
Alexandre Chen (yiminc@uoregon.edu), Brittany A. Erickson, Jee Whan Choi, University of Oregon
Jeremy E. Kozdon, Naval Postgraduate School (now NextSilicon)

Matrix-free Methods for
Summation-by-Parts Finite
Difference Operators on GPUs

mailto:yiminc@uoregon.edu

Outline of the Talk

1. SBP operators and the SBP-SAT method

2. Problem description and motivation

3. Matrix-free GPU kernel for SBP-SAT

4. Multi-grid method for the SBP-SAT method

5. Multi-grid preconditioned conjugate gradient (CG) method

6. Conclusions and Future Work

Problem Description

• Earthquake simulation

• Displacement of earth -> this tells you stress on the fault -> stress is combined with the friction to
determine the earthquake mechanics (e.g., how fast the fault slides, or the velocity of the
movement) -> the displacement/stress/friction happens heterogeneously (e.g., for some regions,
frictions increases with the velocity (unlikely to have seismic slip), others frictions decreases with
velocity (more likely to have seismic slip))

• You need different resolution and coefficients for different regions

• Resolution depends on the method you are using the solve the problem

• Coefficients are physically measured/observed (i.e., field experiments) are input to the simulation

• Summary - very challenging problem to solve and the most computationally expensive part is
calculating the displacement from linear elasticity (from solid mechanics) in 3D

Why matrix-free methods and GPU computing?

• We are solving big problems that are memory intensive:

• A problem that you wish to solve may involve a computational domain of hundreds of kms
with frictional length scale on the order of millimeters

• A simplified problem in 3D can easily exceed (1000 * 1000 * 1000 ~ 1 Billion unknowns),
>10 GB to store results, >100 GB to store the sparse matrix, > 1TB for matrix factorization

• Why GPU computing?

• GPUs have high bandwidth but limited memory capacity

• Limited memory capacity - ill suited for large problems using matrix-explicit solutions

• Therefore, we need a matrix-free method that greatly reduces memory footprint

Why SBP Operators and SBP-SAT Methods
• SBP-SAT summation-by-parts-simultaneous-approximation-terms

• vs. using matrix-free FEM - requires domain transformation (e.g., Fourier)
which is more costly than using neighborhood-based (i.e., stencil) in FDM

• Using transformation reduces accuracy because you don’t need to do the
transformation which creates weaker formulation of the problem

• Also, less complex to formulate the problem, especially for square-shaped
domains

• vs. traditional FDM methods, SBP-SAT numerical stabile when enforcing
boundary conditions

•

SBP-SAT Discretization in Matrix-explicit Form
The SBP-SAT discretization is given by

 (1)

where

is the discrete Laplacian operator in 2D and is the grid function approximating the solution, formed
as a stacked vector of vectors.

The SAT terms enforce all boundary conditions weakly. To illustrate the structure of
these vectors, the SAT term enforcing Dirichlet condition on the west boundary is given by

The Linear system (1) is rendered SPD by multiplying of

If we move all the “u” to the left-hand-side, then you form the linear system Ax=b

(Erickson, B. A. and Dunham, E. M. (2014))

−D2u = f + bN + bS + bW + bE,

D2 = (I ⊗ Dxx) + (Dyy ⊗ I)
u

bN, bS, bW, bE

bW = α (H−1 ⊗ I)(EWu − eT
WgW) − (H−1e0d0

T ⊗ I)(EWu − eT
WgW)

H ⊗ H

Dxx =
1
h2

1 −2 1
1 −2 1

⋱ ⋱ ⋱
1 −2 1
1 −2 1

the red number resembles traditional Laplacian operator in the domain interior.

Coordinate Transformation on GPUs
• For complex domain or variable coefficients, SBP-SAT methods can be

combined with coordinate transformation. (Kozdon et al. 2020)

• Coordinate transformation requires only local information in the Jacobian
matrices, similar to the stencil computation for Laplacian, which can be
calculated matrix-free.

• Jacobian matrices are stored as input data for GPU kernels (current
implementation), but can also be evaluated within GPU kernels to save
memory I/O (future work).

Problem Description
We are solving the 2D Poisson equation motivated by large scale earthquake cycle
simulations.

Simplification: Anti-plane strain, coordinate transformation for the domain (Kozdon et al.
2020)

−∇̄ ⋅ (c ∇̄u) = Jf, for (r, s) ∈ Ω̄,
u = g1, face 1,
u = g2, face 2,

n̂3 ⋅ c ∇̄u = S3
J g3, face 3,

n̂4 ⋅ c ∇̄u = S4
J g4, face 4,

General Purpose GPU Computing (GPGPU)

• GPU and CPU are optimized for different purposes

• CPU: more versatile, low latency, small number of faster cores

• GPU: less versatile, high latency but high throughput, large number of slower cores in parallel

• Things are starting to change: AMD’s new 128-core EPYC

• Parallel Scheme: Single Instruction Multiple Data (SIMD) 

• Toolkits for GPGPU:

• CUDA (NVIDIA) is the mainstream platform

• OpenCL (CPUs + GPUs, different vendors)

• ROCm (AMD), oneAPI (Intel)

A Survey of General-Purpose Computation on Graphics Hardware, John D. Owens et. al The proposed exa-scale super computer El Capitan is built using AMD
CPUs and GPUs.

Matrix-free stencils for SBP-SAT method
• Idea: split the domain write simpler kernels for interior points

Matrix-free stencils for SBP-SAT method
• Idea: Write separate calculations for domain boundaries to avoid race condition

Matrix-free vs SpMV

Roofline model

Multigrid Method

A Two-level Multigrid Scheme from A Multigrid Tutorial 2nd Edition (Briggs, 2000)

Geometric or Algebraic Multigrid ?
How to form coarse grid operator A2h

• Geometric Multigrid: Forming directly on coarser grid similarly to ->
SBP-SAT compatibility issue?

• Algebraic Multigrid / Galerkin Coarsening

• SBP-preserving interpolation operators:
 , where is the standard prolongation

operator (Ruggiu, Andrea A et al. 2018, Briggs et al. 2000)

A2h Ah

A2h = I2h
h AhIh

2h

I2h
h = (H2h ⊗ H2h)−1(Ih

2h)T(Hh ⊗ Hh) Ih
2h

• We choose Geometric Multigrid

• Galerkin Coarsening or Algebraic Multigrid can assemble coarse grid automatically (“plug-in” solver),
however

• Writing different kernels for each grid level + compilation cost for matrix-free GPU kernels

• Increased memory requirement if matrix-explicit methods are used

• Interpolation operators in Geometric Multigrid

• SBP-SAT method is rendered SPD by the multiplication of the H matrix that contains grid information,
the residual for each level is “scaled” residual

• When interpolating the residuals, the SBP-preserving restriction operators need to be further modified
with grid information. , which is essentially letting

• us

• Using Richardson Iteration and optimal for each level. To

determine for eigenvalues for very large grid, we extrapolate eigenvalues from smaller grids

• 5 relaxation steps for pre-smoothing, post-smoothing and smoothing on the coarsest grid, Multi-level
multigrid to avoid the cost of direct solve on CPU

Ĩ2h
h = (H2h ⊗ H2h)I2h

h (Hh ⊗ Hh)−1 Ĩ2h
h = (Ih

2h)T

xk+1 = xk + ωk(b − Axk) ωk =
2

λmax + λmin

Multigrid Preconditioned CG

Conclusions
• Matrix-Free GPU kernels for SBP operators not only save memory, but can be

much faster than SpMV kernels

• We adapted SBP-preserving interpolation operators to make it compatible
with the SBP-SAT scheme in geometric multigrid.

• Geometric multigrid can be a very effective preconditioner for the SBP-SAT
method. The multigrid algorithm can also be implemented matrix-free.

• MGCG outperforms direct solve for large problem with much lower memory
requirement

Can we optimize the performance even more?
• Mixed precision strategy (made easier in matrix-free):

• GPUs have much higher performance with single precisions. Using single precision can
easily make GPU kernels run (at least) 2 times faster.

• If single precision is used only for the MG preconditioner, the increase in overall PCG
iteration counts is negligible.

• Using higher-order matrix-free smoothers (second-order Richardson, Chebyshev iteration)

• Replacing V-cycle multigrid with F-cycle multigrid to reduce the cost

• Aggressive coarsening: interpolation for more than 1-level gives additional reduction in
complexity and increased scalability (e.g. BoomerAMG) (+ Machine Learning)

• When solving systems of equations like earthquake cycle simulation, using interpolated
initial guesses reduce iteration counts significantly (+ Machine Learning)

