
CIS 330
C++ and Unix
Lecture 7

GDB and Valgrind

Logistics
We will go back to in-person teaching starting 2/8

The department will continue to monitor the number of absences,
and may recommend going back to remote teaching

Grading

I will have the midterm and the assignments graded by next
Tuesday

Please continue providing feedback

Switching to remote from in-person (and possibly back to
remote)

TA office hours and labs

Creating a
Library

Static library

gcc -c add.c -o add.o

gcc -c sub.c -o sub.o

ar rcs libmymath.a add.o sub.o

Dynamic library

gcc -fPIC -c *.c

gcc *.o -shared -o liball.so

Dynamic
Libraries

● Difference between static and dynamic
● Static – everything is include in the executable (you don’t need to go

searching for your library)
● Dynamic – it exists as a separate file (you DO need to go searching

for your library e.g., LD_LIBRARY_PATH)
● Pros and cons – ?

Dynamic
Libraries

● Difference between static and dynamic
● Static – everything is include in the executable (you don’t need to go

searching for your library)
● Dynamic – it exists as a separate file (you DO need to go searching

for your library e.g., LD_LIBRARY_PATH)
● Pros and cons – dynamic library reduces the file size, and allows you

to just recompile the library if changes are made. On the other hand,
static libraries are faster at run-time, and less susceptible to
breaking.

Questions?

Makefiles

● Convenient way to compile your code without having to type out
everything every time

● Create a file named ‘Makefile’

● Type ‘make’

● <executable/target name> : pre-requisites (required files)

 recipe (rules for making the target)

Makefiles

● Defines a set of commands and rules for compiling your code
● Useful commands and rules

● $(wildcard pattern) – space separated list of file names that matches
the pattern

● $(addsuffix suffix, names…) – names is a series of file names, and
suffix is appended to the end of each name

● $(basename names…) – extracts all but the suffix of each file name in
names

● %.c – Pattern rule % refers to exactly one (i.e., exactly one file with
extension.c

● %.o : %.c – pre-requisite for a .o file is the corresponding .c file

● %.o : %.c $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@
● %@ and $< are used to substitute the names of the target and source

file in each case.
● Generate a.c from a.o using gcc –c <some flags> a.c –o a.o

Live Coding

Debugging
● use printf

● The end

Debugging

● GNU debugger (gdb)

● Compile your code with –g (and -Wall option is recommended)

● Start gdb with `gdb ./a.out’

● gdb provides an interactive shell
● get help by typing `help <command>’

Debugging

● (gdb) run <arguments>

● Runs to completion if there are no problems with your code

● (gdb) run

● Starting program: /home/users/jeec/lecture06/ex01/prog

● 9

● [Inferior 1 (process 10178) exited normally]

Debugging

● (gdb) run <arguments>

● Runs to completion if there are no problems with your code

● If there are problems, gdb takes control after it terminates and
displays some useful information

● line number where it terminated
● what type of problem (e.g., seg fault)
● enclosing function
● etc.

Debugging

● (gdb) a.out

● Starting program: /home/users/jeec/lecture07/a.out

●

● Program received signal SIGSEGV, Segmentation fault.

● 0x000055555555513d in add_numbers (

● a=<error reading variable: Cannot access memory at address
0x7fffff7fefec>, b=<error reading variable: Cannot access memory at address
0x7fffff7fefe8>)

● at add.c:4

● 4 {

Useful
commands

● gdb allows you to step through the code and print the contents of
the memory, variables, etc.

● (gdb) bt
● backtrace – traces the steps to see what happened

● breakpoint
● break <location>
● Location could be function name, or line number (add.c:8)
● You can backtrace from the breakpoint
● use `clear’ to clear all breakpoints

● step
● step through your code, including function invocation

● next
● step through your code, but not into other functions

● continue
● resume execution after gdb pauses (e.g., at a breakpoint)

Useful
commands

● print – print the content of variables

● watch – you can `watch’ a variable and gdb will tell you when it has
been modified

● info <args/locals/reg> - print information about these resources

valgrind

● Program execution monitoring framework

● memcheck
● Use of uninitialized memory
● Reading/writing to heap memory after it has been freed
● Reading/writing to end of malloc space
● Heap allocated memory leaks
● Mismatched use of malloc and free
● etc.

valgrind

● #include <stdlib.h>

● int main(int argc, char *argv[])

● {

● int x, y;

● if (x < 3)

● y = 4;

● else

● y = 5;

● return 0;

● }

valgrind

● valgrind a.out

● ==16716== Memcheck, a memory error detector

● ==16716==

● ==16716== Conditional jump or move depends on uninitialised value(s)

● ==16716== at 0x109134: main (main.c:7)

● ==16716==

● ==16716==

● ==16716== HEAP SUMMARY:

● ==16716== in use at exit: 0 bytes in 0 blocks

● ==16716== total heap usage: 0 allocs, 0 frees, 0 bytes allocated

● ==16716==

● ==16716== All heap blocks were freed -- no leaks are possible

● ==16716==

● ==16716== For counts of detected and suppressed errors, rerun with: -v

● ==16716== Use --track-origins=yes to see where uninitialised values come from

● ==16716== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Live Coding

Graphs
● G = (V, E)

● V – a set of vertices

● E – a set of edges

Vertex and
Edge

1 2

45

3

Vertex

Edge

Undirected
Graphs

1 2

45

3

Undirected Graph
• ? vertices
• ? edges

Undirected
Graphs

1 2

45

3

Undirected Graph
• 5 vertices
• 7 edges

Directed
Graphs

1 2

45

3

Directed Graph
• 5 vertices
• 7 edges

Directed vs.
Undirected

Directed

● Resource allocation (e.g.,
Operating Systems; resource
to/from requesting process)

● Page rank

● Linguistics (e.g.,
programming languages)

● Finance

Undirected

● Social network (e.g.,
Facebook)

● Transportation networks

Breadth First
Search (BFS)

● Way to search/traverse a graph

● Given a source vertex S, find
● every vertex that is reachable from S
● the distance (i.e., number of “hops”) from S to each vertex

● Breadth-first – search the graph by looking at the vertices that are
at the same level (or distance) from the source before looking at
vertices that are further away

BFS

1 2

45

3

Source

BFS – 1st
iteration

1 2

45

3

Source Distance = 1

Distance = 1

BFS – 2nd
iteration

1 2

45

3

Source

Distance = 2

Distance = 2

BFS Tree

1

2

4

5

3

Distance = 1

Distance = 2

2 is parent (or ancestor) to 4 and 3
==

4 and 3 are children (or descendant) of 2

Adjacency List

1 2

45

3

1

2

3

4

5

2 5 /

1 3

2 4 /

2 3

1 2

4 5 /

5 /

4 /

Using Linked
List to
Represent an
Adjacency List

1. typedef struct adj_node_struct_t {

2. // vertex ID

3. int vid;

4. // pointer to next adj node

5. struct adj_node_struct_t *next;

6. } adj_node_t;

Using Linked
List to
Represent an
Adjacency List

1. adj_node_t *head = NULL;

2. adj_node_t *node1 = (adj_node_t*) malloc(sizeof(adj_node_t));

3. node1->vid = 1;

4. adj_node_t *node2 = (adj_node_t*) malloc(sizeof(adj_node_t));

5. node2->vid = 2;

6. adj_node_t *node3 = (adj_node_t*) malloc(sizeof(adj_node_t));

7. node3->vid = 3;

Using Linked
List to
Represent an
Adjacency List

1. head = node3;

2. node3->next = node1;

3. node1->next = node2;

4. node2->next = NULL;

Using Linked
List to
Represent an
Adjacency List

1. head = node3;

2. node3->next = node1;

3. node1->next = node2;

4. node2->next = NULL;

h 3 1 2 /

BFS Algorithm
● 3 arrays

● color – 0 (not visited), 1 (in the queue), 2 (visited)
● distance – 0 if source, 1 if immediate neighbor to source, 2 if

neighbor’s neighbor, etc.
● parent – vertex ID of the vertex’s parent

BFS Algorithm

● BFS(G, s) // given a graph G and a source vertex s
● For each vertex u ∈ V[G] - {s} // initialize the arrays for all but the source

● color[u] <- 0
● distance[u] <- ∞
● Parent[u] <- NIL

● color[s]= 1 // 1 because it’s the first vertex and you will need it in the queue
● distance[s] = 0 // 0 because it’s the source
● parent[s] = NIL // NIL because it has not parents
● Q <- { }
● enqueue(Q, s)
● while (Q is not empty)

● u <- dequeue(Q) // first in first out queue
● for each v ∈ adjacency_list[u]

● if color[v] == 0 // only add if not already visited or in queue
● color[v] = 1 // v is now in the queue
● distance[v] <- distance[u] + 1
● parent[v] <- u
● enqueue(Q, v)

● color[u] = 2 // u has been visited and accounted for

BFS Algorithm

1 2

45

3

s 2

45

3

1) Queue: s

1

2

3

4

5

2 5 /

1 3

2 4 /

2 3

1 2

4 5 /

5 /

4 /

BFS Algorithm

1 2

45

3

s 2

45

3

1) Queue: s
• dequeue s and add 2,5

2) Queue: 2 5

1

2

3

4

5

2 5 /

1 3

2 4 /

2 3

1 2

4 5 /

5 /

4 /

BFS Algorithm

1 2

45

3

s 2

45

3

1) Queue: s
• dequeue s and add 2,5

2) Queue: 2 5
• dequeue 2 and add 3,4

3) Queue: 5, 3,4

1

2

3

4

5

2 5 /

1 3

2 4 /

2 3

1 2

4 5 /

5 /

4 /

BFS Algorithm

1 2

45

3

s 2

45

3

1) Queue: s
• dequeue s and add 2,5

2) Queue: 2 5
• dequeue 2 and add 3,4

3) Queue: 5, 3,4
• dequeue 5

4) Queue: 3,4

1

2

3

4

5

2 5 /

1 3

2 4 /

2 3

1 2

4 5 /

5 /

4 /

BFS Algorithm

1 2

45

3

s 2

45

3

1) Queue: s
• dequeue s and add 2,5

2) Queue: 2 5
• dequeue 2 and add 3,4

3) Queue: 5, 3,4
• dequeue 5

4) Queue: 3,4
• dequeue 3

5) Queue: 4

1

2

3

4

5

2 5 /

1 3

2 4 /

2 3

1 2

4 5 /

5 /

4 /

BFS Algorithm

1 2

45

3

s 2

45

3

1) Queue: s
• dequeue s and add 2,5

2) Queue: 2 5
• dequeue 2 and add 3,4

3) Queue: 5, 3,4
• dequeue 5

4) Queue: 3,4
• dequeue 3

5) Queue: 4
• dequeue 4

6) Queue: (empty, done)

1

2

3

4

5

2 5 /

1 3

2 4 /

2 3

1 2

4 5 /

5 /

4 /

BFS Algorithm

1 2

45

3

s 2

45

3

1

2

3

4

5

2 5 /

1 3

2 4 /

2 3

1 2

4 5 /

5 /

4 /

2 2 2 2 2

color

0 1 2 2 1

distance

NIL 1 2 2 1

parent

Adjacency
Matrix

1 2

45

3

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

vertex

neighbor

Adjacency
Matrix

1 2

45

3

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

vertex 1’s neighbors are 2 and 5

Adjacency
Matrix

1 2

45

3

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

vertex 5’s neighbors are 1, 2, and 4

Sparse Matrix
Vector
Multiply

0 1 2 0 0

3 0 1 0 0

0 0 0 0 0

1 1 0 0 6

0 0 1 9 0

1

3

2

5

1

7

5

0

10

47

m x n matrix (A) multiplied by nx1 vector (x)
-> mx1 vector (y)

ith value of y = dot product
between ith row of A and x

Dot Product

1 1 2 4 7

2 1 2 4 8

p

q

dot product = p[1] * q[1] + p[2] * q[2] + … + p[5] * q[5]

Adjacency
Matrix

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

vertex

neighbor

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

neighbor

vertex

Transpose

Transpose:
Swap A[i][j] with A[j][i]

Adjacency
Matrix

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

neighbor

vertex

1

0

0

0

0

?

?

?

?

?

Adjacency
Matrix

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

neighbor

vertex

1

0

0

0

0

0

1

0

0

1

Adjacency
Matrix

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

neighbor

vertex

1

0

0

0

0

0

1

0

0

1

equivalent to the
neighbors of vertex 1

BFS Algorithm

● BFS(G, s) // given a graph G and a source vertex s
● For each vertex u ∈ V[G] - {s} // initialize the arrays for all but the source

● color[u] <- 0
● distance[u] <- ∞
● Parent[u] <- NIL

● color[s]= 1 // 1 because it’ll be the first vertex in the queue
● distance[s] = 0 // 0 because it’s the source
● parent[s] = NIL // NIL because it has not parents
● Q <- { }
● enqueue(Q, s)
● while (Q is not empty)

● u <- dequeue(Q) // first in first out queue
● for each v ∈ adjacency_list[u]

● if color[v] == 0 // only add if not already visited or in queue
● color[v] = 1 // v is now in the queue
● distance[v] <- distance[u] + 1
● parent[v] <- u
● enqueue(Q, v)

● color[u] = 2 // u has not been visited and accounted for

Adjacency
Matrix

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

neighbor

vertex

1

0

0

0

0

0

1

0

0

1

For corresponding
vertices found,
color it appropriately,
fill in the distance
(== iteration)

Adjacency
Matrix

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 1 1

3 0 1 0 1 0

4 0 1 1 0 1

5 1 1 0 1 0

neighbor

vertex

1

0

0

0

0

0

1

0

0

1

output vector becomes
the input for the next
iteration.

Make sure you account
for already visited
vertices

You are done when the
result vector is all 0
(no more neighbors
left to visit)

