
CIS 330
C++ and Unix
Lecture 5

Compilers

Question 1

Which of the following methods is the correct way to declare a function pointer funcptr and assign the
function double compute_average(double *y, int cnt) to it

1. double (*funcptr) (double* y, int cnt); *funcptr = compute_average;
2. double (funcptr) (y, cnt); functpr = compute_average;
3. double (funcptr) (double* y, int cnt); funcptr = &compute_average;
4. double (*funcptr) (double* x, int cnt); funcptr = &compute_average;

Question 2

Which of the following is NOT correct?

1. In some cases, we can use a function that takes in a 2-D matrix as input (e.g., int**
some_array) for processing a 1-D matrix (e.g., int* some_other_array)

2. We can store a 2-D array as a 1-D array
3. A 2-D matrix on the heap stores all of its data consecutively in memory (just like a 1-D matrix)
4. We can pass a function pointer as a parameter to another function

Question 3

What will be the output when the following code is executed?

int some_func(int* i) {

 int j = *i;

 return j++;

}

int main() {

 int i = 101;

 some_func(&i);

 fprintf(stdout, "%d\n", i);

}

1. 101
2. some address
3. 102
4. undefined behavior

Question 4

Given the following piece of code, which of the following statements is correct?

void my_malloc(double** b) {

 double* b_tmp;

 b_tmp = (double*) malloc(sizeof(double) * 128);

 assert(b_tmp);

 fprintf(stdout, "My address is %p\n", b_tmp);

 *b = b_tmp;

}

1. b and b_tmp have different data types, so it will not return a valid address to the main function
(where my_malloc() was called)

2. It behaves like a smart malloc() function, where the return value from malloc() is checked to see if
it’s valid

3. None of the above are true.
4. Since malloc’d memory was assigned to a variable created inside of a function (i.e., b_tmp is on

the stack), it will be lost when the function returns

Questions?

Homework 2

allocating memory

int main() {

 int* some_array;

 allocate_mem(...);

}

void allocate_mem(...) {

}

Homework 2

allocating memory

int main() {

 int* some_array;

 allocate_mem(&some_array); // pass by reference

}

void allocate_mem(...) {

}

Homework 2

allocating memory

int main() {

 int* some_array;

 allocate_mem(&some_array); // pass by reference

}

void allocate_mem(int** array) {

}

Homework 2

allocating memory

int main() {

 int* some_array;

 allocate_mem(&some_array); // pass by reference

}

void allocate_mem(int** array) {

 array = (int) malloc(sizeof(int) * 100);

}

Homework 2

allocating memory

int main() {

 int* some_array;

 allocate_mem(&some_array); // pass by reference

}

void allocate_mem(int** array) {

 int* tmp = (int*) malloc(sizeof(int) * 100);

 *array = tmp;

}

Pointers
int main() {

 int* some_array = NULL;

 allocate_mem(&some_array); // pass by reference

}

void allocate_mem(int** array) {

 array = (int) malloc(sizeof(int) * 100);

}

some_arrayNULL

int** array

Pointers
int main() {

 int* some_array = NULL;

 allocate_mem(&some_array); // pass by reference

}

void allocate_mem(int** array) {

 array = (int) malloc(sizeof(int) * 100);

}

some_array0xB0

int** array

Questions?

Modular
Programming

● C is a functional language – modularize your code into functions!

● Reduces the amount of code you need to write, and makes
debugging easier

Code
Spanning
Multiple Files

● You could write your entire program in a single, very large, .c file

● However, it’s better to separate your code into multiple files
● Easier to keep track of your code
● Easier to compile (more on this later)
● Easier to collaborate (e.g., via Git)

Code
Spanning
Multiple Files

● First file – contains the main function

● Second file(s)
● .c file that contains the code
● .h file that contains the function declaration (header file)
● stdio.h, stdlib.h, and string.h are examples of header files
● Interface to using the functions written in the .c file

● Third file(s), etc.

● Header files should be included carefully to avoid multiple
inclusions

● use if-not-defined check if a header file is already included

Header File
Example

arithmetic.h
1. int add_two_numbers(int a, int b);

numbers.c

2. #include ”arithmetic.h”

3. int main()

4. {

5. int a = 1;

6. int b = 3;

7. int c = add_two_numbers(a, b);

8. fprintf(stdout, "%d + %d = %d\n", a, b, c);

9. return 0;

10. }

Examples of
if-not-defined

1. #ifndef ARITHMETIC_H

2. #define ARITHMETIC_H

3. int add_two_numbers(int a, int b);

4. #endif /* not defined ARITHMETIC_H */

● The first time arithmetic.h is called, it defines the variable
ARITHMETIC_H and the regular definitions contained within
arithmetic.h

● Next time arithmetic.h is called (redundantly), ARITHMETIC_H will
already be defined, and the content within the if-not-defined will
be skipped

Compiling
Multiple Files

● The simple method – just list all the files
● e.g., > gcc arithmetic.c numbers.c
● With this method, we have to compile both files every time we make

changes to one or the other – not much better than having one large
file

● Compiling the code separately
● Compile each .c file into object files, and then link them together

Linker

> gcc -c arithmetic.c

> gcc -c numbers.c

> gcc arithmetic.o numbers.o

● If we change one file (e.g., arithmetic.c), we only have to
recompile arithmetic.c then re-link the object files

Compile the code into object files

Link the object files together to
create the executable

Compiler
Options

● -o -> specify the executable name
● e.g., gcc -o run arithmetic.o numbers.o

● -Wall -> enable all compiler warning messages.
● It is -W with all option
● You can use -W to enable/disable specific warnings

● -O# -> set the compiler optimization level
● e.g., -O3

● -std -> sets the C standard to follow
● e.g., -std=c11 (follow the C11 standard)

● -g -> enable debugging (more on this later)

Optimization
Level

Option Optimization

-Oo Optimize for compile time (no
optimization, default)

-O1 or -O Moderate optimization – optimizes
reasonably well but does not
degrade compilation time

-O2 Full optimization – highly optimized
code and slowest compilation time

-O3 -O2 + aggressive subprogram
inlining and vectorization

-Os Optimize for code size

-Ofast -O3 + non-accurate math calculation
(floating point roundoff error)

Compiler
Driver

● gcc is actually a compiler driver – it invokes several “tools” to
accomplish the task of converting source code to executable code

● For example,

> gcc arithmetic.c numbers.c

Invokes

1. Preprocessor

2. Compiler (cc1)

3. Assembler (as)

4. Linker (ld)

Preprocessor

● Macro processor that transforms your code:
● Includes header files
● Macro expansion
● Removes comments
● And more

● Output typically looks similar to the input (i.e., source code)

● Input - C language

● Output - C language (just a bit longer)

Compiler

● Compiler takes preprocessed C language file and generates assembly
code

● cc1 contains the preprocessor and the compiler

● Compilation stages consist of
● Front end
● Middle end
● Back end

● Front end
● Parses the source code to generate abstract syntax tree (AST)
● Data structure that is the tree representation of the abstract syntactic

structure of the source code

● Middle end
● Converts AST to different representations for optimization
● Generates register-transfer language (RTL)
● RTL is a hardware-specific representation that corresponds to some

abstract target architecture (e.g., with infinite number of registers)

● Back end
● Generates assembly code for the target architecture

Output - English-readable assembly language

Assembler
● Converts assembly language to object code

● Object code is in binary (but readable with tools such as objdump)

Linker

● “Merges” object files into a single executable object file

● As part of the merging process, it resolves external references
● e.g., you can compile your code using fprintf without knowing

exactly how fprintf is implemented
● However, when you want to actually run this code, you must know

where this piece of code is located (i.e., in an external library).

● ”Relocates” symbols from their relative position in the object files
to absolute position in the executable, and updates their
references (i.e., use) to this new position

● It “copy & paste” the fprintf function from the original objective file
to the executable

Executable
and Linkable
Format (ELF)

● Common standard binary file format for executables, object code,
etc.

● Derives from the AT&T System V Unix OS

ELF Layout

ELF Header
(Magic bytes, Class, Data, etc.)

Program Headers/Segments
(necessary for execution, error

handling, etc.)

Section Headers

.text

.data

.rodata

.bss

.symtab

0x7fELF

Class - tells us information about
the target architecture
(e.g., 32-bit or 64-bit?)

Data - whether the data is
stored in LSB or MSB
LSB - little Endian
MSB - big Endian

ELF Layout

ELF Header
(Magic bytes, Class, Data, etc.)

Program Headers/Segments
(necessary for execution, error

handling, etc.)

Section Headers

.text

.data

.rodata

.bss

.symtab

Program headers describe how to
create a process/memory image for
runtime execution

Section headers defines all the
sections contained within the
ELF file.

The headers are used for linking
and relocation.

ELF Layout

ELF Header
(Magic bytes, Class, Data, etc.)

Program Headers/Segments
(necessary for execution, error

handling, etc.)

Section Headers

.text

.data

.rodata

.bss

.symtab

.text contains the executable
code, packed into a segment
with read and execute access
rights. It is loaded only once
since the content shouldn’t
change.

.data contains initialized data
(i.e., static), with read and write
access.

.rodata also has initialized data,
but with only read access

.bss contains uninitialized data,
and therefore has both read and
write access.

.symtab contains the global
symbol (i.e., functions and
variables) table

Example

main.c

1. int e = 7;
2. int main()
3. {
4. int r = a();
5. return 0;
6. }
a.c

1. extern int e;
2. int *ep = &e;
3. int x = 15;
4. int y;
5. int a()
6. {
7. return *ep + x + y;
8. }

Each file compiles to its respective object files

Example main()

int e = 7

a()

int *ep = &e
int x = 15

int y

.text

.data

.text

.data

.bss

Relocatable Object Files

=

system code

system data

.text

.data
system code

main()

a()

system data

int e = 7

int *ep = &e
int x = 15

int y

Header

.symtab

Executable Object Files

.text

.data

.bss

Overview

a.h b.h

a.c b.c main.c

Preprocessor

a.o b.o main.o

Compile &
Assemble

a.out

Link

Questions?

Symbols

● Symbols can be either strong or weak
● Strong – functions and initialized global variables
● Weak – uninitialized global variables

● Strong symbols can only appear once

● A weak symbol can be “overridden” by a strong symbol (of the
same name) – references to the weak symbols are actually
referencing the strong symbol

● Multiple weak symbols can be chosen arbitrarily by the linker

● Be careful with global variables!

Example

int x;
p1() { } p1() { }

int x;
p1() { }

int x;
p2() { }

int x;
int y;
p1() { }

double x;
p2() { }

int x = 5;
int y = 7;
p1() { }

double x;
p2 () { }

Link time error – two strong symbols

References to x will be to the same variable

Write to x in p2 may overwrite y

Write to x in p2 will overwrite y

int x = 5;
p1() { }

int x;
p2 () { }

References to x will be to the same initialized
variable

File 1 File 2

Example

int x;
p1() { } p1() { }

int x;
p1() { }

int x;
p2() { }

int x;
int y;
p1() { }

double x;
p2() { }

int x = 5;
int y = 7;
p1() { }

double x;
p2 () { }

Link time error – two strong symbols

References to x will be to the same variable

Write to x in p2 may overwrite y

Write to x in p2 will overwrite y

int x = 5;
p1() { }

int x;
p2 () { }

References to x will be to the same initialized
variable

File 1 File 2

Example

int x;
p1() { } p1() { }

int x;
p1() { }

int x;
p2() { }

int x;
int y;
p1() { }

double x;
p2() { }

int x = 5;
int y = 7;
p1() { }

double x;
p2 () { }

Link time error – two strong symbols

References to x will be to the same variable

Write to x in p2 may overwrite y

Write to x in p2 will overwrite y

int x = 5;
p1() { }

int x;
p2 () { }

References to x will be to the same initialized
variable

File 1 File 2

Example

int x;
p1() { } p1() { }

int x;
p1() { }

int x;
p2() { }

int x;
int y;
p1() { }

double x;
p2() { }

int x = 5;
int y = 7;
p1() { }

double x;
p2 () { }

Link time error – two strong symbols

References to x will be to the same variable

Write to x in p2 will overwrite y

int x = 5;
p1() { }

int x;
p2 () { }

References to x will be to the same initialized
variable

File 1 File 2

Write to x in file2 may overwrite y

Example

int x;
p1() { } p1() { }

int x;
p1() { }

int x;
p2() { }

int x;
int y;
p1() { }

double x;
p2() { }

int x = 5;
int y = 7;
p1() { }

double x;
p2 () { }

Link time error – two strong symbols

References to x will be to the same variable

Write to x in file2 will overwrite y

int x = 5;
p1() { }

int x;
p2 () { }

References to x will be to the same initialized
variable

File 1 File 2

Write to x in file2 may overwrite y

Example

int x;
p1() { } p1() { }

int x;
p1() { }

int x;
p2() { }

int x;
int y;
p1() { }

double x;
p2() { }

int x = 5;
int y = 7;
p1() { }

double x;
p2 () { }

Link time error – two strong symbols

References to x will be to the same variable

int x = 5;
p1() { }

int x;
p2 () { }

References to x will be to the same initialized
variable

File 1 File 2

Write to x in file2 may overwrite y

Write to x in file2 will overwrite y

Questions?

Libraries

● How should we package commonly used functions?
● e.g., sorting, string parsing, etc.

● Put these functions in a single source file -> link
● Object files are big -> space and time consuming

● Put each function in a different file -> link
● Too much work to link every needed function/file

● Static Libraries (.a archive files)
● Concatenate related relocatable object files into a single file with

an index (called an archive)
● Helps the linker so that it tries to resolve unresolved external

references by looking for the symbols in one or more archives
● If an archive member file resolves reference, link it into the

executable

Static
Libraries

a.c main.c

libc.a a.o main.o

a.out

Linker
Executable file only contains
code and data for libc
functions that are called
from main.c and a.c

● Linker selectively concatenates only the .o files in the archive that
are actually needed by the program

Creating
Static
Libraries

atoi.c printf.c malloc.c

atoi.o printf.o malloc.o

Compile &
Assemble

archiver (ar) ar rs libc.a atoi.o … malloc.o

…

libc.a

Archiver

● Creates static libraries by combining individual files/functions

● Allows incremental updates – recompile functions that changes
and replace .o file in the archive

● Commonly used libraries
● C standard library (libc.a) – 8 MB of 900 object files

● I/O, memory allocation, string handling, etc.

● C math library (libm.a) – 1 MB archive of 226 object files
● floating point math (e.g., sin, cos, tan, exp, sqrt, etc.)

Using
Libraries

● Use the option –L<path to file containing library> -l<library name>

● gcc -o myapp main.c –L/home/jeec/lib –lmylib

● Libraries sometimes need header files (so that you know how the
functions are used)

● -I<path to header file>

● LD_LIBRARY_PATH can be used to specify the library directories (so
that you don’t have to explicitly use the –L option

● export LD_LIBRARY_PATH=/usr/lib
● export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH and so

on…

Questions?

● Ordering of the object files and library matters!

● gcc main.c –L/home/lib –lex1 –lex2 –lex3

● Linker maintains a symbol table:
● a list of symbols exported (provided) by all object and library files it

has seen
● a list of symbols requested (by your code) but not found (undefined)

Library
Ordering

Library
Ordering

● When the linker encounters a new object file
● a new list of symbols (i.e., functions that this file implements) is exported
● if it’s one of the symbols in the undefined list, remove it from the

undefined list (no longer undefined)
● If an identical (strong) symbol has already been encountered, throw an

error (different objects with the same symbol)
● a new list of imported symbols (maybe one of the functions requires yet

another function) goes to the undefined list (unless already on the
existing list of symbols)

● Object files are concatenated into the executable - any previously
exported symbol can be found later

● When the linker encounters a new library
● scan each object file in the library
● if any of the symbols exported by the library is in the undefined list, add

the object, and it is processed like a regular object file
● if any of the objects in the library has been added, the library is scanned

again (an object added later might be using a call in an object scanned
earlier)

● At the end, it looks at the undefined list – if something is on it, thrown
an error (undefined reference).

● Note – Linker does not go back to a library once it has finished
scanning it

Library
Ordering

● Why would the ordering matter?

● Circular dependency?
● A needs something from B, and B needs something from A
● What happens?

Library
Ordering
Example

add.c
1. #include "sub.h"
2. int add_numbers(int a, int b)
3. {
4. int c = sub_numbers(a, -1 * b);
5. return c;
6. }
7.

subtract.c
1. #include "add.h"
2. int sub_numbers(int a, int b)
3. {
4. int c = add_numbers(a, -1 * b);
5. return c;
6. }

main.c
#include "add.h"

int main(int argc, char** argv)
{
 add_numbers(1, 2);
 return 0;
}

Library
Ordering
Example

add.c
1. #include "sub.h"
2. int add_numbers(int a, int b)
3. {
4. int c = sub_numbers(a, -1 * b);
5. return c;
6. }
7.

subtract.c
1. #include "add.h"
2. int sub_numbers(int a, int b)
3. {
4. int c = add_numbers(a, -1 * b);
5. return c;
6. }

main.c
#include "add.h"

int main(int argc, char** argv)
{
 add_numbers(1, 2);
 return 0;
}

● Which will work?
● gcc -o run main.o -L. -lsub -ladd
● gcc -o run main.o -L. –ladd -lsub

● Why?

● Which will work?
● gcc -o run lecture06.o -L. -lsub -ladd
● gcc -o run lecture06.o -L. –ladd -lsub

● Why?
● Remember the rules above for linking
● First case

● Reads main

● -> add_numbers in undefined list

● Reads subtract library
● -> exports subtract_numbers

● -> not in undefined list

● -> skips

● Reads add library
● -> exports add_numbers

● -> in undefined list (main requires it)

● -> adds add_number to symbol list and remove is it from undefined

● -> imports subtract_numbers and adds it to undefined list

● Undefined reference to subtract_numbers remains (linker error)

Library
Ordering
Example

Library
Ordering
Example

● Which will work?
● gcc -o run lecture06.o -L. -lsub -ladd
● gcc -o run lecture06.o -L. –ladd -lsub

● Why?
● Remember the rules above for linking
● Second case

● Reads main

● -> add_numbers in undefined list

● Reads add
● -> exports add_numbers
● -> in undefined list
● -> adds add_number to symbol list and remove is it from undefined
● -> imports subtract_numbers and adds it to undefined list

● Reads subtract
● -> exports subtract_numbers
● -> in undefined list
● -> adds subtract_numbers to symbol list and removes it from undefined

● Nothing in undefined list (done)

Library
Ordering
Example 2

● What happens if…

add

multiply

subtract

libadd libsub

Library
Ordering
Example 2

● Case 1 - gcc -o run lecture06.o -L. -lsub -ladd

● Case 2 - gcc -o run lecture06.o -L. -ladd -lsub

Library
Ordering
Example 2

● Case 1 - gcc -o run lecture06.o -L. -lsub –ladd
● main -> exports add
● sub -> exports subtract -> not in the undefined list -> skip
● add -> exports add and multiply -> add is in the undefined list ->

process add.o -> exports add and removes it from undefined list ->
imports subtract and adds it to undefined list -> scan again ->
nothing new is found

● Undefined reference to subtract_numbers

add

multiply

subtract

libadd libsub

Library
Ordering
Example 2

● Case 2 - gcc -o run lecture06.o -L. -ladd –lsub
● main -> exports add
● add -> exports add and multiply -> add is in the undefined list ->

process add.o -> exports add and removes it from undefined list ->
imports subtract and adds it to the undefined list -> scan again
(because something was added) -> nothing new is found

● sub -> exports subtract -> subtract is in the undefined list process
subtract.o -> exports subtract and removes it from undefined list ->
imports multiply and add -> add is resolved and multiply is placed in
the undefined list

● Undefined reference to multiply_numbers

add

multiply

subtract

libadd libsub

Library
Ordering
Example 2

● How would we fix this?

Library
Ordering
Example 2

● How would we fix this?
● You can specify a library more than once

Library
Ordering
Example 2

● How would we fix this?
● You can specify a library more than once

● Which would work?
● gcc -o run lecture06.o -L. -ladd -lsub -ladd
● gcc -o run lecture06.o -L. -lsub -ladd -lsub

Creating a
Library

Static library

gcc -c add.c -o add.o

gcc -c sub.c -o sub.o

ar rcs libmymath.a add.o sub.o

Dynamic library

gcc -fPIC -c *.c

gcc *.o -shared -o liball.so

Dynamic
Libraries

● Difference between static and dynamic
● Static – everything is include in the executable (you don’t need to go

searching for your library)
● Dynamic – it exists as a separate file (you DO need to go searching

for your library e.g., LD_LIBRARY_PATH)
● Pros and cons – dynamic library reduces the file size, and allows you

to just recompile the library if changes are made. On the other hand,
static libraries are faster at run-time, and less susceptible to
breaking.

Makefiles

● Convenient way to compile your code without having to type out
everything every time

● Create a file named ‘Makefile’

● Type ‘make’

● <executable/target name> : pre-requisites (required files)

 recipe (rules for making the target)

Makefiles

● Defines a set of commands and rules for compiling your code
● Useful commands and rules

● $(wildcard pattern) – space separated list of file names that matches
the pattern

● $(addsuffix suffix, names…) – names is a series of file names, and
suffix is appended to the end of each name

● $(basename names…) – extracts all but the suffix of each file name in
names

● %.c – Pattern rule % refers to exactly one (i.e., exactly one file with
extension.c

● %.o : %.c – pre-requisite for a .o file is the corresponding .c file

● %.o : %.c $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@
● %@ and $< are used to substitute the names of the target and source

file in each case.
● Generate a.c from a.o using gcc –c <some flags> a.c –o a.o

