extra 6% - why?

• Flops aren’t the issue
• Bottlenecks

1. Data access to factor matrix B (and not the tensor e.g., SpMV)

2. Load instructions (why previous attempt at cache blocking was not
successful)

22

Conclusions from our empirical analysis

• Flops aren’t the issue
• Bottlenecks

1. Data access to factor matrix B (and not the tensor) → cache blocking

2. Load instructions (why previous attempt at cache blocking was not
successful) → register blocking

23

Conclusions from our empirical analysis

• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

• Rank blocking

24

X1A1

B1

C1

We use n-D blocking (intuitive) and rank blocking (less intuitive)

Make sure
this fits in the
LLC

• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

• Rank blocking
– Agnostic to tensor sparsity
– Very little change to the code
– Requires tensor replication

25

Make sure
this fits in the
LLC

We use n-D blocking (intuitive) and rank blocking (less intuitive)

Increase the
chance of
finding rows
in cache

26

• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

• Rank blocking
– Agnostic to tensor sparsity
– Very little change to the code
– Requires tensor replication

• Multi-dimensional + rank blocking
– Partial replication
– “Best of both worlds” re-use
– Even more repeated accesses to tensor/factor

We can combine n-D blocking with rank blocking

For small tensors, blocking becomes more effective at higher rank sizes

27

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256 512 1024
Sp
ee
du

p
Rank

SPLATT MB RankB MB	+	RankB• With small dimension
sizes, there is already
good cache re-use
without explicit blocking
• Only when rank size is

large enough, do we see
significant benefit from
blocking

NELL-2

For large tensors, blocking becomes less effective at higher ranks

28

• With large dimension
sizes and large ranks,
data sets are so big large
number of blocks are
required, and the
overhead of blocking
outweighs the benefit

Amazon

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256 512 1024
Sp
ee
du

p
Rank

SPLATT MB RankB MB	+	RankB

More potential benefit from blocking with real data sets

29

• Real data sets have
clustering patterns which
lead to higher speedups
from blocking
• Combining rank blocking

with n-D blocking yields
the highest speedup

Reddit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

16 32 64 128 256 512 1024

Sp
ee
du

p

Rank

SPLATT MB RankB MB	+	RankB

Rank blocking on distributed systems

30

• Scalability problems with traditional partitioning
• Fewer non-zero per node→ lower efficiency & higher comm. cost → poor scalability

• Rank blocking
• No comm. between processor sets
• Tensor replication P/4

nodes
P/4

nodes
P/4

nodes
P/4

nodes

Higher Order Orthogonal Iteration (HOOI) Tucker algorithm

X 𝐵" 𝐶"X X SVD𝑀%

X 𝐴" 𝐶"X X SVD B−𝑛𝑒𝑤𝑀+

X 𝐴" 𝐵"X X SVD C−𝑛𝑒𝑤𝑀,

Matricize Singular Vectors

𝑅%𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑅+𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑅,𝑣𝑒𝑐𝑡𝑜𝑟𝑠

A−𝑛𝑒𝑤

Alternating least squares (ALS)

31

Sparse HOOI – key kernels

• TTM
• Computation only - all schemes have same computational load (i.e., FLOPs)
• Load balance

• SVD
• Both computation and communication
• Both computational load and communication volume are determined by load balance

• Factor Matrix Transfer (FMT)
• Communication only
• At the end of each HOOI invocation, factor matrix rows need to be communicated among

processors for the next invocation
• Communication volume

32

Prior schemes for tensor distribution compared

• Coarse - Coarse grained schemes [KU’16]
• Allocate entire “slices” to processors

• Medium - Medium grained scheme [SK ‘16]
• Grid based partitioning – similar to block partitioning of matrices

• Fine - Fine grained scheme [KU’16]
• Allocate individual elements using hypergraph partitioning methods

TTM SVD FMT Dist. Time

Coarse Inefficient Efficient Inefficient Fast

Medium Efficient Inefficient Efficient Fast

Fine Efficient Inefficient Efficient Slow

33

Our scheme – lite distribution – achieves better workload
distribution

• Lite
– Near optimal on TTM and SVD (both computation and communication)
– Lightweight (i.e., fast distribution time)
– Not optimal on FMT (but this is cheap)
– Performance gain up to 3×

34

Example – sequential sparse TTM for mode 1

T 𝐵" 𝐶"X X SVD A-new𝑀1

Penultimate
matrix

Kronecker product between
factor matrix rows

3

1
2

(1, -, -)e1
(2, -, -)e2
(1, -, -)e3
(3, -, -)e4
(3, -, -)e5
(1, -, -)e6
(2, -, -)e7
(3, -, -)e8

Penultimate Matrix M1

6𝐾%

L1

35

Example – distributed sparse TTM for mode 1

Local copy

1

2

3

(1, -, -)e1
(2, -, -)e2
(1, -, -)e3

1

2

3

(3, -, -)e4
(3, -, -)e5
(1, -, -)e6

1

2

3

(2, -, -)e7
(3, -, -)e8

Proc 1

Proc 2

Proc 3

Local copy

Local copy

3

1
2

Penultimate Matrix M

36

Example – SVD via the Lanczos method

Local copy

1
2
3

e1
e2

(1, -, -)
(2, -, -)
(1, -, -)e3

1
2
3

e4
e5

(3, -, -)
(3, -, -)
(1, -, -)e6

1
2
3

e7 (2, -, -)
(3, -, -)e8

Proc 1

Proc 2

Proc 3

Local copy

Local copy 1
2
3

1
2
3

1
2
3

=

=

=

1
2
3

𝑥9:;
P 1
P 3
P 2

x

x

x

Owners

37

TTM
• TTM-LImb (Load Imbalance)

• Max number of elements assigned to the processors
• Optimal value – E / P

SVD
• SVD-Redundancy

• Total number of times slices are “shared”
• Measures computational load & comm. volume
• Optimal value = L (length along the mode, no sharing)

• SVD-LImb:
• Max number of slices shared by the processors
• Optimal value = L / P

Factor Matrix Transfer
• Communication volume at each iteration

Performance metrics (along each mode)

Local copy

1

2

3

(1, -, -)e1
(2, -, -)e2
(1, -, -)e3

1

2

3

(3, -, -)e4
(3, -, -)e5
(1, -, -)e6

1

2

3

(2, -, -)e7
(3, -, -)e8

Proc 1

Proc 2

Proc 3

𝑍%%

𝑍%+

𝑍%,Local copy

Local copy

38

Lite distribution scheme is simple

39

How does our scheme fare?

• TTM-LImb <= E / P (optimal)
• SVD-Redundancy <= L + P (optimal = L)
• SVD-LImb <= L/P + 2 (optimal = L/P)

• Achieve near optimal
• TTM computational load
• SVD computational load, load balance
• SVD communication volume

• Only issue is high factor matrix transfer
volume
• Computation dominates

40

Experimental evaluation

• R92 cluster – 2 to 32 nodes.
• 16 MPI ranks per node, each mapped to a core. (32 - 512 MPI ranks)
• Dataset : FROSTT repository (frostt.io)

41

Execution time

Speedup
Coarse – 12× Medium – 4.5× Hyper – 4. 𝟏× Best Prior – 3×

42

Breakdown – Flickr @ rank = 512 & K = 10

43

Comparison of the Performance Metrics

TTM Load Imbalance
(TTM-Limb)

SVD Load
(SVD-Redundancy)

SVD Load Imbalance
(SVD-Limb)

44

Strong Scaling Results (32 – 512 ranks)

45

Tensor Distribution Time

46

Challenges and possible solutions

• Data locality (both shared and distributed) is important in
performance of TD algorithms
– However, due to the diversity of the kernels, there is no single solution
– High dimensionality makes everything more difficult

• Ideally
– Finding the right programming model/abstraction for capturing data

distribution (shared and distributed) and its impact on performance
– Domain-specific language/compiler to overcome tensor-specific

bottlenecks
– Optimized libraries

47

Future work

• Future work
– Efficient data structures for sparse tensors
– Modeling the sparsity
– Near-memory processing architectures for tensor computation
– Energy efficiency (on mobile devices)

48

Reference
• [1] Jee W. Choi, Xing Liu, Shaden Smith, Tyler Simon, Blocking Optimization Techniques for Sparse

Tensor Computation. 32nd IEEE International Parallel and Distributed Processing Symposium
(IPDPS’18).

• [2] Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Prakash Murali, Yogish Sabharwal, S.
Shivmaran, Dheeraj Sreedhar, On Optimizing Distributed Tucker Decomposition for Sparse Tensors.
The 32nd ACM International Conference on Supercomputing (ICS’18).

• [3] Jee W. Choi, Xing Liu, Venkatesan T. Chakaravarthy, High-performance Dense Tucker
Decomposition on GPU Clusters. The International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC’18).

• [4] Venkatesan T. Chakaravarthy, Jee W. Choi, Xing Liu, Douglas J. Joseph, Prakash Murali, Yogish
Sabharwal, Dheeraj Sreedhar, On Optimizing Distributed Tucker Decomposition for Dense Tensors.
31st IEEE International Parallel and Distributed Processing Symposium (IPDPS’17).

