Matrix-free Methods for
Summation-by-Parts Finite
Difference Operators on GPUs

Alexandre Chen (yiminc@Quoregon.edu), Brittany A. Erickson, Jee Whan Choi, University of Oregon
Jeremy E. Kozdon, Naval Postgraduate School (how NextSilicon)

mailto:yiminc@uoregon.edu

Outline of the Talk

1. SBP operators and the SBP-SAT method

2. Problem description and motivation

3. Matrix-free GPU kernel for SBP-SAT

4. Multi-grid method for the SBP-SAT method

5. Multi-grid preconditioned conjugate gradient (CG) method
6. Conclusions and Future Work

Problem Description

 Earthguake simulation

* Displacement of earth -> this tells you stress on the fault -> stress is combined with the friction to

determine the earthquake mechanics (e.g., how fast the fault slides, or the velocity of the

movement) -> the displacement/stress/friction happens heterogeneously (e.g., for some regions,
frictions increases with the velocity (unlikely to have seismic slip), others frictions decreases with

velocity (more likely to have seismic slip))
* You need different resolution and coefficients for different regions
* Resolution depends on the method you are using the solve the problem
» Coefficients are physically measured/observed (i.e., field experiments) are input to the simulation

« Summary - very challenging problem to solve and the most computationally expensive part is
calculating the displacement from linear elasticity (from solid mechanics) in 3D

Why matrix-free methods and GPU computing?

* We are solving big problems that are memory intensive:

* A problem that you wish to solve may involve a computational domain of hundreds of kms
with frictional length scale on the order of millimeters

* A simplified problem in 3D can easily exceed (1000 * 1000 * 1000 ~ 1 Billion unknowns),
>10 GB to store results, >100 GB to store the sparse matrix, > 1TB for matrix factorization

« Why GPU computing?
 GPUs have high bandwidth but limited memory capacity
* Limited memory capacity - ill suited for large problems using matrix-explicit solutions

* Therefore, we need a matrix-free method that greatly reduces memory footprint

Why SBP Operators and SBP-SAT Methods

o SBP-SAT summation-by-parts-simultaneous-approximation-terms

* vS. using matrix-free FEM - requires domain transformation (e.g., Fourier)
which is more costly than using neighborhood-based (i.e., stencil) in FDM

» Using transformation reduces accuracy because you don’t need to do the
transformation which creates weaker formulation of the problem

* Also, less complex to formulate the problem, especially for square-shaped
domains

 vs. traditional FDM methods, SBP-SAT numerical stabile when enforcing
boundary conditions

SBP-SAT Discretization in Matrix-explicit Form

The SBP-SAT discretization is given by

1 -2 1
—Dou = f+ b +b> +b" + b~ (1) I .
where D, = (I ®Dxx) + (Dyy & I) o

, , . . _ the red number resembles traditional Laplacian operator in the domain interior.
Is the discrete Laplacian operator in 2D and u is the grid function approximating the solution, formed

as a stacked vector of vectors.

The SAT terms b'Y, b>, b", b enforce all boundary conditions weakly. To illustrate the structure of
these vectors, the SAT term enforcing Dirichlet condition on the west boundary is given by

b" = a (H' @ I)(Eywu — e, g\) — (H—leOdOT ® I)(EWu — e, 2\)
The Linear system (1) is rendered SPD by multiplying of H @ H

If we move all the “u” to the left-hand-side, then you form the linear system Ax=Db

(Erickson, B. A. and Dunham, E. M. (2014))

Coordinate Transformation on GPUs

 For complex domain or variable coefficients, SBP-SAT methods can be
combined with coordinate transformation. (Kozdon et al. 2020)

* Coordinate transformation requires only local information in the Jacobian

matrices, similar to the stencil computation for Laplacian, which can be
calculated matrix-free.

e Jacobian matrices are stored as input data for GPU kernels (current

implementation), but can also be evaluated within GPU kernels to save
memory |/O (future work).

Problem Description

We are solving the 2D Poisson equation motivated by large scale earthquake cycle
simulations.

Simplification: Anti-plane strain, coordinate transformation for the domain (Kozdon et al.
2020)

@Q g0 (b)() face3

\ / > T 4 Hout |

—V .- (cVu)=Jf, for(r,s) €Q,

U= g, face 1,

face 1

face 2

-1 face 4 1

\/
Y S

U= g, face 2,

Hin

~3 /., — Q3
n C V U = J g 39 face 3’ Figure 1. (a) Geometrically complex physical domain {2 with
A _ 4 material stiffness that increases from u;, within a shallow,

n -C V U = J g 4 face 4, ellipsoidal sedimentary basin, to stiffer host rock given by ziout.
(b) 2 is transformed to the regular, square domain €2 via

conformal mapping.

General Purpose GPU Computing (GPGPU)

« GPU and CPU are optimized for different purposes

* Things are starting to change: AMD’s new 128-core EPYC
* Parallel Scheme: Single Instruction Multiple Data (SIMD)

Conne

> __'~ ‘ 2ot M h (e
* Toolkits for GPGPU: | IS
' . s Law ‘ence Liv eﬁfﬁ)ﬁé s
 CUDA (NVIDIA) is the mainstream platform - L ey |

= =AJ:..T’ *}

AMD {1

* OpenCL (CPUs + GPUs, different vendors)
« ROCm (AMD), oneAPI (Intel)

A Survey of General-Purpose Computation on Graphics Hardware, John D. Owens et. al The proposed exa-scale super computer El Capitan is built using AMD
CPUs and GPUs.

Matrix-free stencils for SBP-SAT method

e |dea: split the domain write simpler kernels for interior points

Matrix-free GPU kernel Action of matrix-free A for interior nodes

function mfA! (odata, idata, ¢, c,s, Css, Ry, hs)
1, 7 =get_global_thread _IDs()

g=0G—-1)*x(N+1)+7 > compute global index
if2<4,9<N > interior nodes
odata[g] = (hs/hr)(- (0.5¢,-[g-1] + 0.5¢,.-[g])1data[g-1] +

+ (0.5¢,[g-1] + ¢rr[g] - 0.5¢,-[g+1])idata[g] +

- (0.5¢,-[g] + 0.5¢,..[g+]1])1data[g+1]) + > compute M,., stencil

+ 0.5¢,5[g-1](-0.51data[g-/NV-2] + 0.51data[g+ N]) +
- 0.5¢,5[g+1](-0.51data[g- NV] + 0.51data[g+ N +1]) + > compute M, stencil

+ 0.5¢,5[g-N-1](-0.51data[g-N-2] + 0.51data[g- N]) +
- 0.5¢,s[g+N+1](-0.51data[g-N] + 0.51data[g+ N +2]) + > compute M, stencil

- (0.5¢c45[g-N-1] + 0.5¢c45[g]rdata[g-N-1] +
+ (0.5¢c45[g-N-1] + cs5[g] + 0.5¢cs5[g+N+1])1data[g] -
- (0.5¢45[g] + 0.5¢css[g+N+1]))idata[g+N+1))) > compute M, stencil

end
> boundary nodes, e.g. code block 1

return nothing
end

Matrix-free stencils for SBP-SAT method

» |dea: Write separate calculations for domain boundaries to avoid race condition

Matrix-free GPU kernel Action of matrix-free A for west boundary (face 1).

if2<i:< Nandj =1

odata[g] = (M!"* + M + M + M + C4™) (idata)
odata[g+1] = C'"*(idata)

odata[g+2] = C?"*(idata)

end

ifi:=1andj =1

odata[g] = (M + M?3¥ 4+ C7*) (idata)
odata[g+1] = C'{"(idata)

odata[g+2] = C7" (idata)

end

ifi:=N+1landj =1

odata[g] = (M** 4+ MY + C™") (idata)
odata[g+1] = C"™" (idata)

odata[g+2] = C'"™" (idata)

end

> interior west nodes

> apply boundary M and C stencils
> apply interior C' stencil

> apply interior C' stencil

> southwest corner node
> apply southwest partial M and C' stencils

> apply southwest interior boundary C stencil
> apply southwest interior boundary C stencil

> northwest corner node
> apply northwest partial M and C stencils

> apply northwest interior boundary C' stencil
> apply northwest interior boundary C' stencil

Matrix-free vs SpMV

Runtime Comparison (V100) Runtime Comparison(A100)

= matrix-free time (s) = SpMV time (s) = matrix-free time (s) = SpMV time (s)

20 10
8
15
m —~ 6
%10 <
o 4
E =
5 —
2
0 0
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192

Size N Size N

Performance [FLOP/s]

Roofline model

1E+13

1E+12

1E+11

1E+10

1E-02

Floating Point Operations Roofline

- Roofline = mfA arithmetic Intensity

1E-01 1E+00 1E+01

Arithmetic Intensity [FLOP/byte]

Floating Point Operations Roofline (Double Precision)

- DRAM roofline ® DRAM mfA - L2 roofline - L2 mfA -- L1 roofline - L1 mfA

1E+13

0

Q.

S 1E+12

L

O,

O

-

e 1E+11

£

Q. 4
1E+10

1E-03

1E-02

1E-01 1E+00 1E+01

Arithmetic Intensity [FLOP/byte]

1E+02

Multigrid Method

Two-Grid Correction Scheme

vl — MG(v", 1),

e Relax v; times on A"u” = f* on Q" with initial guess v".

e Compute the fine-grid residual r* = f* — A"v" and restrict it to the coarse
grid by r?* = Ifzbh'rh.

e Solve A2%he2h — p2h o 2k,

2h

e Interpolate the coarse-grid error to the fine grid by e” = Ié‘he and correct

the fine-grid approximation by v «— v" + e”.

e Relax 15 times on A"u” = f* on Q" with initial guess v".

A Two-level Multigrid Scheme from A Multigrid Tutorial 2nd Edition (Briggs, 2000)

Geometric or Algebraic Multigrid ?

How to form coarse grid operator A~"

. Geometric Multigrid: Forming A" directly on coarser grid similarly to A”->
SBP-SAT compatibility issue?

. Algebraic Multigrid / Galerkin Coarsening A*" = I,?hAhlfh

 SBP-preserving interpolatic%n operators:
I}%h = (H,, ® H,,)™! (Iélh) (H, ® H;) , where Ié’h is the standard prolongation
operator (Ruggiu, Andrea A et al. 2018, Briggs et al. 2000)

 We choose Geometric Multigrid

» Galerkin Coarsening or Algebraic Multigrid can assemble coarse grid automatically (“plug-in” solver),
however

* Writing different kernels for each grid level + compilation cost for matrix-free GPU kernels
* |Increased memory requirement if matrix-explicit methods are used

* |Interpolation operators in Geometric Multigrid

 SBP-SAT method is rendered SPD by the multiplication of the H matrix that contains grid information,
the residual for each level is “scaled” residual

 When interpolating the residuals, the SBP-preserving restriction operators need to be further modinied
with grid information. I]%h = (H,, ® th)l}%h(Hh X Hh)_l, which is essentially letting I,%h = (Ié“h)

* US

2

. Using Richardson Iteration M = x4 W, (b — Ax"*) and optimal W, = for each level. To
/lmax + ﬂmin

determine for eigenvalues for very large grid, we extrapolate eigenvalues from smaller grids

* 5 relaxation steps for pre-smoothing, post-smoothing and smoothing on the coarsest grid, Multi-level
multigrid to avoid the cost of direct solve on CPU

Multigrid Preconditioned CG

Table 4: Iterations and time to converge for N = 21° using 5
smoothing steps in PETSc PAMGCG with V cycle (first three
rows) vs. our MGCG using Richardson’s iteration as smoother
(last row)

Table 3: Iterations and time to converge for N = 2!? using 1
smoothing step in PETSc PAMGCG with V cycle (first three
rows) vs. our MGCG using Richardson’s iteration as smoother
(last row)

mg_levels_ksp_type mg_levels_pc_type iters time mg_levels_ksp_type mg_levels_pc_type iters time

sor 18 4.105 s sor 10 10.76 s
chebyshev jacobi 22 3.382s chebyshev jacobi 14 10.20 s
bjacobi 17 3.945 s bjacobi 9 10.58 s
sor 18 3.581s sor 9 10.13 s
richardson jacobi 49 3.729 s richardson jacobi DV 9.24s
bjacobi 16 3.729 s bjacobi 8 10.28 s
sor 17 4.081s sor 9 10.47 s
cg jacobi 23 3.849 s cg jacobi 13 10.54 s
bjacobi 16 3971s bjacobi 8 10.45 s
richardson none 11 0.086 s richardson none 8 0.069s

Table 7: Time to perform a direct solve after LU factorization on CPUs vs PCG on GPUs. We report time in seconds and iterations
to converge. For AmgX, we report setup + solve time. For our MGCG, setup time is negligible. “ns” is short for the number of
smoothing steps. GPU results are tested on A100.

N Direct Solve AmgX (ns = 1) AmgX (ns =5) SpMV-MGCG (ns =5) MF-MGCG (ns =5)
210 0.912s (0.0319 s+ 0.0243s) /25 (0.0321 s + 0.0435s) / 17 7.019E-2 s/ 8 2.851E-2s/ 8
211 6.007 s (0.086 s + 0.161 s) / 55 (0.086 s + 0.311 s) / 38 0.158 s/ 7 0.0605 s /7
212 22.382 s (0.310 s + 0.235 5) / 24 (0.323 s + 0.488 5) / 15 0.564s/7 0.207 s /7
213 134.697 s (1.334 s + 1.643 s) / 24 (1.217 s + 1.865 s) / 16 5.028 s/ 7 0.865s/7

Conclusions

 Matrix-Free GPU kernels for SBP operators not only save memory, but can be
much faster than SpMV kernels

 We adapted SBP-preserving interpolation operators to make it compatible
with the SBP-SAT scheme in geometric multigrid.

 (Geometric multigrid can be a very effective preconditioner for the SBP-SAT
method. The multigrid algorithm can also be implemented matrix-free.

« MGCG outperforms direct solve for large problem with much lower memory
requirement

Can we optimize the performance even more?

* Mixed precision strategy (made easier in matrix-free):

 GPUs have much higher performance with single precisions. Using single precision can
easily make GPU kernels run (at least) 2 times faster.

* |f single precision is used only for the MG preconditioner, the increase in overall PCG
iteration counts is negligible.

* Using higher-order matrix-free smoothers (second-order Richardson, Chebyshev iteration)
* Replacing V-cycle multigrid with F-cycle multigrid to reduce the cost

* Aggressive coarsening: interpolation for more than 1-level gives additional reduction in
complexity and increased scalability (e.g. BoomerAMG) (+ Machine Learning)

 When solving systems of equations like earthquake cycle simulation, using interpolated
initial guesses reduce iteration counts significantly (+ Machine Learning)

