
CIS 330
C++ and Unix
Lecture 3

Pointers

Last lecture -
Git workflow

Working
directory

Staging
area

Git directory
(repository)

Checkout the repository

Stage files

Commit

Example

> git init

Initialized empty Git repository in
/gpfs/projects/hpctensor/jeec/class/2019/S19/CIS330/.git/

> git add lecture02.c

> git commit -m "first lecture code"

> git push origin master

> git log

commit dfaa4e86109a427e32783b6ed72a4793b91f3d65

Author: Jee Choi <jeec@talapas-ln1.cm.cluster>

Date: Fri Mar 15 18:34:16 2019 -0700

 first lecture code

Do not add binaries and object files to your repo - just the code and other files
necessary to compiling your code

Do not add swap files (e.g., when you are using vim, it creates .swp files)

Always make sure to read all messages from git

● If you have a merge conflict, fix it and make sure the code compiles before you
submit your assignment

Always keep committing your code at regular intervals and push it to Bitbucket

● If something goes wrong with your repo, you can always clone it and start from
the last “save point.”

Last Lecture -
Control Flow

● if

● switch

● Repetition
● while
● do
● for

● Branching
● break
● continue
● goto

Last Lecture -
Ternary
Operators

1. a ? b : c -> if a is true then the expression evaluates to b, otherwise
to c

2. (i == j) ? printf(“A\n”) : printf(“B\n”);

Last Lecture -
Macros

● #define

● #define PI 3.14 /* Define a constant value */

● #define calcCircleArea(r) (3.14 * (r) * (r)) /* Calculate area */

● Macros ”calls” are replaced in the source code before compilation
(by the C preprocessor)

● Similarly for #include and header files
● May include other #define and function declarations

Compound
data
structures

1. struct human_struct {

2. char name[200];

3. int age;

4. };

5. struct human_struct human_a;

● Data type with multiple entries – sometimes it make sense to
associate multiple data types to a particular type of entity

1. strcpy(human_a.name, "The Doctor");

2. human_a.age = 1000;

3. struct human_struct* human_b = &human_a;

4. human_b->age = 2000;

Accessing
individual
components
of a struct

Copying
Struct

● Makes a “shallow” copy – individual components are copied one at
a time

● What happens if you have pointers?

Union

1. typedef union number {

2. int i;

3. float f;

4. char *str;

5. } number_t;

● Data type that allows a variable to take different types of values

● The members all reside in the same memory location – not stored
redundantly

Questions?

Memory
management

● In C, you have to manage your own memory
● Accessing data is important in real applications – controlling it allows

you to do “better,” thereby allowing you to achieve better
performance

● Examples
● Arrange the data in such a way that it increases locality (spatial and

temporal)
● Allocating memory can be expensive – repeatedly

allocating/deallocating small amounts of memory can degrade
performance

● Stack
● Short life span
● e.g., live during the invocation of a function

● Heap
● Long life span
● e.g., lasts until you “delete” them (or the program ends)

Pointers

● ”Points” to a location in memory (i.e., address)

● Denoted with * (e.g., int* a; => a pointer to an integer)

● You can “get” the address of a variable using &
1. int x;
2. int* y;
3. y = &x;

● You can “dereference” an address and access the value in that
location using * or []

4. fprintf(stdout, "%d\n", *y);
● Or
5. fprintf(stdout, "%d\n", y[0]);

Pointers

Memory
address

● Represented by hexadecimal numbers

int* A = 0x8000;

Pointer arithmetic - arithmetic operations on pointers at done at
data size granularity

A++; /* A+1 == 0x8004 since int is 4 Bytes */

double* A = 0x6000;

A++; /* A+1 == 0x6008 since double is 8 Bytes */

double* A = 0x6000;

A++; /* A+2 == ? */

Memory
address

● Represented by hexadecimal numbers

int* A = 0x8000;

Pointer arithmetic - arithmetic operations on pointers at done at
data size granularity

A++; /* A+1 == 0x8004 since int is 4 Bytes */

double* A = 0x6000;

A++; /* A+1 == 0x6008 since double is 8 Bytes */

double* A = 0x6000;

A++; /* A+2 == 0x6010 Hexadecimal is represented by 4 bits */

Pointer
arithmetic

● Dereferencing a pointer
● int X = 10;
● int* A = &X;
● printf(“%d\n”, *A); /* this prints 10 */

● Another way to dereference memory – []

● A[0] <-> *A

● A[5] <-> *(A + 5)

● B = &(A[0]) <-> B = A

● B = &(A[5]) <-> B = A + 5

How do you
”get”
memory?

● malloc (memory allocate)

● free (frees up memory)

Examples of
malloc and
free

1. int* y = NULL;

2. y = malloc(sizeof(int) * 1); /* 4 Bytes */

3. *y = 7;

4. fprintf(stdout, "y is %d\n", *y);

5. free(y); /* OS already knows # Bytes */

Examples of
malloc and
free

1. int* y = NULL;

2. y = malloc(sizeof(int) * 1); /* 4 Bytes */

3. if(y == NULL) { exit(0); }

4. *y = 7;

5. fprintf(stdout, "y is %d\n", *y);

6. free(y); /* OS already knows # Bytes */

Pointers to
pointer (to
pointer…)

x NULL

int** x = NULL;

Pointers to
pointer (to
pointer…)

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x

x = malloc(sizeof(int*) * 8);

Pointers to
pointer (to
pointer…)

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x

x[0] = malloc(sizeof(int) * 128);

0

1

2

…

127

Pointers to
pointer (to
pointer…)

● Remember – pointers store memory addresses
● Both “pointer to int” and “pointer to pointer to int” store memory

addresses
● Same goes for any “pointer to X”

Memory
Segments

● In C, a program is stored in memory as “segments”
● Text segment (code)
● Data segment
● Stack segment
● Heap segment

Memory
Segments

√

Data

Text

Stack

Heap

What happens
when you use
too much
memory?

● Overflow occurs

● Unexpected/unpredictable behavior

● Stack overflow attack – intentionally create an overflow to
overwrite the function’s return address and execute user supplied
data (e.g., some command shell instructions)

● Always free() your memory!
● Fragmentation

Variable scope
and types

● Block scope – scope within {}
● Can be nested

● Function scope
● Variables declared within a function

● Program scope
● Global variables
● Variables declared within the main function

● static variables
● Variable lives outside its scope

● const variable
● Value cannot be changed after initialization

● volatile variable
● Tell the compiler not to optimize this variable

● extern variable
● Extend scope across files

● register variable
● Use certain registers to hold the value – just a suggestion, not guaranteed to work every

time
● Do not try to use it with & (address) – it may not have one

Memory
Segments

√

Data

Text

Stack

Heap

1. int main()

2. {

3. int x = 7;

4. int y = 12;

5. int z = return_add_numbers(x, y);

6. }

1. int return_add_numbers(int a, int b)

2. {

3. return (a + b);

4. }

Memory
Segments

√

Data

Text

Stack

Heap

1. int main()

2. {

3. int x = 7;

4. int y = 12;

5. int z = return_add_numbers(x, y);

6. }

1. int return_add_numbers(int a, int b)

2. {

3. return (a + b);

4. }

x, y

Memory
Segments

√

Data

Text

Stack

Heap

1. int main()

2. {

3. int x = 7;

4. int y = 12;

5. int z = return_add_numbers(x, y);

6. }

1. int return_add_numbers(int a, int b)

2. {

3. return (a + b);

4. }

x, y, z

a, b

Memory
Segments

√

Data

Text

Stack

Heap

1. int main()

2. {

3. int x = 7;

4. int y = 12;

5. int z = return_add_numbers(x, y);

6. }

1. int return_add_numbers(int a, int b)

2. {

3. return (a + b);

4. }

x, y, z

Pass by Value/
Reference

● Pass by value

● Pass by reference

main

6

change_value(int a)

6

main

0x0123

change_value(int* a)

int x int a

Int* x Int* a 0x0123

6

Pass by Value/
Reference

● Technically, everything is pass by value in C (the pointer values are
being copied), but the idea of pass by reference is achieved via
pointers

Function
Pointers

● Yes, you can have a pointer to a function too

● Useful when you want a certain function to be called when a
predetermined event occurs

Function
Pointer
Example

1. double (*funcptr) (double x[], int cnt);
2. funcptr = &computeAverage;
3. double x[] = {1.0, 2.0, 3.0, 4.0};
4. int cnt = 4;
5. double avg = funcptr(x, cnt);
where,

1. double computeAverage(double y[], int cnt) {
2. double run = 0.0;
3. for(int i = 0; i < cnt; i++) {
4. run += y[i];
5. }
6. run = run / cnt;
7. return run;
8. }

What are
arrays?

● Arrays
● Collection of data items of same type
● Think “vectors” in linear algebra, or a simply a “list”
● It can be multidimensional

Declaration

1. int array_a[ARR_SIZE];

2. int array_b[ARR_SIZE][ARR_SIZE];

3. int* array_c = NULL;

Initialization

1. int array_a[ARR_SIZE] = {100, 200, 300, 400, 500};

2. int array_b[] = {10, 20, 30};

3. int array_c[3] = {1, 2, 3, 4, 5}; /* ILLEGAL */

4. int array_d[n]; /* n is a variable */

N-D Arrays

1. int array_a[ARR_SIZE][ARR_SIZE] = {{1,2}, {3,4}};

2. int array_b[ARR_SIZE][ARR_SIZE][ARR_SIZE] =

3. {

4. { /* array_b[0][][] */

5. {1, 2}, /* array_b[0][0][] */

6. {3, 4} /* array_b[0][1][] */

7. },

8. {/* array_b[1][][] */

9. {5, 6}, /* array_b[1][0][] */

10. {7, 8} /* array_b[1][1][] */

11. }

12. };

And so on…

Pointer vs. []
declaration

● Pointers allow more flexibility in size and shape

● You can always access the pointer array using [] to deference

● Use pointers whenever you can (please)

● Except when you need a small n-D array for storing constant
values (could be faster to access)

Pointer vs. []
declaration

● Local arrays (e.g., int arr[100];) are created at compile time (i.e.,
they have a fixed size), created on the stack (i.e., managed
automatically - no need to free())

● Because they have a fixed size, sizeof() will return a different value

 int arr[100];
 int* arrptr;

 printf("%lu\n", sizeof(arr));
 printf("%lu\n", sizeof(arrptr));

What will be printed?

2D Arrays

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x 0

1

2

…

127

int** x = NULL;

int* int

3D Arrays

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x x[0][0]

x[0][1]

x[0][2]

x[0][3]

x[0][4]

x[0][5]

x[0][6]

x[0][7]

0

1

2

…

127

int*** x = NULL;

int** int* int

Allocating a
Pointer Array

● 2D Array

1. d2_array = malloc(sizeof(int*) * ARR_SIZE);

2. for(int i = 0; i < ARR_SIZE; i++) {

3. d2_array[i] = malloc(sizeof(int) * ARR_SIZE);

4. }

Allocating a
Pointer Array

● 3D Array

1. d3_array = malloc(sizeof(int**) * ARR_SIZE);

2. for(int i = 0; i < ARR_SIZE; i++) {

3. d3_array[i] = malloc(sizeof(int*) * ARR_SIZE);

4. for(int j = 0; j < ARR_SIZE; j++) {

5. d3_array[i][j] = malloc(sizeof(int) * ARR_SIZE);

6. }

7. }

Freeing a
Pointer Array

1. for(int i = 0; i < ARR_SIZE; i++) {

2. for(int j = 0; j < ARR_SIZE; j++) {

3. free(d3_array[i][j]);

4. }

5. free(d3_array[i]);

6. }

7. free(d3_array);

Strings

● Basically an array of char (or a char*)

● Terminated with a null character

● String is a data structure that uses array of char to implement

● Declaration

char array_str[STR_SIZE];

char* array_str = NULL; /* malloc */

● Initialization

char array_str[STR_SIZE] = "Hello World\n";

char* array_str = "Hello World\n";

String
Functions

● char *strcpy(str1, str2)
● Copy str2 to str1

● char *strcat(str2, str1)
● Concatenate str1 to str2 and returns str2
● Make sure there is enough space in str2 to append str1 to it

● int strcmp(str1, str2)
● Compare str1 to str2 and return a value less than zero if str1 is

lexicographically less than the second

● size_t strlen(str1)
● Length of str1, not including the null character

● char *strchr(str1, c)
● Find the first occurrence of c (int converted from char) in str1, and returns

the location of the found character

● strncat
● strncmp

● strncpy

● strrchr

n-byte variation of the original functions

Static vs.
dynamic
allocation

int main()

{

 int array1[10]; // static allocation

 int* array2 = (int*) malloc(sizeof(int) * 10); // dynamic allocation

}

Static array

Size is determined at compile-time

Created on the stack memory (less memory space)

● Stack is a “temporary” space so limited capacity is by-design
● Stack memory is contiguous, prevents errors (e.g., infinite loop)

from going too far

Dynamic array
Created at runtime

Created on the heap - can be very large (until you run out of
memory)

Any large data (i.e., arrays) should be created on the heap

Example

 int array1[5][5];
 int* array2 = (int*) malloc(sizeof(int) * 25);

 printf("%lu\n", sizeof(array1));
 printf("%lu\n", sizeof(array2));

What would be printed?

Example

 int array1[5][5];
 int* array2 = (int*) malloc(sizeof(int) * 25);

 printf("%lu\n", sizeof(array1));
 printf("%lu\n", sizeof(array2));

What would be printed?

100

8

Coding example

