
CIS 330
C/C++ and Unix
Lecture 7

Introduction to C++

C++

Key differences to C

New features

templates

overloading

inheritance

useful data structures (Vectors, Strings)

Name your files with cc, cxx, or cpp extension (or anything that
makes sense, just be consistent)
● Google coding standard suggest cc

Same goes for the header files
● .h works, but you can also use .hpp (again, just be

consistent)
● .h is still the most popular and follows the Google coding

standard
We will use .cc and .h for this course

Compile your code using g++
● Still part of the GNU compiler collection
● `g++’ is equivalent to `gcc –xc++ –lstdc++ –shared-libgcc’

● xc++ is the compiler option, and
● the others are linker options (C++ links to different

libraries)

Compiling C++
Code

Can I mix C
and C++

● Simple answer – yes
extern “C” void func(int);
or
extern “C” {

Int func2();
double func3();

}

● Syntax for C and C++ are very similar – e.g., you can use
pointers in C++ as well

● But, it’s better not to mix (if you have the choice).
● You can find more details here:

● https://isocpp.org/wiki/faq/mixing-c-and-cpp

You can call C code in
C++ or call C++ code in C
using this method

I/O

cin – standard input (stdin)

cout – standard output (stdout)

cerr – standard error (stderr)

clog – standard logging, typically used for non-critical events

Output

std::cout << "Hello World\n";

● Standard (std) character output device (cout)
● Insertion operator (<<) – insert/send the following to the

cout

std::cout << "i is " << i << std::endl;

Output

#include <iostream>

#include <iomanip>

double j = 1.23456;

std::cout << std::fixed;

std::cout << setprecision(2);

std:cout << “j is “ << j << std::endl;

Or use printf (or fprintf)

Input

int a;

std::cout << "Please enter an integer" << endl;

std::cin >> a;

or
int a;

int b;

std::cout << "Please enter two integers" << endl;

std::cin >> a >> b;

● This method consider white space as termination
● Like in the case with C, entering a non-integer value for int

can result in unpredictable behavior

Group names into a narrower scope – allows organizing elements
of program into different logical scope
● Useful for avoiding collisions for generic names

using namespace std;
● Allows the components of std – standard C++ library – to be

visible

using namespace std;

cout << "i is " << i << endl;

Namespace

Variable
Initialization

int a = 5; /* Regular */

int b(6); /* constructor init */

int c{9}; /* uniform init */

● Uniform init requires new C++ standard
● This makes it easier to differentiate because {} and () –

functional form
● This will make more sense when we start talking about

classes and objects (and constructors)

Control Flow

● If-then
● While
● Do-While
● For
● Switch
● break and continue
● goto

Range-based
For Loop

Iterates over all the elements in a range, where declaration is
some variable that can take the value of a single element

for(declaration : range) {

statements;

}

For example,

string str = "Hello World";

for(char c : str) {

 std::cout << c << " ";

}

std::cout << endl;

Data Types
● char, int, float, double, etc. and its usual specifies (e.g.,

unsigned, long, etc.)
● boolean (bool) - standard in C++ (i.e., built-in data type), but

not in C (but an implementation was provided in later versions
of C)

“New” Data
Types

Type deduction using auto
int a = 7;

auto b = a;

Type deduction using decltype

decltype(a) c;

auto vs. decltype

● decltype gives you the declared type for variable c
● auto uses template deduction (matters for

reference/pointers, discussed later)

● Pretty much the same between C and C++
● C++ provides an additional way to pass an address into a

function - pass by reference using & (instead of a pointer)

void f(int& r) {

 cout << "r = " << r << endl; /* print the value inside r
*/

 cout << "&r = " << &r << endl; /* address of r */

 r = 5; /* value of r has changed

 permanently */

 cout << "r = " << r << endl;

}

int main() {

 int x = 47;

 f(x);

}

Pointers

Efficiency

Value vs. Reference - which is more efficient?
string concatenate(string a, string b)

{

 /* a and b are copied - i.e., space required for the copies */

 return (a + b);

}

string concatenate_2(string &a, string &b)

{

 /* a and b are references - they can unintentionally be
changed

 In this function */

 return (a + b);

}

Safety

Can you keep the efficiency of pass-by-reference and prevent the
content from being changed?

string concatenate_2(const string &a, const string &b)

{

 return (a + b);

}

More on
Variables

Global variables
● Defined outside of all functions and available to all parts of

the program (even in code in other files)
● Local variables

● Local to a function
● Also known as automatic variables (automatically created &

destroyed).

Register variables

● Type of local variable hint that tells the compiler that it should
be stored in a register (not guaranteed)

● Must be declared within a block (i.e., cannot be global)
● Does not have an address

static keyword

● Does not disappear even when the scope for the variable is
over (e.g., outside of a function it was defined in)

● The variable “lives” for the entire life of the program
● Can only be initialized once and retains its value between

function calls
● Why not global variable?

● Scope is still the same - it cannot be “seen” outside of the
function it was defined in - minimizes errors

void func() {

 static int i = 0;

 cout << "i = " << ++i << endl;

}

int main() {

 for(int x = 0; x < 10; x++)

 func();
}

More on
Variables

extern keyword

● Tells the compiler that this variable (or function) exists even if
it has not seen it yet (e.g., may be defined in another file it has
not gotten around to compiling)

● Also used to let C++ know that some C functions exist (in
another .c file)

● It can also be used to tell the compiler that the variable is
defined further down the same fileMore on

Variables
extern int i;

extern void func();

int main() {

 i = 0;

 func();

}

int i;

void func() {

 i++;

 cout << i;
}

More on
Variables

const keyword

● The variable is constant (i.e., it cannot be changed)
● Why not use #define?

● #define is simple text replacement - it has no scope or type
checking

● Better than #define (unless you want to use it for more than
just defining a variable - e.g., a function-like behavior)

volatile keyword

● Tells the compiler you do not know when this variable will
change (kind of like an opposite to const)

● Prevents the compiler from performing any optimizations
● For example, in a multi-threaded program this variable may be

used to communicate between threads
● Even if it appears that it has not changed since it was

defined, it likely has
● Always read the value whenever it is needed (even if it was

read just a line before for something else)

More on
Variables

Operators

Pretty much the same as C

● Mathematical operators (+, -, *, /, %)
● Relational (they produce a bool data type) - true or false

● <, >, <=, >=, ==, !=
● Used with all built-in types

● Logical operators (&&, ||)
● Used by both int and float/double
● Note that for float/double, comparison with 0 is absolute,

but the smallest difference in the numbers will be considered
“not equal.”

● Bitwise operators (&, |, ^, ~)
● Shift operators (<<, >>)

● Be careful when using with signed vs. unsigned

Unary operators (-, +)

Ternary operators

● Remember that A ? B : C is different from if-then in
that it produces a value (i.e., an operator)

a = --b ? b : (b = -99);

Casting operators

● Compiler usually change data types automatically (e.g., int
to float if you assign an int to a float variable)

● You can also do it manually (e.g., (unsigned long int) b
where b is a regular int)

Operators

Operators

Casting should be done carefully and rarely (or avoid if possible),
as it can lead to dangerous behavior and prone to bugs (by
bypassing the compiler’s automatic type checking)

C++ specific casting (explicit cast)

● Allows you to identify casting more easily
● static_cast
● const_cast
● reinterpret_cast
● dynamic_cast (this will be discussed later)

static_cast

Used for conversions that are well-defined (i.e., safe conversions that
the compiler would allow)

castless conversion

int i = 0x7fff; long l;

l = i; or l = static_cast<long>(i);

narrowing

i = static_cast<int>(l);

conversion from void*

void* vp = &i;

fp = static_cast<float*>(vp); /* still dangerous! */

Convert from const to not const or from volatile to not
volatile

 const int i = 0;

 int* j = (int*)&i; // Deprecated form

 j = const_cast<int*>(&i); // Preferred

If you take the address of a const object, you produce a pointer to a
const and this cannot be assigned to a non-const pointer (without a
cast)

However, if you try to change the content of i (e.g., in another
function), it will produce an undefined behavior, because C++ does
not allow this behavior (changing what is determined to be const)

More on const later in the class

const_cast

reinterpret_cast

Cast a completely different meaning - VERY DANGEROUS

Typically used to do some bit twiddling, and will NEED to be cast
back to the original type before doing anything else

struct X { int a[sz]; };

X x;

int* xp = reinterpret_cast <int*>(&x);

 for(int* i = xp; i < xp + sz; i++)

 *i = 0;

/* must be cast back to struct X before being used as X
*/

/* reinterpret_cast <X*>(xp) */

sizeof
This is actually an operator

● Used to get the size of data-types
● Also used to get size of user-defined data types in C++

(discussed later)

asm

● Mechanism that allows you to write assembly code
“embedded” into your C/C++ code

● Easier alternative to disassembling your code, changing it, and
then reassembling it

● We will (probably) have a class on how to write simple
assembly code

Functions

C++ allows optional/default parameters

void opt_param(int i, int j = 10);

● You can pass in just the first parameter i or both i and j.
● If j is not passed in, it assumes the value of 10

Overloading

Two different functions can have the same name – if they have
different number of parameters, or different data type parameters

void overload(int i, int j);

void overload(double i, double j);

void overload(int i, int j, int k);

However, avoid having functions with the same name do different
things (it gets confusing)

But, useful if you want to have functions that may have different
inputs (e.g., integer or double, optional nth input, etc.)

Templates

What if you have a function whose parameters can be of numerous
different types?

Have an overloaded function for each type
Or use a template

template <class mytype> mytype sum(mytype a, mytype b);

int x = sum<int>(10, 20);

double y = sum<double>(10.1, 20.1);

Compiler automatically instantiates a version of the sum function
with mytype being replaced by int, double, float, etc.

Composite
Type Creation

typedef - works as in C
typedef unsigned long ulong;

structs

you can use it as in C

structs plays a more important role in C++ (classes evolved
from structs, as we will see later)

enum - works as in C

Automatically assigns values to names

You can also manually assign values to names
enum ShapeType {

 circle = 10, square = 20, rectangle = 50

};

union - works as in C

Memory saving mechanism

Strings
C++ provides a String class

#include <string>

Works similar to C (but more convenient, will be discussed later)

String Stream
(sstream)

Similar to Strings (again, will be discussed later)

#include <sstream>

string stream_str = "5081";

int input_int;

stringstream(stream_str) >> input_int;

std::cout << "Input_int is " << input_int << endl;

Vectors
● Strings for numbers – good for dynamically sized arrays

● Vectors class is a template – it can be efficiently applied to
different data types

Vector
Example

1. vector<string> vec;

2. ifstream fin("lecture09b.cc");

3. string line;

4. while(getline(fin, line)) {

5. vec.push_back(line);

6. }

7. for(int i = 0; i < vec.size(); i++) {

8. cout << i << ": " << vec[i] << endl;

9. }

Live Coding

