

# Matrix-free Methods for Summation-by-Parts Finite Difference Operators on GPUs

Alexandre Chen ([yiminc@uoregon.edu](mailto:yiminc@uoregon.edu)), Brittany A. Erickson, Jee Whan Choi, University of Oregon  
Jeremy E. Kozdon, Naval Postgraduate School (now NextSilicon)

# Outline of the Talk

1. SBP operators and the SBP-SAT method
2. Problem description and motivation
3. Matrix-free GPU kernel for SBP-SAT
4. Multi-grid method for the SBP-SAT method
5. Multi-grid preconditioned conjugate gradient (CG) method
6. Conclusions and Future Work

# Problem Description

- Earthquake simulation
- Displacement of earth -> this tells you stress on the fault -> stress is combined with the friction to determine the earthquake mechanics (e.g., how fast the fault slides, or the velocity of the movement) -> the displacement/stress/friction happens heterogeneously (e.g., for some regions, frictions increases with the velocity (unlikely to have seismic slip), others frictions decreases with velocity (more likely to have seismic slip))
- You need different resolution and coefficients for different regions
  - Resolution depends on the method you are using to solve the problem
  - Coefficients are physically measured/observed (i.e., field experiments) are input to the simulation
- Summary - very challenging problem to solve and the most computationally expensive part is calculating the displacement from linear elasticity (from solid mechanics) in 3D

# Why matrix-free methods and GPU computing?

- We are solving big problems that are **memory intensive**:
  - A problem that you wish to solve may involve a computational domain of hundreds of kms with frictional length scale on the order of millimeters
  - A simplified problem in 3D can easily exceed ( $1000 * 1000 * 1000 \sim 1$  Billion unknowns),  
>10 GB to store results, >100 GB to store the sparse matrix, > 1TB for matrix factorization
- Why **GPU computing**?
  - GPUs have high bandwidth but limited memory capacity
    - Limited memory capacity - ill suited for large problems using matrix-explicit solutions
  - Therefore, we need a matrix-free method that greatly reduces memory footprint

# Why SBP Operators and SBP-SAT Methods

- SBP-SAT summation-by-parts-simultaneous-approximation-terms
- vs. using matrix-free FEM - requires domain transformation (e.g., Fourier) which is more costly than using neighborhood-based (i.e., stencil) in FDM
- Using transformation reduces accuracy because you don't need to do the transformation which creates weaker formulation of the problem
- Also, less complex to formulate the problem, especially for square-shaped domains
- vs. traditional FDM methods, SBP-SAT numerical stable when enforcing boundary conditions
-

# SBP-SAT Discretization in Matrix-explicit Form

The SBP-SAT discretization is given by

$$-\mathbf{D}_2 \mathbf{u} = \mathbf{f} + \mathbf{b}^N + \mathbf{b}^S + \mathbf{b}^W + \mathbf{b}^E, \quad (1)$$

$$\text{where } \mathbf{D}_2 = (\mathbf{I} \otimes \mathbf{D}_{xx}) + (\mathbf{D}_{yy} \otimes \mathbf{I})$$

$$\mathbf{D}_{xx} = \frac{1}{h^2} \begin{bmatrix} 1 & -2 & 1 & & & \\ 1 & -2 & 1 & & & \\ \ddots & \ddots & \ddots & \ddots & & \\ & & 1 & -2 & 1 & \\ & & 1 & -2 & 1 & \end{bmatrix}$$

the red number resembles traditional Laplacian operator in the domain interior.  
is the discrete Laplacian operator in 2D and  $\mathbf{u}$  is the grid function approximating the solution, formed as a stacked vector of vectors.

The SAT terms  $\mathbf{b}^N, \mathbf{b}^S, \mathbf{b}^W, \mathbf{b}^E$  enforce all boundary conditions weakly. To illustrate the structure of these vectors, the SAT term enforcing Dirichlet condition on the west boundary is given by

$$\mathbf{b}^W = \alpha (\mathbf{H}^{-1} \otimes \mathbf{I})(\mathbf{E}_W \mathbf{u} - \mathbf{e}_W^T \mathbf{g}_W) - (\mathbf{H}^{-1} \mathbf{e}_0 \mathbf{d}_0^T \otimes \mathbf{I})(\mathbf{E}_W \mathbf{u} - \mathbf{e}_W^T \mathbf{g}_W)$$

The Linear system (1) is rendered SPD by multiplying of  $\mathbf{H} \otimes \mathbf{H}$

If we move all the “u” to the left-hand-side, then you form the linear system  $\mathbf{A}\mathbf{x}=\mathbf{b}$

# Coordinate Transformation on GPUs

- For complex domain or variable coefficients, SBP-SAT methods can be combined with coordinate transformation. (**Kozdon** et al. 2020)
  - Coordinate transformation requires only local information in the Jacobian matrices, similar to the stencil computation for Laplacian, which can be calculated matrix-free.
  - Jacobian matrices are stored as input data for GPU kernels (current implementation), but can also be evaluated within GPU kernels to save memory I/O (future work).

# Problem Description

We are solving the 2D Poisson equation motivated by large scale earthquake cycle simulations.

Simplification: Anti-plane strain, coordinate transformation for the domain (**Kozdon et al. 2020**)

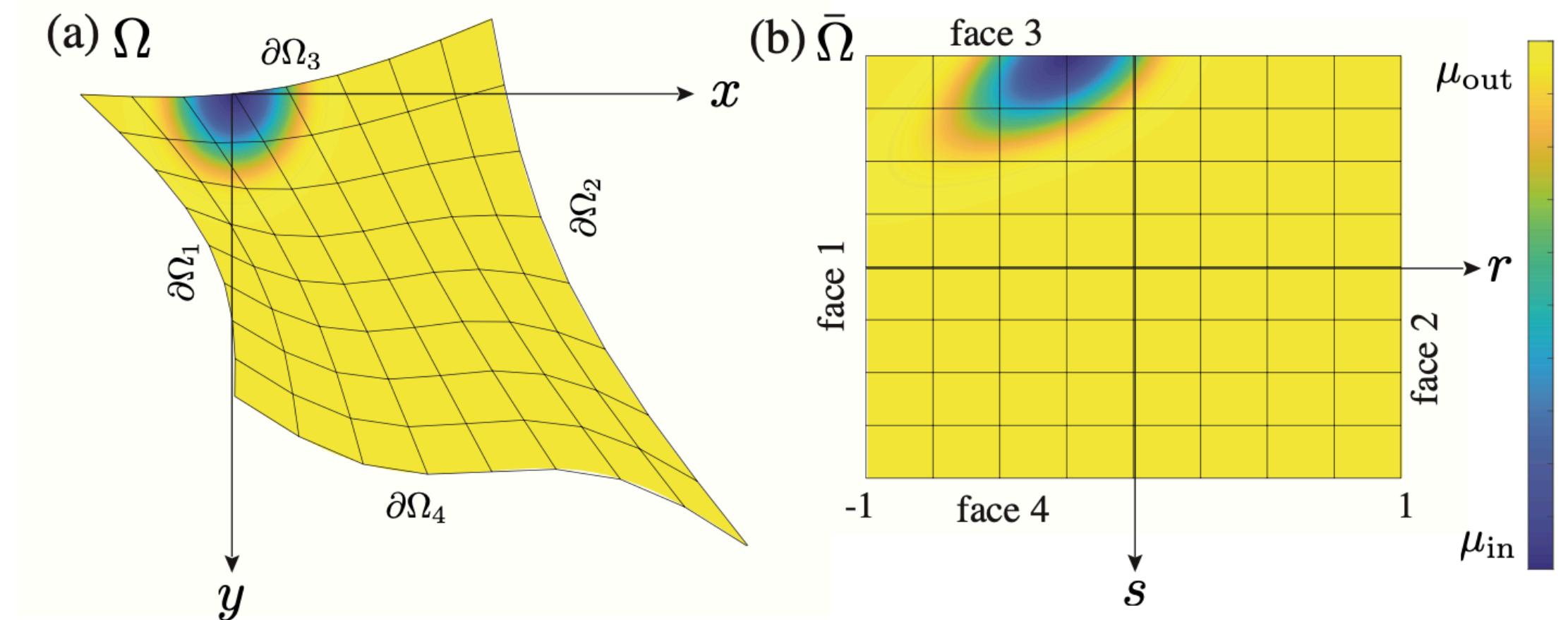
$$-\bar{\nabla} \cdot (\mathbf{c} \bar{\nabla} u) = Jf, \quad \text{for } (r, s) \in \bar{\Omega},$$

$$u = g_1, \quad \text{face 1,}$$

$$u = g_2, \quad \text{face 2,}$$

$$\hat{\mathbf{n}}^3 \cdot \mathbf{c} \bar{\nabla} u = S_J^3 g_3, \quad \text{face 3,}$$

$$\hat{\mathbf{n}}^4 \cdot \mathbf{c} \bar{\nabla} u = S_J^4 g_4, \quad \text{face 4,}$$



**Figure 1.** (a) Geometrically complex physical domain  $\Omega$  with material stiffness that increases from  $\mu_{in}$  within a shallow, ellipsoidal sedimentary basin, to stiffer host rock given by  $\mu_{out}$ . (b)  $\Omega$  is transformed to the regular, square domain  $\bar{\Omega}$  via conformal mapping.

# General Purpose GPU Computing (GPGPU)

- GPU and CPU are optimized for different purposes



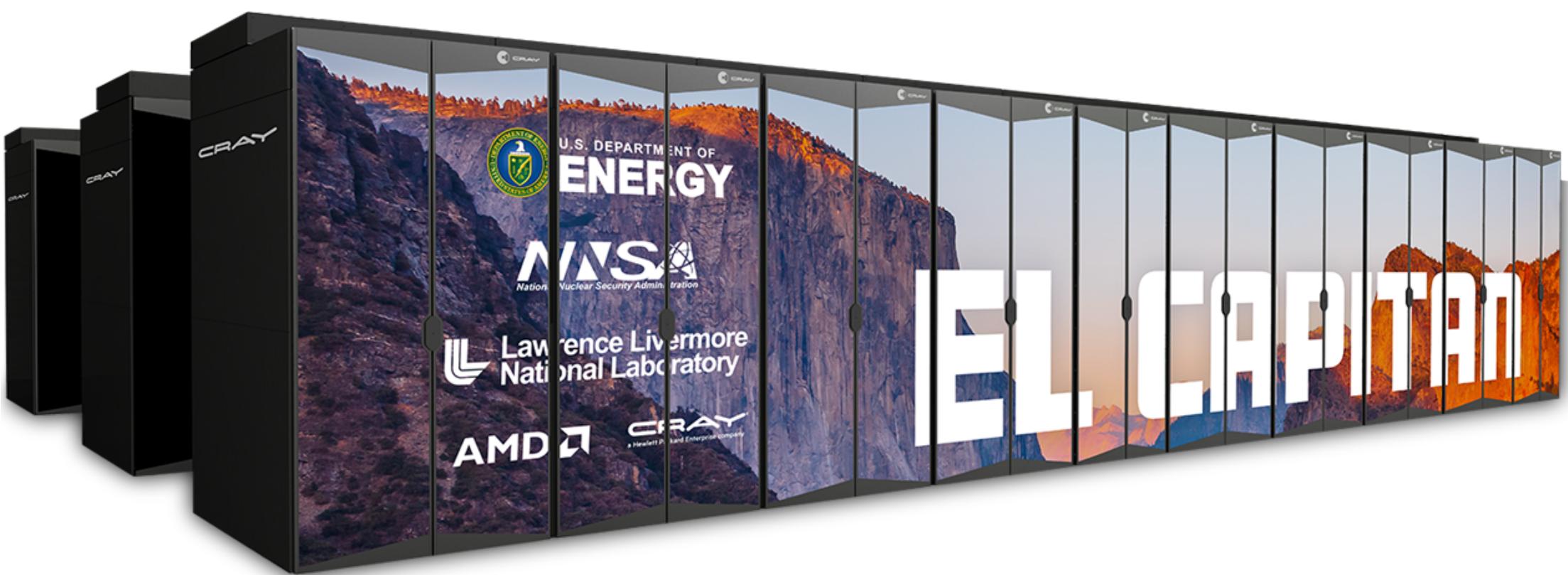
- CPU: more versatile, **low latency**, small number of faster cores
  - GPU: less versatile, high latency but **high throughput**, large number of slower cores in parallel
  - Things are starting to change: AMD's new 128-core EPYC



- Parallel Scheme: Single Instruction Multiple Data (SIMD)

- Toolkits for GPGPU:

- CUDA (NVIDIA) is the mainstream platform
  - OpenCL (CPUs + GPUs, different vendors)
  - ROCm (AMD), oneAPI (Intel)



# Matrix-free stencils for SBP-SAT method

- Idea: split the domain write simpler kernels for interior points

---

**Matrix-free GPU kernel** Action of matrix-free  $A$  for interior nodes

---

```
function mfa! (odata, idata, crr, crs, css, hr, hs)
    i, j = get_global_thread_IDs()
    g = (i - 1) * (N + 1) + j                                ▷ compute global index
    if 2 ≤ i, j ≤ N                                           ▷ interior nodes
        odata[g] = (hs/hr)(- (0.5crr[g-1] + 0.5crr[g])idata[g-1] +
                                + (0.5crr[g-1] + crr[g] - 0.5crr[g+1])idata[g] +
                                - (0.5crr[g] + 0.5crr[g+1])idata[g+1]) +           ▷ compute  $M_{rr}$  stencil
                                + 0.5crs[g-1](-0.5idata[g-N-2] + 0.5idata[g+N]) +
                                - 0.5crs[g+1](-0.5idata[g-N] + 0.5idata[g+N+1]) +           ▷ compute  $M_{rs}$  stencil
                                + 0.5crs[g-N-1](-0.5idata[g-N-2] + 0.5idata[g-N]) +
                                - 0.5crs[g+N+1](-0.5idata[g-N] + 0.5idata[g+N+2]) +           ▷ compute  $M_{sr}$  stencil
                                - (0.5css[g-N-1] + 0.5css[g])idata[g-N-1] +
                                + (0.5css[g-N-1] + css[g] + 0.5css[g+N+1])idata[g] -
                                - (0.5css[g] + 0.5css[g+N+1])idata[g+N+1]))           ▷ compute  $M_{ss}$  stencil
    end
    ...
    return nothing
end
```

---

# Matrix-free stencils for SBP-SAT method

- Idea: Write separate calculations for domain boundaries to avoid race condition

---

## Matrix-free GPU kernel Action of matrix-free $A$ for west boundary (face 1).

---

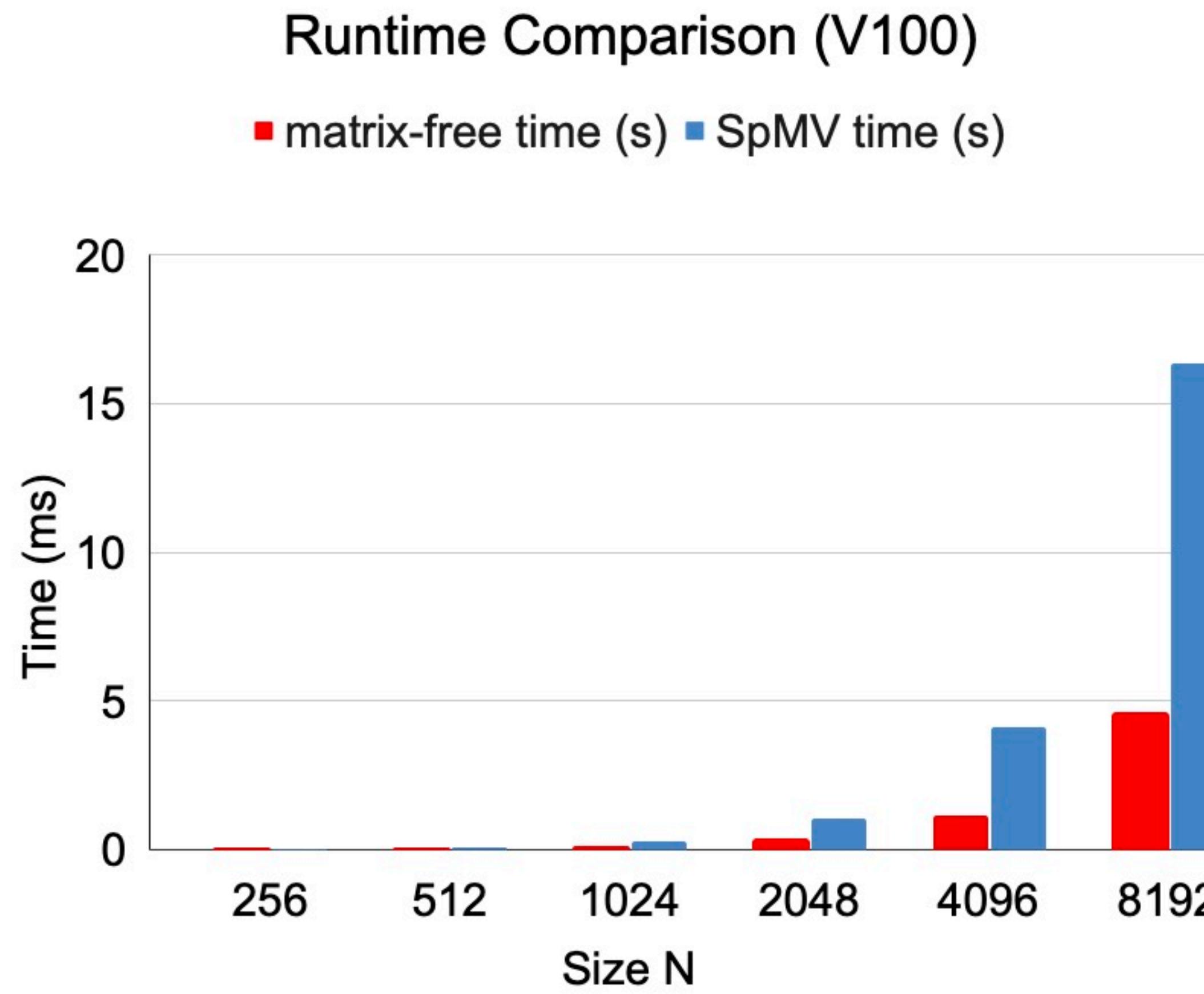
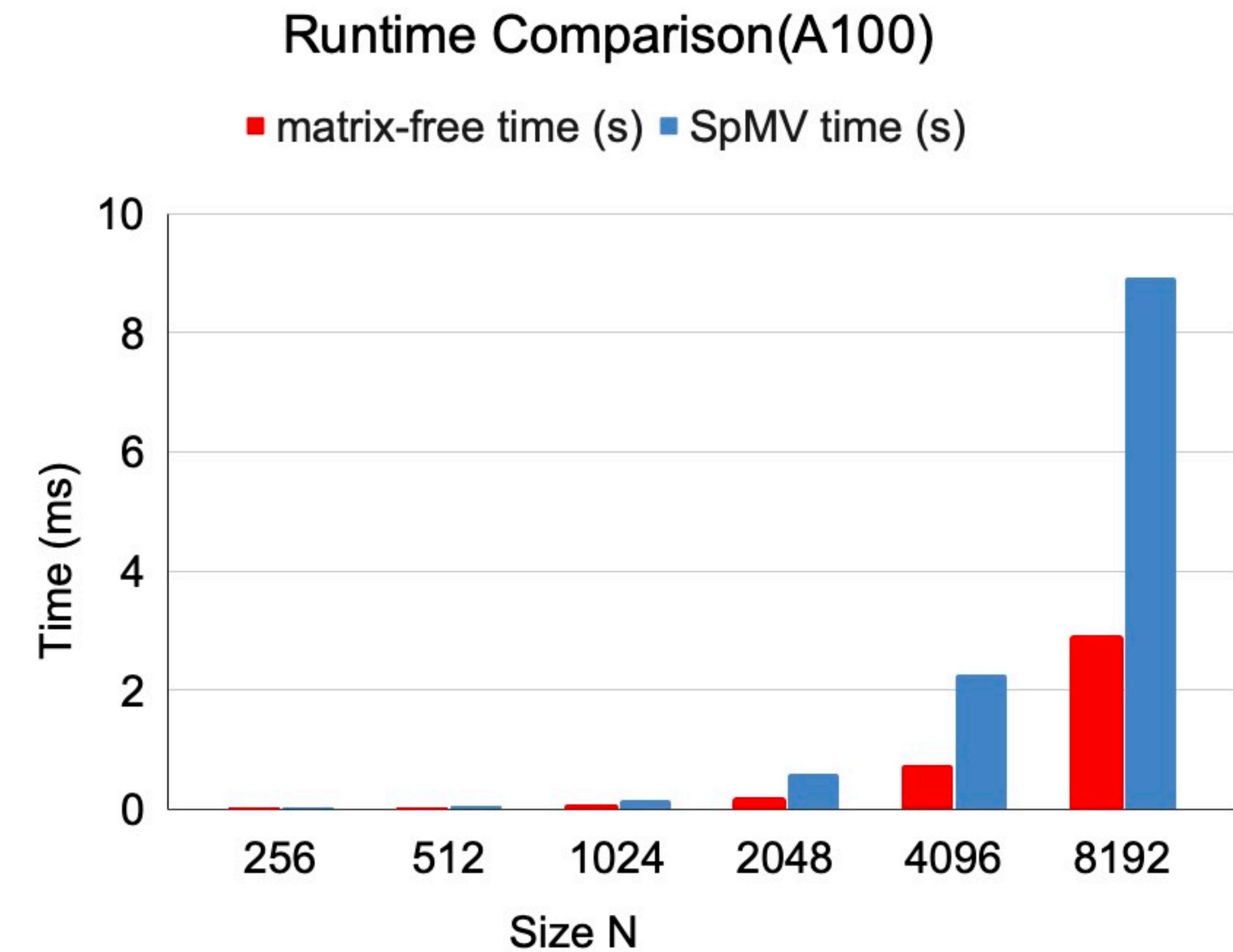
```
if  $2 \leq i \leq N$  and  $j = 1$                                 ▷ interior west nodes
  odata[g] =  $(M_{rr}^{int} + M_{rs}^{int} + M_{sr}^{int} + M_{sr}^{int} + C_1^{int})$  (idata)    ▷ apply boundary  $M$  and  $C$  stencils
  odata[g+1] =  $C_1^{int}$  (idata)                                ▷ apply interior  $C$  stencil
  odata[g+2] =  $C_1^{int}$  (idata)                                ▷ apply interior  $C$  stencil
end

if  $i = 1$  and  $j = 1$                                 ▷ southwest corner node
  odata[g] =  $(M_{rr}^{sw} + M_{rs}^{sw} + C_1^{sw})$  (idata)    ▷ apply southwest partial  $M$  and  $C$  stencils
  odata[g+1] =  $C_1^{sw}$  (idata)                                ▷ apply southwest interior boundary  $C$  stencil
  odata[g+2] =  $C_1^{sw}$  (idata)                                ▷ apply southwest interior boundary  $C$  stencil
end

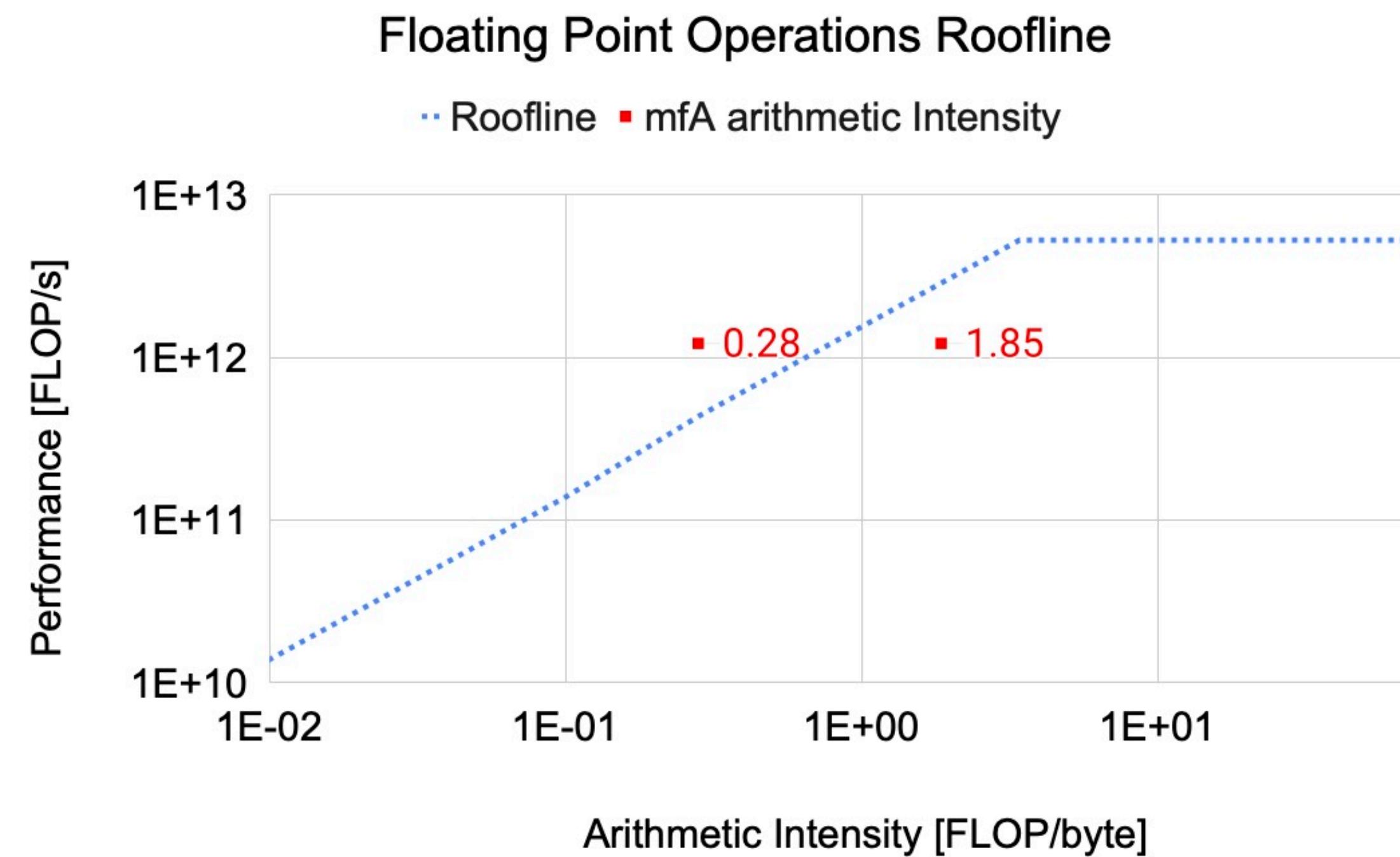
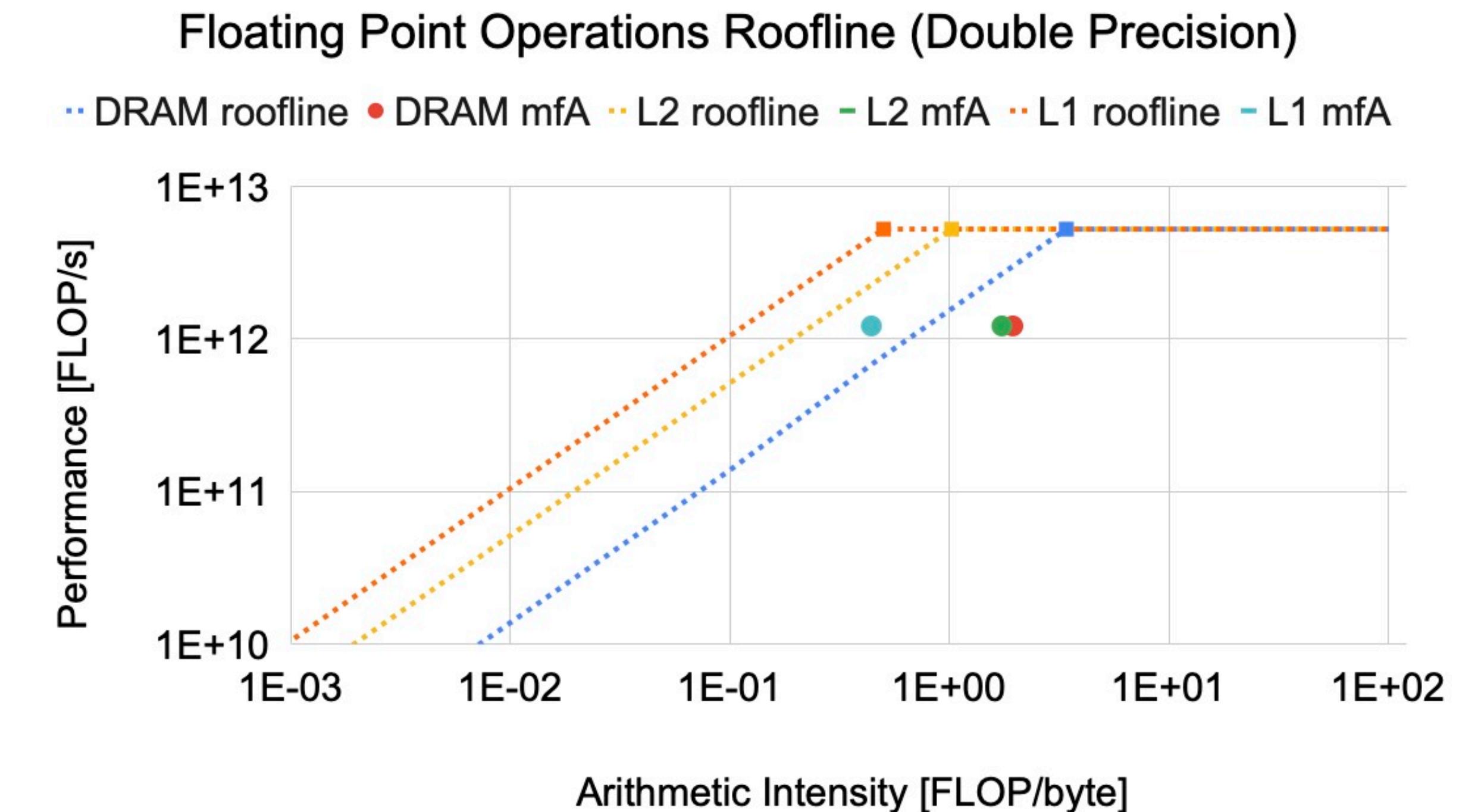
if  $i = N + 1$  and  $j = 1$                                 ▷ northwest corner node
  odata[g] =  $(M_{rr}^{nw} + M_{rs}^{nw} + C^{nw})$  (idata)    ▷ apply northwest partial  $M$  and  $C$  stencils
  odata[g+1] =  $C^{nw}$  (idata)                                ▷ apply northwest interior boundary  $C$  stencil
  odata[g+2] =  $C^{nw}$  (idata)                                ▷ apply northwest interior boundary  $C$  stencil
end
```

---

# Matrix-free vs SpMV



# Roofline model



# Multigrid Method

## Two-Grid Correction Scheme

$$\mathbf{v}^h \leftarrow MG(\mathbf{v}^h, \mathbf{f}^h).$$

- Relax  $\nu_1$  times on  $A^h \mathbf{u}^h = \mathbf{f}^h$  on  $\Omega^h$  with initial guess  $\mathbf{v}^h$ .
- Compute the fine-grid residual  $\mathbf{r}^h = \mathbf{f}^h - A^h \mathbf{v}^h$  and restrict it to the coarse grid by  $\mathbf{r}^{2h} = I_h^{2h} \mathbf{r}^h$ .
- Solve  $A^{2h} \mathbf{e}^{2h} = \mathbf{r}^{2h}$  on  $\Omega^{2h}$ .
- Interpolate the coarse-grid error to the fine grid by  $\mathbf{e}^h = I_{2h}^h \mathbf{e}^{2h}$  and correct the fine-grid approximation by  $\mathbf{v}^h \leftarrow \mathbf{v}^h + \mathbf{e}^h$ .
- Relax  $\nu_2$  times on  $A^h \mathbf{u}^h = \mathbf{f}^h$  on  $\Omega^h$  with initial guess  $\mathbf{v}^h$ .

# Geometric or Algebraic Multigrid ?

How to form coarse grid operator  $A^{2h}$

- Geometric Multigrid: Forming  $A^{2h}$  directly on coarser grid similarly to  $A^h$ -> SBP-SAT compatibility issue?
- Algebraic Multigrid / Galerkin Coarsening  $A^{2h} = I_h^{2h} A^h I_{2h}^h$
- SBP-preserving interpolation operators:  
 $I_h^{2h} = (H_{2h} \otimes H_{2h})^{-1} (I_{2h}^h)^T (H_h \otimes H_h)$ , where  $I_{2h}^h$  is the standard prolongation operator (**Ruggiu, Andrea A et al. 2018**, **Briggs et al. 2000**)

- We choose **Geometric Multigrid**
  - Galerkin Coarsening or Algebraic Multigrid can assemble coarse grid automatically (“plug-in” solver), however
    - Writing different kernels for each grid level + compilation cost for matrix-free GPU kernels
    - Increased memory requirement if matrix-explicit methods are used
  - Interpolation operators in Geometric Multigrid
    - SBP-SAT method is rendered SPD by the multiplication of the  $H$  matrix that contains grid information, the residual for each level is “scaled” residual
    - When interpolating the residuals, the SBP-preserving restriction operators need to be further modified with grid information.  $\tilde{I}_h^{2h} = (H_{2h} \otimes H_{2h}) I_h^{2h} (H_h \otimes H_h)^{-1}$ , which is essentially letting  $\tilde{I}_h^{2h} = (I_{2h}^h)^T$
    - us
- Using **Richardson Iteration**  $x^{k+1} = x^k + \omega_k(b - Ax^k)$  and optimal  $\omega_k = \frac{2}{\lambda_{max} + \lambda_{min}}$  for each level. To determine for eigenvalues for very large grid, we **extrapolate** eigenvalues from smaller grids
- 5 relaxation steps for pre-smoothing, post-smoothing and smoothing on the coarsest grid, Multi-level multigrid to avoid the cost of direct solve on CPU

# Multigrid Preconditioned CG

**Table 3: Iterations and time to converge for  $N = 2^{10}$  using 1 smoothing step in PETSc PAMGCG with V cycle (first three rows) vs. our MGCG using Richardson's iteration as smoother (last row)**

| mg_levels_ksp_type | mg_levels_pc_type | iters | time    |
|--------------------|-------------------|-------|---------|
| chebyshev          | sor               | 18    | 4.105 s |
|                    | jacobi            | 22    | 3.382 s |
|                    | bjacobi           | 17    | 3.945 s |
| richardson         | sor               | 18    | 3.581 s |
|                    | jacobi            | 49    | 3.729 s |
|                    | bjacobi           | 16    | 3.729 s |
| cg                 | sor               | 17    | 4.081 s |
|                    | jacobi            | 23    | 3.849 s |
|                    | bjacobi           | 16    | 3.971 s |
| richardson         | none              | 11    | 0.086 s |

**Table 4: Iterations and time to converge for  $N = 2^{10}$  using 5 smoothing steps in PETSc PAMGCG with V cycle (first three rows) vs. our MGCG using Richardson's iteration as smoother (last row)**

| mg_levels_ksp_type | mg_levels_pc_type | iters | time    |
|--------------------|-------------------|-------|---------|
| chebyshev          | sor               | 10    | 10.76 s |
|                    | jacobi            | 14    | 10.20 s |
|                    | bjacobi           | 9     | 10.58 s |
| richardson         | sor               | 9     | 10.13 s |
|                    | jacobi            | DV    | 9.24 s  |
|                    | bjacobi           | 8     | 10.28 s |
| cg                 | sor               | 9     | 10.47 s |
|                    | jacobi            | 13    | 10.54 s |
|                    | bjacobi           | 8     | 10.45 s |
| richardson         | none              | 8     | 0.069s  |

**Table 7: Time to perform a direct solve after LU factorization on CPUs vs PCG on GPUs. We report time in seconds and iterations to converge. For AmgX, we report setup + solve time. For our MGCG, setup time is negligible. “ns” is short for the number of smoothing steps. GPU results are tested on A100.**

| $N$      | Direct Solve | AmgX (ns = 1)                                | AmgX (ns = 5)                                | SpMV-MGCG (ns = 5) | MF-MGCG (ns = 5) |
|----------|--------------|----------------------------------------------|----------------------------------------------|--------------------|------------------|
| $2^{10}$ | 0.912 s      | $(0.0319 \text{ s} + 0.0243 \text{ s}) / 25$ | $(0.0321 \text{ s} + 0.0435 \text{ s}) / 17$ | 7.019E-2 s / 8     | 2.851E-2 s / 8   |
| $2^{11}$ | 6.007 s      | $(0.086 \text{ s} + 0.161 \text{ s}) / 55$   | $(0.086 \text{ s} + 0.311 \text{ s}) / 38$   | 0.158 s / 7        | 0.0605 s / 7     |
| $2^{12}$ | 22.382 s     | $(0.310 \text{ s} + 0.235 \text{ s}) / 24$   | $(0.323 \text{ s} + 0.488 \text{ s}) / 15$   | 0.564 s / 7        | 0.207 s / 7      |
| $2^{13}$ | 134.697 s    | $(1.334 \text{ s} + 1.643 \text{ s}) / 24$   | $(1.217 \text{ s} + 1.865 \text{ s}) / 16$   | 5.028 s / 7        | 0.865 s / 7      |

# Conclusions

- Matrix-Free GPU kernels for SBP operators not only save memory, but can be much faster than SpMV kernels
- We adapted SBP-preserving interpolation operators to make it compatible with the SBP-SAT scheme in geometric multigrid.
- Geometric multigrid can be a very effective preconditioner for the SBP-SAT method. The multigrid algorithm can also be implemented matrix-free.
- MGCG outperforms direct solve for large problem with much lower memory requirement

# Can we optimize the performance even more?

- Mixed precision strategy (made easier in matrix-free):
  - GPUs have much higher performance with single precisions. Using single precision can easily make GPU kernels run (at least) 2 times faster.
  - If single precision is used only for the MG preconditioner, the increase in overall PCG iteration counts is negligible.
- Using higher-order matrix-free smoothers (second-order Richardson, Chebyshev iteration)
- Replacing V-cycle multigrid with F-cycle multigrid to reduce the cost
- Aggressive coarsening: interpolation for more than 1-level gives additional reduction in complexity and increased scalability (e.g. BoomerAMG) (+ Machine Learning)
- When solving systems of equations like earthquake cycle simulation, using interpolated initial guesses reduce iteration counts significantly (+ Machine Learning)