
Blocking Optimizations for Sparse MTTKRP

Jee Choi
CIS, University of Oregon

Workshop on Compiler Techniques for Sparse Tensor Algebra
Cambridge, MA, January 26th, 2019



MTTKRP operation is expensive
procedure CP-ALS (X, R)

repeat

C = X(3)(B ¤ A)(BTB * ATA)✗
normalize columns of C to length 1
B = X(2)(C ¤ A)(CTC * ATA)✗
normalize columns of B to length 1
A = X(1)(C ¤ B)(CTC * BTB)✗
store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

Matricized Tensor Times Khatri-Rao Product



MTTKRP operation is expensive
procedure CP-ALS (X, R)

repeat

C = X(3)(B ¤ A)(BTB * ATA)✗
normalize columns of C to length 1
B = X(2)(C ¤ A)(CTC * ATA)✗
normalize columns of B to length 1
A = X(1)(C ¤ B)(CTC * BTB)✗
store column norms of A in λ and normalize to 1

until max iteration reached or error less than ε

end procedure

> 90% total execution time



Image source Shaden Smith, et al., SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication, IPDPS 2015

(10, 20, 30)

row 10

row 20

row 30

How data is accessed for each non-zero in the 
tensor



C¤B

X(1) A’

○ ○

10,20,30

10,40,30

○

Reduce computation by processing fibers (CSF)

Mode-2 fiber
x = 10, z = 30



C¤B

X(1)

B

A’

○ ○

C

10,20,30

10,40,30

○

Reduce computation by processing fibers (CSF)
row 20

row 40

row 30



• Let’s calculate the # of flops and # of bytes and compare
• Flops: W = 2R(m + P)
• Data: Q = 2m (value + mode-2 index) + 2P (mode-3 index + mode-3 pointer)

+ (1-ɑ)Rm (mode-2 factor) + (1-ɑ)RP (mode-3 factor)

• Arithmetic Intensity 
• Ratio of work to communication I = W/Q
• I = W / (Q * 8 Bytes) = R / (8 + 4R(1-ɑ))

Roofline model applied to CSF MTTKRP

m = # of nonzeros
P  = # of non-empty fibers
R  = rank
ɑ = cache hit rate



0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048
Rank

Perfect cache hit

Cache hit = 0.99

Cache hit = 0.95

Arithmetic 
Intensity

Arithmetic intensity vs. system balance (on the latest CPU)



0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048
Rank

Perfect cache hit

Cache hit = 0.99

Cache hit = 0.95

Arithmetic 
Intensity

Arithmetic intensity vs. system balance (on the latest CPU)

System balance –
22-core CPU



0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048
Rank

Perfect cache hit

Cache hit = 0.99

Cache hit = 0.95

Arithmetic 
Intensity

Arithmetic intensity vs. system balance (on the latest CPU)

System balance –
22-core CPU

perfect cache hit  →
memory-bound on 
lower ranks



0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048
Rank

Perfect cache hit

Cache hit = 0.99

Cache hit = 0.95

Arithmetic 
Intensity

Arithmetic intensity vs. system balance (on the latest CPU)

System balance –
22-core CPU

perfect cache hit  →
memory-bound on 
lower ranks

less than perfect 
cache hit →
memory bound 
for any rank 



C¤B

X(1)

B

A’

○ ○

C

10,20,30

10,40,30

○

Reduce computation by processing fibers (CSF)
row 20

row 40

row 30



Time Pressure point

2.6s Baseline (2R(m + P) flops)

A pressure point analysis reveals the bottleneck



Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

Increasing flops
only changes time
by < 2%

Using COO instead of CSF only increases exec. time 
by < 2%



Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 
Removing per-fiber
access to matrix C
has a bigger impact
than increasing 
flops

Removing access to C: exec. time down by 7%



Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 

1.81s Access to B limited to L1 cache
Eliminating our 
suspect has a huge
impact

Memory access to B is the primary bottleneck



Time Pressure point

2.6s Baseline (2R(m + P) flops)

2.64s Move flops to inner loop (3 * m * R  flops)

2.43s Access to C removed 

1.81s Access to B limited to L1 cache

1.63s Access to B removed completely Unexplained 6% 
decrease in exec. time

Completely removing it give us an extra 6% - why?



• Flops aren’t the issue
• Bottlenecks

1. Data access to factor matrix B (and not the tensor, e.g., SpMV)

2. Load instructions (why previous attempt at cache blocking was 
not successful)

Conclusions from our empirical analysis



• Flops aren’t the issue
• Bottlenecks

1. Data access to factor matrix B → cache blocking

2. Load instructions → register blocking

Cache/register blocking should help alleviate these 
bottlenecks



• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

Make sure
this fits in the 
LLC

X1A1

B1

C1

We use n-D blocking and rank blocking



• Multi-dimensional blocking
– 3D blocking – maximize re-use of both matrix B and C
– Multiple access to the factor matrices

• Rank blocking
– Agnostic to tensor sparsity
– Similar to register blocking
– Tensor replication

We use n-D blocking and rank blocking

Increase the
chance of
finding rows
in cache



• Multi-dimensional + rank blocking
– Partial replication
– “Best of both worlds” re-use
– Even more repeated accesses to 

tensor/factor

We can combine n-D blocking with rank blocking



Data set Dimensions nnz Sparsity Speedup

Poisson2 2K×16K×2K 121M 1.9e-3 2.0×

Poisson3 30K×30K×30K 135M 5.0e-6 1.7×

Netflix 480K×18K×80 80M 1.2e-4 3.1×

NELL-2 12K×9K×29K 77M 2.4e-5 2.2×

Reddit 1.2M×23K×1.3M 924M 2.8e-8 2.1×

Amazon 4.8M×1.8M×1.8M 1.7B 2.5e-8 3.5×

Performance summary for single node



0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256 512 1024

Sp
ee
du

p

Rank

SPLATT MB RankB MB	+	RankB• With small dimension 
sizes, there is already 
good cache re-use 
without explicit 
blocking
• Only when rank size 

is large enough, do 
we see significant 
benefit from blocking

For small tensors, blocking becomes more effective at 
higher rank sizes

NELL-2



• With large dimension 
sizes and large ranks, 
data sets are so big 
large number of 
blocks are required, 
and the overhead of 
blocking outweighs 
the benefit

0.0

0.5

1.0

1.5

2.0

2.5

16 32 64 128 256 512 1024

Sp
ee
du

p

Rank

SPLATT MB RankB MB	+	RankB

For large tensors, blocking becomes less effective at 
higher ranks

Amazon



• Real data sets have 
clustering patterns 
which lead to higher 
speedups from 
blocking
• Combining rank 

blocking with n-D 
blocking yields the 
highest speedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

16 32 64 128 256 512 1024
Sp
ee
du

p
Rank

SPLATT MB RankB MB	+	RankB

More potential benefit from blocking with real data sets
Reddit



• Strong scalability problems with traditional partitioning
• Fewer non-zero per node -> lower efficiency & higher comm. cost -

> poor scalability

Rank blocking on distributed systems



Rank blocking on distributed systems

• Scalability problems
• Fewer non-zero per node -> lower efficiency & higher comm. cost -

> poor scalability

• Rank blocking
• No comm. between proc. sets
• Tensor replication 

P/4 
nodes

P/4 
nodes

P/4 
nodes

P/4 
nodes



Rank blocking on distributed systems


