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Two popular tensor decomposition algorithms
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Why tensor decomposition (TD)?

• Natural way of representing data with multi-way relationship
– Social networks, healthcare records, product reviews, and more

• Latent variable modeling 
– Hidden Markov Model
– Mixture of Gaussian
– Latent Dirichlet Allocation (LDA)



Tensor decomposition is analogous to SVD
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Estimating the “score” is as simple as taking the dot product

• Let’s say movies only have two “latent” properties – action and 
romance

7 9Aladdin (2019)
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Why tensor decomposition?

• Pros
– Matrix factorization is not unique whereas tensor decomposition is 

unique (given some conditions)
– Retains the multi-way relationship that is typically lost when 

formulated as a matrix problem

• Cons
– Determining the rank is NP-hard
– Thinking in higher dimensions is difficult
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Applications of tensor decomposition

• Signal processing
– Signal separation, code division

• Data analysis
– Phenotyping (electronic health record), network analysis, data 

compression
• Machine learning
– Latent variable model (natural language processing, topic modeling, 

recommender systems, etc.)
– Neural network compression
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My prior work has covered both dense and sparse 
data for CP and Tucker

• Sparse tensors
– Blocking sparse tensors on shared- and distributed-memory systems 

for CPD
– Workload balancing for sparse Tucker on distributed-memory 

systems

• Dense tensors
– Using GPUs to accelerate dense Tucker algorithms
– Workload balancing for dense Tucker on distributed-memory systems
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In 2015, HPC research in sparse TD focused on flops 

• Naïve kernel
• Regular: 3 * m * R flops (2mR for initial product + scale, mR for accumulation) 

• CSF
• 2R(m + P) flops, P is # of non-empty fibers
• typically p <<< m

• DFacTo
• Formulates kernel as SpMV
• Each column is computed independently via 2 SpMV
• 2R(m + P) flops

• GigaTensor
• MapReduce
• Increased parallelism, but more flops
• 5mR flops

m = # of non-zeros
P = # of non-empty fibers
R = rank
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Does this make sense for sparse data?

• Sparse computations are generally memory bandwidth-bound
• So, why was CSF, DFacto giving better performance?
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• Let’s calculate the # of flops and # of bytes and compare
• Flops: W = 2R(m + P)
• Data: Q = 2m (value + mode-2 index) + 2P (mode-3 index + mode-

3 pointer)
+ (1-ɑ)Rm (mode-2 factor) + (1-ɑ)RP (mode-3 factor)

• Arithmetic Intensity 
• Ratio of work to communication I = W/Q
• I = W / (Q * 8 Bytes) = R / (8 + 4R(1-ɑ))
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• Pressure point analysis
– Probe potential bottlenecks by creating and eliminating 

instructions/data access
– If we suspect that # of registers is the bottleneck, try 

increasing/decreasing their usage to see if the exec. time changes.
– Source code & assembly instrumentation – e.g., inline assembly to 

prevent dead code elimination (DCE)
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Pressure point analysis (PPA) reveals the bottlenecks
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We start from the baseline implementation

Time Pressure point

2.6s Baseline (2R(m + P) flops)
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Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

Increasing flops
only changes time
by < 2%

Using COO instead of CSF only increases exec. time by < 2%
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Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 
Removing per-fiber 
access to matrix C has 
a bigger impact than 
increasing flops

Removing access to C (accessed once per fiber):
exec. time down by 7%
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Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 

1.81s Access to B limited to L1 cache Limiting our 
suspect has a 
huge impact

Suspicion confirmed: memory access to B is the bottleneck
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Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 

1.81s Access to B limited to L1 cache

1.63s Access to B removed completely

Eliminating it
completely gives
us an extra 6%
boost

Completely removing it give us an extra 6% - why?



• Flops aren’t the issue
• Bottlenecks

1. Data access to factor matrix B (and not the tensor e.g., SpMV)

2. Load instructions (why previous attempt at cache blocking was not 
successful)
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Conclusions from our empirical analysis



• Flops aren’t the issue
• Bottlenecks

1. Data access to factor matrix B (and not the tensor) → cache blocking

2. Load instructions (why previous attempt at cache blocking was not 
successful) → register blocking
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Conclusions from our empirical analysis



• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

• Rank blocking
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• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

• Rank blocking
– Agnostic to tensor sparsity
– Very little change to the code
– Requires tensor replication

25

Make sure
this fits in the 
LLC

We use n-D blocking (intuitive) and rank blocking (less intuitive)

Increase the
chance of
finding rows
in cache



26

• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

• Rank blocking
– Agnostic to tensor sparsity
– Very little change to the code
– Requires tensor replication

• Multi-dimensional + rank blocking
– Partial replication
– “Best of both worlds” re-use
– Even more repeated accesses to tensor/factor

We can combine n-D blocking with rank blocking



For small tensors, blocking becomes more effective at higher rank sizes 
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For large tensors, blocking becomes less effective at higher ranks
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• With large dimension 
sizes and large ranks, 
data sets are so big large 
number of blocks are 
required, and the 
overhead of blocking 
outweighs the benefit
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More potential benefit from blocking with real data sets
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• Real data sets have 
clustering patterns which 
lead to higher speedups 
from blocking
• Combining rank blocking 

with n-D blocking yields 
the highest speedup

Reddit
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Rank blocking on distributed systems
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• Scalability problems with traditional partitioning
• Fewer non-zero per node→ lower efficiency & higher comm. cost → poor scalability

• Rank blocking
• No comm. between processor sets
• Tensor replication P/4 
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Higher Order Orthogonal Iteration (HOOI) Tucker algorithm

X 𝐵" 𝐶"X X SVD𝑀%

X 𝐴" 𝐶"X X SVD B−𝑛𝑒𝑤𝑀+

X 𝐴" 𝐵"X X SVD C−𝑛𝑒𝑤𝑀,

Matricize Singular Vectors

𝑅%𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑅+𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑅,𝑣𝑒𝑐𝑡𝑜𝑟𝑠

A−𝑛𝑒𝑤

Alternating least squares (ALS)
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Sparse HOOI – key kernels

• TTM
• Computation only - all schemes have same computational load (i.e., FLOPs)
• Load balance

• SVD
• Both computation and communication
• Both computational load and communication volume are determined by load balance

• Factor Matrix Transfer (FMT)
• Communication only
• At the end of each HOOI invocation, factor matrix rows need to be communicated among 

processors for the next invocation
• Communication volume
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Prior schemes for tensor distribution compared

• Coarse - Coarse grained schemes [KU’16]
• Allocate entire “slices” to processors

• Medium - Medium grained scheme  [SK ‘16]
• Grid based partitioning – similar to block partitioning of matrices

• Fine - Fine grained scheme [KU’16]
• Allocate individual elements using hypergraph partitioning methods

TTM SVD FMT Dist. Time

Coarse Inefficient Efficient Inefficient Fast

Medium Efficient Inefficient Efficient Fast

Fine Efficient Inefficient Efficient Slow
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Our scheme – lite distribution – achieves better workload 
distribution

• Lite
– Near optimal on TTM and SVD (both computation and communication)
– Lightweight (i.e., fast distribution time)
– Not optimal on FMT (but this is cheap)
– Performance gain up to 3×
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Example – sequential sparse TTM for mode 1

T 𝐵" 𝐶"X X SVD A-new𝑀1

Penultimate
matrix

Kronecker product between 
factor matrix rows
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(1, -, -)e1
(2, -, -)e2
(1, -, -)e3
(3, -, -)e4
(3, -, -)e5
(1, -, -)e6
(2, -, -)e7
(3, -, -)e8

Penultimate Matrix M1

6𝐾%

L1
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Example – distributed sparse TTM for mode 1

Local copy
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Proc 1

Proc 2

Proc 3

Local copy

Local copy
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36



Example – SVD via the Lanczos method

Local copy
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TTM
• TTM-LImb (Load Imbalance)

• Max number of elements assigned to the processors
• Optimal value – E / P 

SVD
• SVD-Redundancy

• Total number of times slices are “shared”
• Measures computational load & comm. volume
• Optimal value = L (length along the mode, no sharing)

• SVD-LImb: 
• Max number of slices shared by the processors
• Optimal value = L / P

Factor Matrix Transfer
• Communication volume at each iteration

Performance metrics (along each mode)

Local copy

1

2

3

(1, -, -)e1
(2, -, -)e2
(1, -, -)e3

1

2
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(3, -, -)e4
(3, -, -)e5
(1, -, -)e6

1
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(2, -, -)e7
(3, -, -)e8

Proc 1

Proc 2

Proc 3

𝑍%%

𝑍%+

𝑍%,Local copy

Local copy
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Lite distribution scheme is simple
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How does our scheme fare?

• TTM-LImb <= E / P (optimal)
• SVD-Redundancy <= L + P (optimal = L)
• SVD-LImb <= L/P + 2 (optimal = L/P)

• Achieve near optimal 
• TTM computational load
• SVD computational load, load balance 
• SVD communication volume

• Only issue is high factor matrix transfer 
volume
• Computation dominates
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Experimental evaluation

• R92 cluster – 2 to 32 nodes. 
• 16 MPI ranks per node, each mapped to a core. (32 - 512 MPI ranks)
• Dataset : FROSTT repository (frostt.io)
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Execution time

Speedup
Coarse – 12× Medium – 4.5× Hyper – 4. 𝟏× Best Prior – 3×
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Breakdown – Flickr @ rank = 512 & K = 10 
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Comparison of the Performance Metrics

TTM Load Imbalance
(TTM-Limb)

SVD Load
(SVD-Redundancy)

SVD Load Imbalance
(SVD-Limb)
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Strong Scaling Results (32 – 512 ranks)
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Tensor Distribution Time
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Challenges and possible solutions

• Data locality (both shared and distributed) is important in 
performance of TD algorithms
– However, due to the diversity of the kernels, there is no single solution
– High dimensionality makes everything more difficult

• Ideally
– Finding the right programming model/abstraction for capturing data 

distribution (shared and distributed) and its impact on performance
– Domain-specific language/compiler to overcome tensor-specific 

bottlenecks
– Optimized libraries
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Future work

• Future work
– Efficient data structures for sparse tensors
– Modeling the sparsity
– Near-memory processing architectures for tensor computation
– Energy efficiency (on mobile devices)
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