
CIS 330
C++ and Unix
Lecture 2

Intro to C (I/O and Operators)

Logistics

COVID containment plans for classes

https://provost.uoregon.edu/covid-containment-plan-classes

Prevention: To prevent or reduce the spread of COVID-19 in classrooms and on campus, all
students and employees must:

● Comply with vaccination policy
a. University of Oregon students and employees are required to be fully

vaccinated against COVID-19 prior to the start of the fall academic term.
● Wear face coverings in all indoor spaces on UO campus
● Complete weekly testing if not fully vaccinated or exempted
● Wash hands frequently and practice social distancing when possible
● Complete daily self-checks
● Say home/do not come to campus if feeling symptomatic
● Complete the UO COVID-19 case and contact reporting form if you test positive or have

been in close contact with a confirmed or presumptive case.

https://provost.uoregon.edu/covid-containment-plan-classes
https://coronavirus.uoregon.edu/vaccine
https://coronavirus.uoregon.edu/prevention#face-coverings
https://coronavirus.uoregon.edu/testing
https://coronavirus.uoregon.edu/prevention#healthy-hand-washing
https://coronavirus.uoregon.edu/prevention#health-checks
https://coronavirus.uoregon.edu/prevention#if-sick-stay-home
https://oregon.qualtrics.com/jfe/form/SV_6lfKVJkE0jAGPvn

Logistics

Containment: If a student in class tests positive for COVID-19, everyone should :

● Expect and follow guidance in classroom notification
● Answer the call if contact by the Corona Corps (541-356-2292)
● Isolate if you test positive or are symptomatic
● Quarantine if you are a close contact
● Test weekly if you are unvaccinated or partially vaccinated
● Stay home if symptomatic and complete the Complete the UO COVID-19 case and

contact reporting form

https://oregon.qualtrics.com/jfe/form/SV_6lfKVJkE0jAGPvn
https://oregon.qualtrics.com/jfe/form/SV_6lfKVJkE0jAGPvn

Logistics

Good Classroom Citizenship

● Wear your mask and make sure it fits you well
● Stay home if you’re sick
● Get to know your neighbors in class, and let them know if you test positive
● Get tested regularly
● Watch for signs and symptoms with the daily symptom self-check
● Wash your hands frequently or use hand sanitizer
● Complete the UO COVID-19 case and contact reporting form if you test positive or are a

close contact of someone who tests positive.

https://oregon.qualtrics.com/jfe/form/SV_6lfKVJkE0jAGPvn

Logistics

Support: The following resources are available to students.

● University Health Services or call (541) 346-2770
● University Counseling Center or call (541) 346-3277 or (541)

346-3227 (after hrs.)
● MAP Covid-19 Testing
● Corona Corps or call (541) 346-2292
● Academic Advising or call (541) 346-3211
● Dean of Students or call (541)-346-3216

https://health.uoregon.edu/
https://counseling.uoregon.edu/
https://coronavirus.uoregon.edu/testing#students
https://coronavirus.uoregon.edu/corona-corps
https://advising.uoregon.edu/
https://dos.uoregon.edu/

Logistics
Other things:

● Be courteous to others
● Eating and drinking is not allowed in class
● Any issues (e.g., non-compliance to masks) may result in a

cancelled class (with an optional make-up class)

Course
Website & Info

● jeewhanchoi.com/uocis330w22/

● Description
● Practical software design and programming activities in a

C/C++ and Unix environment, with emphasis on the details of
C/C++ and good programming style/practices.

● Prerequisite
● CIS 314 (Computer Organization)

Instructor &
TA

● Instructor
● Jeewhan Choi (Jee)

● TA
● Aktilek Zhumadil

● Office Hours
● Instructor

● Tuesday, Thursday 10:00 – 11:00 and by appointment
● TA

● Tuesday, Thursday 11:00 – 1:00

Textbook
● Physical textbook is not required for this class

● See the class website for online text and resources

Grading

Criteria Percentage

Homework 40%

Lab 10%

Quiz 10%

Midterm 20%

Final 20%

Grading

Score Letter Grade

97 - 100 A+

93 - 96 A

90 - 92 A-

87 - 89 B+

83 - 86 B

80 - 82 B-

77 - 79 C+

73 - 76 C

70 - 72 C-

67 - 69 D+

63 - 66 D:

60 - 62 D-

< 60 F

Scores will NOT be rounded up. For example, 96.9 is a A.

Homework

● Assigned every Wednesday
● Due the following Wednesday, 11:59 PM PST (usually)

● Lab attendance is required - grade will be based on lab submission
& attendance

● One lowest lab grade will be dropped

● Quiz will be given randomly on the materials covered in the
previous class

● Solutions will be discussed during class

● Submission of any homework/lab/quiz will NOT be allowed after it
has been discussed in class

Grading

● All homework will be graded on functionality and aesthetics
● Proper use of comments, white space, indentation, intuitive

variable names, etc.

● Code that does not compile will be given 0
● Must compile with “-std=c11” for C code, and “-std=c++14” for

C++ code
● Must compile and run on ix-dev (with the software available for

everyone on the system)

● Late homework will not be graded, except

● prior arrangement have been made at least 24 hours prior to
the due date, or

● documented emergencies

● Use version control
● e.g., one single large commit may be subject to point deduction

● Develop code in Unix/Linux environment
● e.g., any sign of Visual Basic or non-Unix/Linux environment

may be subject to point deduction

Exams
Midterm

Tuesday, Feb. 1st (week 5)

Final

Monday Mar. 14 8:00 - 10:00 (2 hours)

Questions?

Last lecture -
the Unix and
Linux OS

Operating System

Kernel

CPU

Applications

DevicesMemory

Version
Control
Systems (VCS)

● A method for tracking changes to files

● A way to work collaboratively

● A way to maintain a centralized or distributed shared copy

of projects

Why is it
useful?

Individuals

● Backups

● Incremental versions (can
revert)

● Tagging

● Branching

● Complete change history

Groups

● Same as individuals

● Allow multiple developers
to work on the same project

● Merge changes and
handle conflicts

● Accurately assign blame

Types
● Centralized
● Distributed

Main Trunk

Sue

Recipe

+ eggs

Recipe
eggs

+ flour

Joe

Recipe
eggs
flour + sugar

Sam

Recipe
eggs
flour
sugar

r1 r2 r3 r4

Centralized

Examples of
Centralized
VCS

● Concurrent Version System (CVS)
● Apache Subversion (SVN)

+sugar

Recipe

Sue

+eggs

+flour

Jill

Sam

Recipe
eggs
flour
sugar

Branch

+eggs

+eggs

+flour

+sugar

Distributed
+flour

Examples of
Distributed
VCS (DVCS)

● Git (not Jit)
● Mercurial
● Bazaar

Centralized vs.
Distributed

Centralized

● Does not requires extra
space (especially if you
have big binaries)

● Easier to keep track of
changes

Distributed

● Faster to commit changes
(less communication to the
central repository)

● No single point of failure
(each copy is “complete”)

● Available offline

Reading ● Git Book Chapters 1-3

Git workflow

Working
directory

Staging
area

Git directory
(repository)

Checkout the repository

Stage files

Commit

Example

> git init

Initialized empty Git repository in
/gpfs/projects/hpctensor/jeec/class/2019/S19/CIS330/.git/

> git add lecture02.c

> git commit -m "first lecture code"

> git log

commit dfaa4e86109a427e32783b6ed72a4793b91f3d65

Author: Jee Choi <jeec@talapas-ln1.cm.cluster>

Date: Fri Mar 15 18:34:16 2019 -0700

 first lecture code

Do not add binaries and object files to your repo - just the code and other files
necessary to compiling your code

Do not add swap files (e.g., when you are using vim, it creates .swp files)

Always make sure to read all messages from git

● If you have a merge conflict, fix it and make sure the code compiles before you
submit your assignment

Always keep committing your code at regular intervals and push it to Bitbucket

● If something goes wrong with your repo, you can always clone it and start from
the last “save point.”

Live demonstration of using Git (if time allows)

Questions?

The C
Language

● Functional program – a program consists of a set of functions

● Each function consists of a set of statements
● Each statement ends with a semicolon
● Comments can be added to describe your statements, functions,

etc.
● // This is a comment (comments a line)
● /* This is also a comment */ (can span multiple lines)

● Please comment your code!
● Believe me, you won’t remember what you wrote after X month

Simple C
Program

1. #include <stdio.h> /* Needed for printf and getchar */

2.

3. int main()

4. {

5. char userInput;

6.

7. printf("Are you having a nice day? (y/n)? ");

8.

9. userInput = getchar();

10.

11. if (userInput == 'y') {

12. printf("That's wonderful, so am I!\n");

13. } else {

14. printf("That sucks, just try again tomorrow.\n");

15. }

16.

17. return 0;

18. }

Compiling and
Running Your
Code

● gcc is a compiler that converts your source code to machine code
so that the processor can execute it (e.g., GNU compiler collection,
or gcc)

● It generates an executable that you can run (typically a.out in
Linux)

> gcc –std=c11 main.c

> ./a.out

Data Types

● Integers – int

● Character – char

● Floating point numbers – float, double
● float -> single precision
● double -> double precision
● Since you can’t have infinite precision (you would need infinite

amount of memory), you use different number of bits to represent
decimal numbers.

● Consist of significand (e.g., 6.667) and exponent (e.g., -11) to
represent the final value (e.g., 0.00000000006667).

● You can also “extend” the range of values
● long int
● long double

● Data can be ”stored” in variables
● Variable names are made up of letters, numbers, and _
● However, it cannot begin with a digit

Special
characters

● ‘\n’ newline

● ’\t’ tab

● ‘\\’ backslash

● And more…

Standard
input & output
(I/O)

● Three pre-defined I/O “streams”:
● stdin (standard input – i.e., keyboard)
● stdout (standard output – i.e., screen)
● stderr (standard error – i.e., screen)
● There are others…

● printf
● Prints a string to the standard out

● fprintf
● You can specify which stream to write to
● fprintf(stdout, "That's wonderful, so am I!\n");

● getchar
● Get a char from the standard input

● scanf
● Get an input from the standard input
● scanf(“%c”, &userInput);
● There is also fscanf

Standard
input & output
(I/O)

● How do you print the content of a variable?

● fprintf(stdout, ”5 + 5 is %d\n”, some_number);

● %d indicates that the variable you want to print here is an integer

● %f -> floating point number

● %c -> character

● %s -> string (more on this later)

● Works similarly for input

File I/O

FILE* fp = fopen("example.txt", "r");

char line[100];

while(fgets(line, 100, fp) != NULL) {

 fprintf(stdout, "%s", line);

}

fclose(fp);

Arithmetic

● Addition
● + (binary)
● ++ (unary)
● e.g., i = k++ -> i = k; k = k + 1;
● e.g., i = ++k -> k = k + 1; i = k;

● Subtraction
● - (binary)
● -- (unary)

● Multiplication
● * (binary)

● Division
● / (binary)

● Modulus (remainder)
● % (binary)
● e.g., i = 10 % 3 -> i = 1

● There are also ternary operators (i.e., operations with three variables)

Logical
Operators

● && – Logical AND

● || – Logical OR

● ! – Logical NOT

Bit-wise
Operators

● & - AND
● e.g., 0101 & 1110 -> 0100

● | - OR

● ^ - XOR

● ~ - 1’s complement
● Flip each bit

● << - Shift left

● >> - Shift right
● Do not use shift operators on negative or very large numbers

(unpredictable behavior)
● Equivalent to multiply/divide by 2
● Faster than division/multiplication

Relational
Operators

● Equality
● ==
● If (a == b) { /* Do something if they are equal */ }

● Inequality
● !=
● If (a != b) { /* Do something if they are NOT equal */ }

● Greater/Less than
● >, >=, <, <=

Assignment
● a = b /* A gets the value of b */

● Combinations
● +=, -=, *=, /=, &=, >>=, <<=, &=, ^=, !=
● a += b -> a = a+ b

Control Flow

● if

● switch

● Repetition
● while
● do
● for

● Branching
● break
● continue
● goto

if conditional

1. int i = 1;

2. int j = 2;

3.

4. if(i == j) {

5. printf("Hello\n");

6. } else {

7. printf("Good bye\n");

8. }

if conditional

1. int i = 1;

2. int j = 2;

3.

4. if(i == j) {

5. printf("Hello\n");

6. } else if(i <= j) {

7. printf(”Hola\n");

8. } else {

9. printf("Good bye\n");

10. }

if conditional
(ternary)

1. a ? b : c -> if a is true then the expression evaluates to b, otherwise
to c

2. (i == j) ? printf(“A\n”) : printf(“B\n”);

switch

1. int input_int;

2. fscanf(stdin, "%d", &input_int);

3. switch (input_int + 1) {

4. case 1:

5. printf("You entered '0'\n");

6. break;

7. case 2:

8. printf("You entered '1'\n");

9. break;

10. default:

11. printf("What did you enter?\n");

12. }

while

1. int i = 0;

2. while(i < 10) {

3. fprintf(stdout, "i is currently %d\n",i);

4. i++;

5. }

do-while

1. int i = 0;

2. do {

3. fprintf(stdout, "i is currently %d\n",i);

4. i++;

5. } while(i < 10);

for

1. int i = 100;

2. for(i = 0; i < 10; i++) {

3. fprintf(stdout, "i is currently %d\n",i);

4. }

Macros

● #define

● #define PI 3.14 /* Define a constant value */

● #define calcCircleArea(r) (3.14 * (r) * (r)) /* Calculate area */

● Macros ”calls” are replaced in the source code before compilation
(by the C preprocessor)

● Similarly for #include and header files
● May include other #define and function declarations

Functions
● Return a value (int/char/etc. function)

● Not return a value (void function)

int/char/float
function

1. int add_two_numbers(int a, int b)

2. {

3. return a + b;

4. }

void function

1. void add_two_numbers(int a, int b)

2. {

3. fprintf(stdout, "%d + %d = %d\n", a, b, (a + b));

4. }

Main function
parameters

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(int argc, char **argv)

4. {

5. int cnt = 0;

6. printf("argc == %d\n", argc);

7. for(int i = 0; i < argc; i++) {

8. printf("%s\n", argv[i]);

9. }

10. return 0;

11. }

> ./a.out this is good

Main function
parameters

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(int argc, char **argv)

4. {

5. int cnt = 0;

6. printf("argc == %d\n", argc);

7. for(int i = 0; i < argc; i++) {

8. printf("%s\n", argv[i]);

9. }

10. return 0;

11. }

> ./a.out this is good
argc == 4
./a.out
this
is
good

typedef

1. typedef float ftype;

● Why?
● Keeps the code ”independent” of data type

● You can switch from using float to double by changing just the typedef
● Or you can find & replace float with double using vim

● Keep data type name easier to handle
● unsigned long long int -> ullint

Compound
data
structures

1. struct human_struct {

2. char name[200];

3. int age;

4. };

5. struct human_struct human_a;

● Data type with multiple entries – sometimes it make sense to
associate multiple data types to a particular type of entity

Accessing
individual
components
of a struct

1. strcpy(human_a.name, "The Doctor");

2. human_a.age = 1000;

typedef with
struct

1. typedef struct human_struct_2 {

2. char* name;

3. int age;

4. } human_t;

5. human_t human_b;

● or, if you don’t need the struct to have a name

● typedef struct {

● char species[200];

● char name[200];

● int age;

● } being_t;

Copying
Struct

● Makes a “shallow” copy – individual components are copied one at
a time

● What happens if you have pointers?

Pointer to
struct

1. typedef struct {

2. char species[200];

3. char name[200];

4. int age;

5. } being_t;

6. being_t* real_human_a;

7. real_human_a = malloc(sizeof(being_t));

8. strcpy(real_human_a->species, "Human");

9. strcpy(real_human_a->species, "Rory Williams");

10. real_human_a->age = 23;

● Use “->” to access the struct components

Enum

1. enum Color1 {

2. red,

3. green,

4. blue

5. };

6. enum Color1 c1 = red;

● Enumerated data type – each variable can store of the three
options specified above

Union

1. typedef union number {

2. int i;

3. float f;

4. char *str;

5. } number_t;

● Data type that allows a variable to take different types of values

● The members all reside in the same memory location – not stored
redundantly

Array of
Structure
(AoS)

typedef struct human_struct_ {
 char name[NAME_LENGTH];
 int age;
} human_t;

● Array of structures – each element in the array is a structure

● Data for each structure is stored consecutively

Structure of
Arrays (SoA)

● There is a single structure, where each element in the structure is
an array

● Each element is store consecutively – good when you want to
access a group of elements (e.g., searching for a name)

typedef struct human_struct_ {
 char *name[NAME_LENGTH];
 int *age;
} human_t;

name

age

Code used in
class

● Will be uploaded to bitbucket (after cleaning it up a bit)

