
Andy Nguyen1, Ahmed E. Helal2, Fabio Checconi2, Jan Laukemann2,
Jesmin Jahan Tithi2, Yongseok Soh1, Teresa Ranadive3,

Fabrizio Petrini2, Tammy Kolda4, Jee Whan Choi1
1 University of Oregon 2 Intel Labs 3 Laboratory for Physical Sciences 4 Sandia National Laboratory

Linearized Tensor Format for
Performance-Portable Sparse Tensor

Computation

Motivation
• A fundamental problem in sparse tensor computation is how to store, group,

and organize the nonzero elements to

1. reduce tensor storage

2. improve data locality

3. increase parallelism

4. decrease workload imbalance
 & synchronization overhead

…

Conflicting
goals

Motivation
• A fundamental problem in sparse tensor computation is how to store, group,

and organize the nonzero elements to

1. reduce tensor storage

2. improve data locality

3. increase parallelism

4. decrease workload imbalance
 & synchronization overhead

…

Conflicting
goals

Motivation
• A fundamental problem in sparse tensor computation is how to store, group,

and organize the nonzero elements to

1. reduce tensor storage

2. improve data locality

3. increase parallelism

4. decrease workload imbalance
 & synchronization overhead

…

Conflicting
goals

Motivation
• A fundamental problem in sparse tensor computation is how to store, group,

and organize the nonzero elements to

1. reduce tensor storage

2. improve data locality

3. increase parallelism

4. decrease workload imbalance
 & synchronization overhead

…

Conflicting
goals

Motivation
• A fundamental problem in sparse tensor computation is how to store, group,

and organize the nonzero elements to

1. reduce tensor storage

2. improve data locality

3. increase parallelism

4. decrease workload imbalance
 & synchronization overhead

…

Conflicting
goals

State-of-the-art

• Can be classified based on their
encoding of the indexing metadata into:

1. List-based formats
2. Tree-based formats
3. Block-based formats

State-of-the-art

• List-based format: COO (coordinate)
i j k v
1 1 1 1

1 1 2 2

1 3 3 3

2 1 2 4

2 1 3 5

3 1 2 6

3 4 4 7

4 2 1 8

4 2 2 9

4 3 3 10

4 3 4 11

4 4 4 12

j	=	1

2

3

4

i	=	1 2 43

1

8

k	=	1

2

3

4

2 43

5

3 10

k	=	3

2

3

4

2 43

2 4 6

9

k	=	2

2

3

4

2 43

11

127

k	=	4

j	=	1

i	=	1

j	=	1

i	=	1

j	=	1

i	=	1

State-of-the-art

• Tree-based format: CSF (compressed sparse fiber)
i j k v
1 1 1 1

1 1 2 2

1 3 3 3

2 1 2 4

2 1 3 5

3 1 2 6

3 4 4 7

4 2 1 8

4 2 2 9

4 3 3 10

4 3 4 11

4 4 4 12

1

2

3

1 3

1

2 3

1 2 3

1 4

2 4

4

4

4

1

1 2

1

1 2

State-of-the-art

• Block-based format: HiCOO (hierarchical COO)
bptr bi bj bk ei ej ek v
1 0 0 0 1 1 1 1

1 0 0 1 1 1 0 2

1 1 0 1 0 1 0 4

2 1 0 1 0 1 1 5

3 0 1 1 1 1 1 3

4 1 1 0 2 0 1 8

4 1 0 1 1 1 0 6

4 1 1 1 2 0 0 9

5 1 1 1 2 1 1 10

5 1 1 1 1 2 2 7

5 1 1 1 2 1 2 11

5 1 1 1 2 2 2 12

j	=	1

2

3

4

i	=	1 2 43

1

8

k	=	1

2

3

4

2 43

5

3 10

k	=	3

2

3

4

2 43

2 4 6

9

k	=	2

2

3

4

2 43

11

127

k	=	4

j	=	1

i	=	1

j	=	1

i	=	1

j	=	1

i	=	1

2x2x2	block

State-of-the-art

Formats Granularity Mode
Orientation Data Locality Parallelism Load balance

List-based
(COO)

Nonzero
element Mode-agnostic Poor Suffer from

conflicts Maximized

Tree-based
(CSF)

Compressed
tree Mode-specific Improved for a

specific mode
Improved for a
specific mode

Work imbalance (especially in
short modes)

Block-based
(HiCOO)

Compressed
block Mode-agnostic Improved Suffer from

conflicts
Work imbalance

across blocks
…

Popularity of tree- and block-based formats

• Tree- and block-based formats are extensions of sparse matrix formats
• However, they are ill-suited for sparse tensors

Popularity of tree- and block-based formats

• Tree- and block-based formats are extensions of sparse matrix formats
• However, they are ill-suited for sparse tensors
1. Tensor computation often operate over every dimension

• This contrasts with sparse matrix-vector multiply (one dimension) and sparse matrix-matrix multiply (two
dimensions)

Popularity of tree- and block-based formats

[1] Smith et al. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors and Tools. http://frostt.io/

• Tree- and block-based formats are extensions of sparse matrix formats
• However, they are ill-suited for sparse tensors
1. Tensor computation often operate over every dimension

• This contrasts with sparse matrix-vector multiply (one dimension) and sparse matrix-matrix multiply (two
dimensions)

2. Tensor sparsity >> matrix sparsity
• Due to their dimensionality, tensors are extremely sparse – it’s difficult to find dense blocks
• Tensor sparsity ranges from 1.5 x 10-2 to 4.3 x 10-15 [1]

Popularity of tree- and block-based formats

• Tree- and block-based formats are extensions of sparse matrix formats
• However, they are ill-suited for sparse tensors
1. Tensor computation often operate over every dimension

• This contrasts with sparse matrix-vector multiply (one dimension) and sparse matrix-matrix multiply (two
dimensions)

2. Tensor sparsity >> matrix sparsity
• Due to their dimensionality, tensors are extremely sparse – it’s difficult to find dense blocks
• Tensor sparsity ranges from 1.5 x 10-2 to 4.3 x 10-15 [1]

• Our hypothesis – simple mode-agnostic, list-based formats are the best for sparse tensors
• How do we improve data locality and reduce conflicts?
• How do we make it simple and performance-portable?

[1] Smith et al. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors and Tools. http://frostt.io/

Linearized Formats

• ALTO (Adaptive Linearized Tensor Order) for CPUs
• BLCO (Block Linearized Coordinate) for GPUs
• Application of linearized formats to

• streaming tensor decomposition [1]
• on-the-fly Khatri-Rao product for CP-APR (WIP)
• non-negative sparse tensor factorization for GPUs via PLANC (WIP)

[1] Soh et al. Dynamic Tensor Linearization and Time Slicing for Efficient Factorization of Infinite Data Streams. IPDPS’23

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

3	bits2	bits1	bit

00 01 10 11

i

j
k

00 01 10 11

• ALTO interleaves
the index bits by
grouping them by
their positions

• Within each group,
the bits are
arranged from the
longest mode
(most-significant)
to the shortest
(least-significant)

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit Mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

i

j
k

00 01 10 11

Value Position
𝒙𝟏,𝟎,𝟎 2 (000010)
𝒙𝟑,𝟏,𝟏 15 (001111)
𝒙𝟎,𝟑,𝟎 20 (010100)
𝒙𝟐,𝟐,𝟏 25 (011001)
𝒙𝟑,𝟒,𝟎 42 (101010)
𝒙𝟏,𝟔,𝟏 51 (110011)

ALTO
2 20 4225 5115

3	bits2	bits1	bit

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit Mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

i

j
k

00 01 10 11

Value Position
𝒙𝟏,𝟎,𝟎 2 (000010)
𝒙𝟑,𝟏,𝟏 15 (001111)
𝒙𝟎,𝟑,𝟎 20 (010100)
𝒙𝟐,𝟐,𝟏 25 (011001)
𝒙𝟑,𝟒,𝟎 42 (101010)
𝒙𝟏,𝟔,𝟏 51 (110011)

ALTO
2 20 4225 5115

3	bits2	bits1	bit

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

i

j
k

00 01 10 11

Value Position
𝒙𝟏,𝟎,𝟎 2 (000010)
𝒙𝟑,𝟏,𝟏 15 (001111)
𝒙𝟎,𝟑,𝟎 20 (010100)
𝒙𝟐,𝟐,𝟏 25 (011001)
𝒙𝟑,𝟒,𝟎 42 (101010)
𝒙𝟏,𝟔,𝟏 51 (110011)

ALTO
2 20 4225 5115

3	bits2	bits1	bit

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

i

j
k

00 01 10 11

Value Position
𝒙𝟏,𝟎,𝟎 2 (000010)
𝒙𝟑,𝟏,𝟏 15 (001111)
𝒙𝟎,𝟑,𝟎 20 (010100)
𝒙𝟐,𝟐,𝟏 25 (011001)
𝒙𝟑,𝟒,𝟎 42 (101010)
𝒙𝟏,𝟔,𝟏 51 (110011)

ALTO
2 20 4225 5115

3	bits2	bits1	bit

Partitioning

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

i

j
k

00 01 10 11

Value Position
𝒙𝟏,𝟎,𝟎 2 (000010)
𝒙𝟑,𝟏,𝟏 15 (001111)
𝒙𝟎,𝟑,𝟎 20 (010100)
𝒙𝟐,𝟐,𝟏 25 (011001)
𝒙𝟑,𝟒,𝟎 42 (101010)
𝒙𝟏,𝟔,𝟏 51 (110011)

ALTO

3	bits2	bits1	bit

(1, 2, 0)

(3, 6, 1)

(0, 0, 0)

(3, 3, 1)

Partitioning

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

i

j
k

00 01 10 11

Value Position
𝒙𝟏,𝟎,𝟎 2 (000010)
𝒙𝟑,𝟏,𝟏 15 (001111)
𝒙𝟎,𝟑,𝟎 20 (010100)
𝒙𝟐,𝟐,𝟏 25 (011001)
𝒙𝟑,𝟒,𝟎 42 (101010)
𝒙𝟏,𝟔,𝟏 51 (110011)

ALTO

3	bits2	bits1	bit

(1, 2, 0)

(3, 6, 1)

(0, 0, 0)

(3, 3, 1)

Overlapping subspaces, in contrast
to prior studies that use non-overlapping
partitions, that often lead to imbalance.

Index Encoding & Decoding

Encoding
(bit-level gather)

Decoding
(bit-level scatter)

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a HiCOO block or a CSF sub-tree
Each nonzero element in the partition

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a HiCOO block or a CSF sub-tree
Each nonzero element in the partition
Fetch the indices and value associated with nonzero x

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a HiCOO block or a CSF sub-tree
Each nonzero element in the partition
Fetch the indices and value associated with nonzero x
Fetch row jx from mode-2 factor matrix
Fetch row kx from mode-3 factor matrix

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a HiCOO block or a CSF sub-tree
Each nonzero element in the partition
Fetch the indices and value associated with nonzero x
Fetch row jx from mode-2 factor matrix
Fetch row kx from mode-3 factor matrix
MTTKRP
Update row ix from mode-1 factor matrix, either
atomically (e.g., COO, or HiCOO), or freely (e.g., CSF)

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

ALTO line segment

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

ALTO line segment

fetch ax (ALTO index),vx

ix,jx,kx = decode(ax)

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

ALTO line segment

fetch ax (ALTO index),vx

ix,jx,kx = decode(ax)

This can be done efficiently
using parallel bit
extract/deposit (pext/pdep)
instructions on x86 CPUs

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

ALTO line segment

fetch ax (ALTO index),vx

ix,jx,kx = decode(ax)

Adaptive update mechanism
• If rows (ix) have limited reuse → update using atomic ops.
• If rows (ix) have large reuse → use scratchpad to combine

local updates and parallel reduction to merge globally
• reuse = nnz / mode_length

This can be done efficiently
using parallel bit
extract/deposit (pext/pdep)
instructions on x86 CPUs

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

ALTO line segment

fetch ax (ALTO index),vx

ix,jx,kx = decode(ax)

Adaptive update mechanism
• If rows (ix) have limited reuse → update using atomic ops.
• If rows (ix) have large reuse → use scratchpad to combine

local updates and parallel reduction to merge globally
• reuse = nnz / mode_length

• Global reduction uses the boundary/overlap information to
“pull” rows (ix) from the appropriate scratchpad

This can be done efficiently
using parallel bit
extract/deposit (pext/pdep)
instructions on x86 CPUs

630

(1, 2, 0)

(3, 6, 1)

(0, 0, 0)

(3, 3, 1)

ALTO vs. Z-curve

• In contrast to Z-ordering, ALTO uses a non-fractal encoding to
1. adapt to irregularly shaped tensors,
2. further reduce storage, and
3. reduce encoding/decoding time

ALTO vs. State-of-the-art

Formats Granularity Mode
Orientation Data Locality Parallelism Load balance

List-based
(COO)

Nonzero
element Mode-agnostic Poor Suffer from

conflicts Maximized

Tree-based
(CSF)

Compressed
tree Mode-specific Improved for a

specific mode
Improved for a
specific mode

Work imbalance (especially
in short modes)

Block-based
(HiCOO)

Compressed
block Mode-agnostic Improved Suffer from

conflicts
Work imbalance

across blocks

ALTO Nonzero
element Mode-agnostic

Improved (via
nearest-neighbor

traversal)

Improved (via
adaptive update) Maximized

…

Performance Summary
• Intel Cascade Lake-X

• 28 x 2 cores @ 1.8 GHz

• Oracle selects the best
mode-agnostic and
mode-specific format
for each of the 15
tensors

• Mode-agnostic
formats: COO and
HiCOO

• Mode-specific formats:
CSF and CSF with tiling
with N copies

Helal et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. ICS’21

Speedup

• Speedup against serial MTTKRP ALTO implementation
• HiCOO does not support 5D tensors
• HiCOO and CSF runs out of memory for REDDIT

Helal et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. ICS’21

Speedup

• ALTO achieves ~80% of realizable speedup across tensors with different characteristics
• For high reuse, ALTO achieves 47x geo-mean speedup
• For limited reuse, ALTO achieves 16x geo-mean speedup

Helal et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. ICS’21

Speedup
• CSF shows slightly better performance for NIPS, AMAZON, and NELL-1 (geo-mean speedup of 1.2x

over ALTO) by keeping N copies of the tensor, optimized for each mode

• Performance of COO, HiCOO, and CSF are sensitive to irregular tensor shape and data distribution

Helal et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. ICS’21

Storage

• ALTO always requires less storage than COO due to linearization

Lower is better

Helal et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. ICS’21

Storage

• ALTO always requires less storage than COO due to linearization
• HiCOO storage depends on the block/superblock sizes and spatial distribution of nonzero

elements
• For hyper-sparse tensors, HiCOO consumes more storage than COO

Lower is better

Helal et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. ICS’21

ALTO Generation Overhead
• ALTO substantially decreases sorting time by reducing the # of comparison operations

• Block-based formats require expensive clustering (and sometimes reordering) and scheduling of non-zero
elements

• CSF is generated from pre-sorted tensors, but are still slower on average to construct than ALTO

Lower is better
Lower is better

Helal et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. ICS’21

Performance Portability

• Can ALTO perform well on GPUs?
• If not, what are the challenges?

MTTKRP on GPUs
for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a thread block
Each thread operates on a 1~k non-zero element

MTTKRP on GPUs

MTTKRP on GPUs
for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a thread block
Each thread operates on a 1~k non-zero element
fetch ax (ALTO index),vx

MTTKRP on GPUs
for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a thread block
Each thread operates on a 1~k non-zero element
fetch ax (ALTO index),vx

ix,jx,kx = decode(ax) GPUs do NOT support
parallel bit extract/deposit
instructions

MTTKRP on GPUs
for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a thread block
Each thread operates on a 1~k non-zero element
fetch ax (ALTO index),vx

ix,jx,kx = decode(ax)

Adaptive update mechanism

GPUs do NOT support
parallel bit extract/deposit
instructions

Large number of threads
→ synchronization is
more expensive

MTTKRP on GPUs
for l = 1,…,L in parallel do

 for all x ∈ Xl do

 fetch ix,jx,kx,vx

 fetch v1 = A(2)(jx,:)

 fetch v2 = A(3)(kx,:)

 scratch += vx · (v1 * v2)

 A(1)(ix,:) += scratch

 endfor

endfor

Each partition l could be a thread block
Each thread operates on a 1~k non-zero element
fetch ax (ALTO index),vx

ix,jx,kx = decode(ax)

Adaptive update mechanism

GPUs do NOT support
parallel bit extract/deposit
instructions

Large number of threads
→ synchronization is
more expensive

GPUs have limited on-chip memory

Encoding/Decoding on GPUs

ALTO BLCO
• Blocked Linearized Coordinates (BLCO)

• Linearize and order using ALTO
• Re-linearize indices by grouping bits from same

index together
• Bit-wise shift and masking is cheap on GPUs

Nguyen et al. Efficient, Out-of-Memory Sparse MTTKRP on Massively Parallel Architectures ICS’22

Encoding/Decoding on GPUs

• Blocked Linearized Coordinates (BLCO)
• Linearize and order using ALTO
• Re-linearize indices by grouping bits from same

index together
• Bit-wise shift and masking is cheap on GPUs

• Adaptive Blocking
• Use uppermost bits from every mode that exceeds

target integer size (e.g., 64 bits) to form the initial
blocks, then further divided to meet GPU memory
constraints

• Leverages native integer instructions
• Reduces overall storage
• Does not require expensive tuning
• Leverages GPU schedulers to workload balance

ALTO BLCO

Nguyen et al. Efficient, Out-of-Memory Sparse MTTKRP on Massively Parallel Architectures ICS’22

Synchronization

→ Shared memory

→ Global accumulation

→ Global memory

→ Register memory

→ Global accumulation

→ Shared memory accumulation

→ Register-level accumulation

Nguyen et al. Efficient, Out-of-Memory Sparse MTTKRP on Massively Parallel Architectures ICS’22

Performance
• MM-CSF is the baseline
• Amazon, Patents, and Reddit do not run on any prior frameworks
• F-COO only supports 3D tensors and segfaults on some tensors

Nguyen et al. Efficient, Out-of-Memory Sparse MTTKRP on Massively Parallel Architectures ICS’22

Performance
• Throughput limited by host-to-device data transfer
• In-memory performance on par with other tensors (measured via Nsight

System Profiler)

Nguyen et al. Efficient, Out-of-Memory Sparse MTTKRP on Massively Parallel Architectures ICS’22

Performance
• MM-CSF is sensitive to data distribution, resulting in significant variation

in performance across different modes (e.g., Uber, DARPA, Enron,
and FB-M)

Nguyen et al. Efficient, Out-of-Memory Sparse MTTKRP on Massively Parallel Architectures ICS’22

Lower is better

Format Construction Cost

BLCO has minimal
overhead over ALTO

Format Construction Cost

Q&A

Backup Slides

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

4X4X2 Subspace

i

j
k

00 01 10 11

• The amount of
information about
the spatial position
of a nonzero
element decreases
with each
consecutive bit

3	bits2	bits1	bit

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

4X4X2 Subspace

4X2X2 Subspace

i

j
k

00 01 10 11

• The amount of
information about
the spatial position
of a nonzero
element decreases
with each
consecutive bit

3	bits2	bits1	bit

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

4X4X2 Subspace

4X2X2 Subspace

2X2X2 Subspace

i

j
k

00 01 10 11

• The amount of
information about
the spatial position
of a nonzero
element decreases
with each
consecutive bit

3	bits2	bits1	bit

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

4X4X2 Subspace

4X2X2 Subspace

2X2X2 Subspace

i

j
k

00 01 10 11

• The amount of
information about
the spatial position
of a nonzero
element decreases
with each
consecutive bit

3	bits2	bits1	bit

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

4X4X2 Subspace

4X2X2 Subspace

2X2X2 Subspace

i

j
k

00 01 10 11

• The amount of
information about
the spatial position
of a nonzero
element decreases
with each
consecutive bit

3	bits2	bits1	bit

ALTO

k = 0

k = 1

4x8x2 tensor

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO bit mask

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

630

00 01 10 11

4X4X2 Subspace

4X2X2 Subspace

2X2X2 Subspace

i

j
k

00 01 10 11

• This is equivalent
to partitioning the
multi-dimensional
space along the
longest mode first

3	bits2	bits1	bit

Popularity of tree- and block-based formats
Spatial data distribution

A box plot of the data (nonzero elements) distribution across multi-dimensional blocks. The multi-
dimensional subspace size is 128𝑁, where 𝑁 is the number of dimensions (modes).

