
CIS 330
C/C++ and Unix
Lecture 10

Initialization and Cleanup

Tech Together

Tech Together

Review

● Private member cannot be accessed through objects
● Constructors are destructors are used to initialize/cleanup

objects
● Inheritance and polymorphism
● Friendship can be used to give access to non-members of a

class
● “Cheshire cat smile” can be used to limit access to

implementation details

1. #ifndef HANDLE_H

2. #define HANDLE_H

3. class Handle {

4. struct Cheshire;

5. Cheshire *smile;

6. public:

7. void initialize();

8. void cleanup();

9. int read();

10. void change(int);

11. };

12. #endif

Header file can be seen
by anyone – otherwise you
won’t know how to use it

The REAL private members
are not visible

The real private members are
“hidden” inside the Cheshire
struct

Header File

● Implement the Class in the source code

● Compile it

● Provide it as a library/API with the header to provide the interface (and
include what the interface is used for)

● The user has no idea what’s actually inside the Class (i.e., the private
members)

Cheshire Cat

#include "Handle.h"

struct Handle::Cheshire {

 int i;

};

void Handle::initialize() {

 smile = new Cheshire;

 smile->i = 0;

}

void Handle::cleanup() {

 delete smile;

}

int Handle::read() {

 return smile->i;

}

void Handle::change(int x) {

 smile->i = x;

}

Cheshire Cat

Questions?

Initialization
and Cleanup

Lot of bugs can happen due to initialization (or lack thereof)

● In the SpMV homework, some people were getting errors
because they forgot to initialize the output vector to 0

● += to a random number results in a random number

More cleanup is required (beyond free()) in C++ due to the
complexity of structure/classes

Constructors and Destructors guarantee that data is initialized and
destroyed appropriately

this Pointer

To talk about initialization, it’s important to talk about memory

● Each object gets its own copy of data members but share a
single copy of the member functions (modularity)

Then, how are data members accessed updated using single copy of
the functions?

● The ‘this’ pointer is passed (as a hidden argument) to
all non-static member function calls, and is available as a
local variable within the function body

● For example, for class X, ‘this’ pointer is of type X*

Recall that static members have one copy (even for data)
regardless of how many objects are created (same idea used in C)

Initialization

When the constructor is called, this pointer points to an
uninitialized block of memory

It’s the job of the constructor to initialize this memory properly

Constructor has the same name as the class, and can be overloaded
with a different parameter list - the proper one will be called
automatically

this Pointer

Why do we need this?

When local variable name overlaps with member name

Return reference to the calling object

● Chained function calls!

this Pointer

class Test

{

private:

 int x; int y;

public:

 Test(int x = 0, int y = 0) { this->x = x; this->y = y; }

 Test& setX(int a) { x = a; return *this; }

 Test& setY(int b) { y = b; return *this; }

 void print() { cout << "x = " << x << " y = " << y << endl; }

};

int main()

{

 Test obj1(5, 5);

 // Chained function calls. All calls modify the same object

 // as the same object is returned by reference

 obj1.setX(10).setY(20);

 obj1.print();

 return 0;

}

Cleanup

In C, only thing you need to worry about in terms of cleanup is heap
memory (created through malloc())

Other data types (int, float, etc.) are usually ignored
(automatically cleaned up, like in C)

However, in C++, you use more complex data types (i.e., classes),
and so proper cleanup is often required

● Destructor is called (automatically) when the object goes out
of scope (e.g., return from a function)
● Destructors are named with ~<class name>, and have no

arguments (you don’t need options to destroy things)

Example

class Tree {
 int height;
public:
 Tree(int initialHeight); // Constructor
 ~Tree(); // Destructor
 void grow(int years);
 void printsize();
};
Tree::Tree(int initialHeight) {
 height = initialHeight;
}
Tree::~Tree() {
 cout << "inside Tree destructor" << endl;
 printsize();
}
void Tree::grow(int years) {
 height += years;
}
void Tree::printsize() {
 cout << "Tree height is " << height << endl;
}

int main() {
 cout << "before opening brace" << endl;
 {
 Tree t(12);
 cout << "after Tree creation" << endl;
 t.printsize();
 t.grow(4);
 cout << "before closing brace" << endl;
 }
 cout << "after closing brace" << endl;
} ///:~

What is the output?

Example

before opening brace

after Tree creation

Tree height is 12

before closing brace

inside Tree destructor

Tree height is 16

after closing brace

In C++, when an object is created, it is simultaneously initialized (with a
constructor)

● This ensures you have no uninitialized objects in your code
● You will NOT be allowed to create an object before you have the

initialization Information for the constructor

However, the compiler will allocate storage for an object at the beginning
of its scope (but you can’t access this until it has been defined, e.g.,
Human John;)

Constructor call will NOT happen until the code reaches that definition
statement

● As such, the compiler will NOT let you put the object definition
where it may not pass through (e.g., because of a conditional
statement)

Storage
Allocation

1. class X {

2. public:

3. X();

4. };

5. X::X() { cout << "X constructor" << endl;}

6.

7. void f(int i) {

8. if(i < 10) {

9. goto jump1;

10. }

11. X x1;

12. jump1:

13. switch(i) {

14. case 1 :

15. X x2;

16. break;

17. case 2 :

18. X x3;

19. break;

20. }

21. }

Example

1. class X {

2. public:

3. X();

4. };

5. X::X() { cout << "X constructor" << endl;}

6.

7. void f(int i) { // x1 storage allocated here

8. if(i < 10) {

9. goto jump1; // skips x1 constructor - error

10. }

11. X x1;

12. jump1:

13. switch(i) { // x2 and x3 storage allocated here

14. case 1 : // case bypasses x3 constructor

15. X x2; // x2 constructor called here

16. break;

17. case 2 : // case bypasses x2 constructor

18. X x3; // x3 constructor called here

19. break;

20. }

21. }

Example

Constructors
and
Inheritance

Order of constructor call

● Base class constructors are always called first in the derived
class’ constructor

● Then, the derived class’ constructor is called

This is because the derived class’ constructor has access to only its
own members

● The derived class may have also inherited properties of the
base class, and only the base class’ constructor can initialize
them

Constructors
and
Inheritance

class Base
{
 int x;
 public:
 // default constructor
 Base() { cout << "Base default constructor\n"; }
};
class Derived : public Base
{
 int y;
 public:
 // default constructor
 Derived() { cout << "Derived default constructor\n"; }
 // parameterized constructor
 Derived(int i) { cout << "Derived parameterized constructor\n"; }
};

int main()
{
 Base b;
 Derived d1;
 Derived d2(10);
}

Constructors
and
Inheritance

Base default constructor

Base default constructor

Derived default constructor

Base default constructor

Derived parameterized constructor

Constructors
and
Inheritance

You can also invoke the base class’ constructor

Base::Base(int i) {
 x = i;
 cout << "Base constructor\n";
}

class Derived : public Base
{
 int y;
 public:
 // default constructor
 Derived() { cout << "Derived default constructor\n"; }
 // parameterized constructor
 Derived(int i) : Base(i) // Base::x is private, but will be
initialized to with i by using its own constructor
 {
 y = j;
 cout << "Derived parameterized constructor\n";
 }
};

Constructors
and
Inheritance

This allows some members to remain private in the Base class
● But can still be initialized and accessed (if the proper interface

has been defined)
● Code remains modularized (e.g., you won’t have to initialize

some protected variable in both the base and derived class
constructors)

