
Tensor Decomposition for Topic 
Modeling in AI

Jee Choi 
Dept. of Computer and Information Science, University of Oregon

Artificial Intelligence Research (AIR) Conference, UCLA
February 7th, 2020



My research intersects HPC and data analytics

• High Performance Computing (HPC)
• How to write fast program/code

• Why?
• Saves time and energy

• How
• Parallelism
• Data locality
• Specialization



My research intersects HPC and data analytics

• Data analytics through tensor decomposition
• Tensors are higher-order (dimensional) generalization of matrices

• Why
• Many real-world data have n-way relationship
• E.g., Electronic health record (EHR), product recommendation, network 

analysis
• How
• Canonical polyadic
• Tucker



We generate 2.5 quintillion bytes of data each 
day
• 2.5 x 1018 bytes
• Every minute
• 350,000 tweets
• 4.2 million posts are liked
• 300 hours of video are uploaded

• 90% of world’s data has been created in the past 2 years

https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/

https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/


Transistors continue to scale, but serial performance 
stopped in the early 2000s



How power would have scaled with transistor 
and frequency



Dennard Scaling

• Robert N. Dennard (IBM) laid down the basic “recipe” for for technology scaling in the early 
1970s.

• Transistor scale down by 30% (0.7x) every two years ->
• area scales down by 0.7x0.7 = 0.49x (i.e., half) ->
• transistor density doubles (Moore’s Law)

• Delay also reduces by 30% (0.7x) ->
• operating frequency increases by 1.4x (1/0.7x)

• To keep the electric field constant to maintain reliability, supply voltage is reduced by 30% (E = 
V/d) ->
• Capacitance reduces by 30% (WL/tox = 0.7x) ->

• power reduced by 50% (C’V’2f’ = 0.7C * (0.7V)2 * (1/0.7)f = 0.5x)
• energy reduced by 65% (E’ = P’ * t’ = 0.5P * 0.7t = 0.35 E)

• Power density (area/power = 0.5/0.5 = 1) remains constant

In summary, as transistors get smaller, both voltage and current scales down to maintain a constant 
power density (i.e., power per area).



Parallelism is ubiquitous
• Summit Supercomputer 

(Department of Energy)
• 4608x POWER9 nodes
• 2x POWER9 CPUs @ 4 GHz

• 20x Cores per CPU
• 6x Nvidia Tesla V100 GPUs @ 

1.53 GHz
• 5120x CUDA cores per GPU

• 13 MWatts



Parallelism is ubiquitous
• Intel Core i7-9700k
• 8x Cores @ 4.90 GHz
• 1x Intel UHD Graphics 

630 @ 1.20 GHz
– 24x execution units

• 95 Watts



Parallelism is ubiquitous
• Qualcomm Snapdragon 855 

Processor
• 4x Kyro 485 high-efficiency 

cores @ 1.8 GHz
• 3x Kyro 485 high-performance 

cores @ 2.42 GHz
• 1x Kyro 485 high-performance 

cores @ 2.84 GHz
• 1x Adreno 640 GPU @ 600 MHz

– 384x ALU
• ~10 Watts



Specialization



Conclusion?

• Winter Parallelism is coming (or is already here)
• We need parallelism to process the massive amount of data being 

generated each day
• We must consider performance and energy/power when we 

implement software



Two popular tensor decomposition 
algorithms

13

X ≈ GU(1) U(2)

U(3)

R3

R2R1

X ≈ + ���+ +

Canonical Polyadic (CP)

Tucker

R



Tensor decomposition is analogous to SVD

14

Netflix movie
ratings

movies

users



Netflix movie
ratings

movies

users

⇡

movies

users

Tensor decomposition is analogous to SVD

15



16

Netflix movie
ratings

movies

users

⇡

movies

users

Aladdin (1992) Jane

Tensor decomposition is analogous to SVD



Estimating the “score” is as simple as taking the dot 
product

• Let’s say movies only have two “latent” properties – action and 
romance

17

7 9Aladdin (2019)

7

0

Action Romance

Jane
Action

Romance

49 Estimated score



Applications of tensor decomposition

• Signal processing
• Signal separation, code division

• Data analysis
• Phenotyping (electronic health record), network analysis, data compression

• Machine learning
• Latent variable model (natural language processing, topic modeling, 

recommender systems, etc.)
• Neural network compression

18



Why tensor decomposition?

• Pros
• Matrix factorization is not unique whereas tensor decomposition is unique 

(given some conditions)
• Retains the multi-way relationship that is typically lost when formulated as a 

matrix problem
• Cons
• Determining the exact rank is NP-hard
• Thinking in higher dimensions is difficult

19



Tensor decomposition for topic modeling

• Topic modeling
• Model for discovering abstract topics in a collection of documents
• Hidden Markov Model

• Each word (in the document) has a hidden topic h (e.g., specifies whether the current 
word is talking about “sports” or “politics.”)

• Topic for the next word only depends on the topic of the current word
• Each topic specifies a distribution over words – instead of the topic itself, we observe a 

random word x, drawn from this topic distribution (e.g., if the topic is “sports” we will 
more likely see the word “score.”)



Tensor decomposition for topic modeling

• To generate a sentence in HMM, we start with some initial 
topic h1, and this topic will evolve as a Markov Chain to 
generate the topics for future words (h2, h3, etc.)

• We observe words x1, x2, etc. from these topics



Tensor decomposition for topic modeling

• Given many sentences that follow this model, we can construct a 
tensor using correlations
• For every triplet of words (i, j, k), we count the number of times that 

these three words are the first three words of a sentence
• Enumerating over (i, j, k) gives us a three dimensional tensor T
• Entry (i, j, k) in T gives us the probability that the first three words are 

(i, j, k)



Tensor decomposition for topic modeling

• If we fix the topic of the second word (h2), the tensor is cut into three 
parts – h1/x1, x2, and h3/x3

• x1, x2, x3 are independent conditioned on the topic h2

• If we decompose this tensor, then we have vector xL, whose ith entry 
is the probability the first word is i, given the topic of the second word 
is L
• We can compute a rank n decomposition where we estimate the n 

most prominent topics of the document



Tensor decomposition for topic modeling II

• We can also apply bag-of-words to determine topics (LSA – latent 
semantic analysis)
• Consider each document simply as a collection of words

• Build a co-occurrence matrix (or tensor), decompose it, and apply a 
clustering algorithm
• I x J x K matrix where I is the collection of words, and J is the collection of 

documents, K is the location of the word in the document
• Each ”rank” represents a prominent topic within the documents



2525

E

community
users

Users

word

R factors (columns)

word
factor

user
factor

community
factor

Each row

point in
R-dimensional

Euclidean space

K-nearest neighbor

Plot the rows in R-dimensional space



• Democrat • Republican

26

Words by political association



• Democrat
• parti
• presid
• elect
• bill
• congress
• senat
• mccain
• campaign
• candid
• vote
• Hillary

• conserv
• constitut
• ron
• voter
• palin
• right
• liber
• he

• Republican
• rightard
• gop
• traitor
• honorless
• bush
• lie
• wing
• scumbag
• f*cktard
• moron
• pretend

• parti
• stupid
• dishonest
• rightw
• a*shol
• fox
• right
• democrat

27

Words by political association



• Democrat
• parti
• presid
• elect
• bill
• congress
• senat
• mccain
• campaign
• candid
• vote
• Hillary

• conserv
• constitut
• ron
• voter
• palin
• right
• liber
• he

• Republican
• rightard
• gop
• traitor
• honorless
• bush
• lie
• wing
• scumbag
• f*cktard
• moron
• pretend

• parti
• stupid
• dishonest
• rightw
• a*shol
• fox
• right
• democrat

28

Words by political association



Topic Modeling for Detecting Malware

• 3-D tensor of
• Features (e.g., permission, hardware components, sensitive API calls) x File x 

Location -> how many times it occurs 
• With rank-N decomposition, the N features are used as input to SVM

• Top 32 features offers excellent variance and a median accuracy of
• 88.75% With Rank 3
• 88.5% With Rank 5
• 89.25% With Rank 10
• 89.5% With Rank 50
• 89.5% With Rank 100
• 89.5% With Rank 200
• 89.5% With Rank 500



Topic Modeling for Detecting Malware
Feature Set Benign Malware % Benign % Malware
1 1 7 13% 88%
2 1591 189 89% 11%
3 0 4 0% 100%
4 0 8 0% 100%
5 14 21 39% 58%
6 3 11 21% 79%
7 19 64 23% 77%
8 0 13 0% 100%
9 0 4 0% 100%
10 39 64 38% 62%
11 30 20 60% 40%
12 2 6 25% 75%
13 0 14 0% 100%



Performance is better using tensor 
decomposition

Execution Time (s)
Tensor Decomposition Training Total

Baseline (SVM) 0 6.91 6.91

Rank 3 CPD 0.1 0.02 0.12

Rank 5 CPD 0.21 0.02 0.23

Rank 10 CPD 0.33 0.01 0.34

Rank 50 CPD 0.82 0.01 0.83

Rank 100 CPD 2.1 0.03 2.13

Rank 200 CPD 2.24 0.04 2.28

Rank 500 CPD 5.47 0.09 5.56



Conclusion

• HPC is becoming increasingly more important in HPC
• Particularly with IoT – certain applications run with limited processing power 

and strict performance constraints (e.g., self-driving cars)
• Understanding how AI works is important
• Deep Neural Network does not provide such information
• Tensor decomposition provides more information (but does not perform as 

well as DNN)
• Collaboration between wider range of areas will become necessary to 

push the AI frontier


