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MTTKRP operation is expensive
procedure CP-ALS (X, R)

repeat

C = X(3)(B ¤ A)(BTB * ATA)✗
normalize columns of C to length 1
B = X(2)(C ¤ A)(CTC * ATA)✗
normalize columns of B to length 1
A = X(1)(C ¤ B)(CTC * BTB)✗
store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

Matricized Tensor Times Khatri-Rao Product



MTTKRP operation is expensive
procedure CP-ALS (X, R)

repeat

C = X(3)(B ¤ A)(BTB * ATA)✗
normalize columns of C to length 1
B = X(2)(C ¤ A)(CTC * ATA)✗
normalize columns of B to length 1
A = X(1)(C ¤ B)(CTC * BTB)✗
store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

> 90% total execution time



Image source Shaden Smith, et al., SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication, IPDPS 2015
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• Let’s calculate the # of flops and # of bytes and compare
• Flops: W = 2R(m + P)
• Data: Q = 2m (value + mode-2 index) + 2P (mode-3 index + mode-3 pointer)

+ (1-ɑ)Rm (mode-2 factor) + (1-ɑ)RP (mode-3 factor)

• Arithmetic Intensity 
• Ratio of work to communication I = W/Q
• I = W / (Q * 8 Bytes) = R / (8 + 4R(1-ɑ))

Roofline model applied to CSF MTTKRP

m = # of nonzeros
P  = # of non-empty fibers
R  = rank
ɑ = cache hit rate
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perfect cache hit  →
memory-bound on 
lower ranks

less than perfect 
cache hit →
memory bound 
for any rank 
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Time Pressure point

2.6s Baseline (2R(m + P) flops)

A pressure point analysis reveals the bottleneck



Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

Increasing flops
only changes time
by < 2%

Using COO instead of CSF only increases exec. time 
by < 2%



Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 
Removing per-fiber
access to matrix C
has a bigger impact
than increasing 
flops

Removing access to C: exec. time down by 7%



Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 

1.81s Access to B limited to L1 cache
Eliminating our 
suspect has a huge
impact

Memory access to B is the primary bottleneck



Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 

1.81s Access to B limited to L1 cache

1.63s Access to B removed completely Unexplained 6% 
decrease in exec. time

Completely removing it give us an extra 6% - why?



• Flops aren’t the issue
• Bottlenecks

1. Data access to factor matrix B (and not the tensor, e.g., SpMV)

2. Load instructions (why previous attempt at cache blocking was 
not successful)

Conclusions from our empirical analysis



• Flops aren’t the issue
• Bottlenecks

1. Data access to factor matrix B → cache blocking

2. Load instructions → register blocking

Cache/register blocking should help alleviate these 
bottlenecks



• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

Make sure
this fits in the 
LLC

X1A1
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We use n-D blocking and rank blocking



• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

• Rank blocking
– Agnostic to tensor sparsity
– Similar to register blocking
– Tensor replication

We use n-D blocking and rank blocking

Increase the
chance of
finding rows
in cache



• Multi-dimensional + rank blocking
– Partial replication
– “Best of both worlds” re-use
– Even more repeated accesses to 

tensor/factor

We can combine n-D blocking with rank blocking



Data set Dimensions nnz Sparsity Speedup

Poisson2 2K×16K×2K 121M 1.9e-3 2.0×

Poisson3 30K×30K×30K 135M 5.0e-6 1.7×

Netflix 480K×18K×80 80M 1.2e-4 3.1×

NELL-2 12K×9K×29K 77M 2.4e-5 2.2×

Reddit 1.2M×23K×1.3M 924M 2.8e-8 2.1×

Amazon 4.8M×1.8M×1.8M 1.7B 2.5e-8 3.5×

Performance summary for single node
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For small tensors, blocking becomes more effective at 
higher rank sizes
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• With large dimension 
sizes and large ranks, 
data sets are so big 
large number of 
blocks are required, 
and the overhead of 
blocking outweighs 
the benefit
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higher ranks
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• Real data sets have 
clustering patterns 
which lead to higher 
speedups from 
blocking
• Combining rank 

blocking with n-D 
blocking yields the 
highest speedup
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• Strong scalability problems with traditional partitioning
• Fewer non-zero per node -> lower efficiency & higher comm. cost -

> poor scalability

Rank blocking on distributed systems



Rank blocking on distributed systems

• Scalability problems
• Fewer non-zero per node -> lower efficiency & higher comm. cost -

> poor scalability

• Rank blocking
• No comm. between proc. sets
• Tensor replication 
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Rank blocking on distributed systems


