
Lecture 11

Constants

CIS 330
C/C++ and Unix

Luks
Competition

he 24th Annual UO Eugene Luks Programming Contest will be held on Saturday, May 14,
12-4pm.

The CIS Department holds this contest every year as an opportunity to have fun while
challenging your programming skills. There are two divisions of teams: undergraduate and
graduate. Undergrad teams may have up to three team members, and grad teams may
have two. The contest will be held in Deschutes room 100 and each team will be assigned to
a Mac workstation running PC^2 contest software (this may be updated to allow you to use a
laptop). There will be five to six programming problems, and the goal is for each team to
program correct solutions for as many of the problems as they can during the three hour
contest. Programming can be done in Java, C++, Python or any other language available on
the department server.

In each division, the team solving the most problems will be the division winner, with ties
broken by submission times. A further description of the contest rules can be found at
https://www.cs.uoregon.edu/Activities/Luks_Programming_Contest/rules.php

Previous problem sets can be found at
https://www.cs.uoregon.edu/Activities/Luks_Programming_Contest/

In order to compete in the contest, you must register your team - to register, send the name
and email to Arnita Albertson (arnita@uoregon.edu) or to Chris Wilson
(cwilson@cs.uoregon.edu).

https://www.cs.uoregon.edu/Activities/Luks_Programming_Contest/rules.php
https://www.cs.uoregon.edu/Activities/Luks_Programming_Contest/

Previously
Initialization and cleanup - constructors & destructors

Continuing on initialization…

Aggregate
Initialization
for Structs

Because C-style struct has all its member as public (by default), they
can be assigned directly

struct X {

 int i;

 float f;

 char c;

};

X x1 = { 1, 2.2, 'c' };

Aggregate
Initialization
for Structs

Or if you have an array of such structs

struct X {

 int i;

 float f;

 char c;

};
X x2[3] = { {1, 1.1, 'a'}, {2, 2.2, 'b'} };
// What about x2[2]?

Aggregate
Initialization
for Structs

Or if you have an array of such structs

struct X {

 int i;

 float f;

 char c;

};
X x2[3] = { {1, 1.1, 'a'}, {2, 2.2, 'b'} };
// x2[2] will be initialized with 0s

Aggregate
Initialization
in C++

If you have constructors, whether members are private or public, all
initializations must go through the constructor

struct Y {

 float f;

 int i;

 Y(int a);

};

Y y1[] = { Y(1), Y(2), Y(3) }; // each will call a constructor

Default
Constructors

struct Y {

 float f;

 int i;

 Y(int a) { i = a; };

};

Y y2[2] = { Y(1) }; // what would happen here?

Default
Constructors

struct Y {

 float f;

 int i;

 Y(int a) { i = a; };

};

Y y2[2] = { Y(1) }; // compiler will complain that there is no

 // default constructor

Default
Constructors

Default constructors are so important that the compiler will create
one for you automatically, IF AND ONLY IF, no constructor has been
specified AT ALL

class V {

 int i; // private by default

}; // No constructor

int main() {

 V v, v2[10]; // default constructor will be used

}

Function
Overloading

Name decoration - functions
void f();

class X { void f(); };

do not clash because compiler manufactures different names
internally

This is also known as “name mangling”

Similarly, functions with the same name, but different parameters
can be defined - we saw this in function overloading

Unions

Unions can also have member functions and access control
(including constructors and destructors)

In the below example, int i and float f are stored in the same
memory location

union U {

private:

 int i;

 float f;

public:

 U(int a);

 U(float b);

 ~U();

 int read_int();

 float read_float();

};

Function
Overloading

We can use function overloading to “automatically” call the correct
function to initialize the union members (instead of using conditionals)

U::U(int a) { i = a; }

U::U(float b) { f = b;}

U::~U() { cout << "U::~U()\n"; }

int U::read_int() { return i; }

float U::read_float() { return f; }

int main() {

 U X(12), Y(1.9F);

 cout << X.read_int() << endl;

 cout << Y.read_float() << endl;

}

Function
Overloading

However, there is still no way to prevent the user from accessing the
“wrong” member (e.g., X.read_int() -> X.read_float())

Can we fix this?

Yes, encapsulate the union in a class

Function
Overloading

class SuperVar {

 enum {

 character,

 integer,

 floating_point

 } vartype;

 union { // Is this correct?

 char c;

 int i;

 float f;

 };

public:

 SuperVar(char ch);

 SuperVar(int ii);

 SuperVar(float ff);

 void print();

};

Function
Overloading

class SuperVar {

 enum {

 character,

 integer,

 floating_point

 } vartype;

 union { // Anonymous union - no type or variable name

 char c;

 int i;

 float f;

 };

public:

 SuperVar(char ch);

 SuperVar(int ii);

 SuperVar(float ff);

 void print();

};

Anonymous
Union

Anonymous unions have no type or variable name.

Remember that normally,
union num_union_t {
 int i;
 float j;
};
num_union_t x; x.i = 100;

However, they can be declared anonymous, in which case the
members can be accessed directly
int main() {

 union {

 int i;

 float f;

 };

 i = 12;

 f = 1.22; // i and f are still in the same memory location

}

SuperVar::SuperVar(char ch) {

 vartype = character; c = ch;

}

SuperVar::SuperVar(int ii) {

 vartype = integer; i = ii;

}

SuperVar::SuperVar(float ff) {

 vartype = floating_point; f =
ff;

}

Function
Overloading

void SuperVar::print() {

 switch (vartype) {

 case character:

 cout << "character: " << c

 << endl;

 break;

 case integer:

 cout << "integer: " << i

 << endl;

 break;

 case floating_point:

 cout << "float: " << f

 << endl;

 break;

 }

}

Stash::Stash(int sz) {

 size = sz;

 quantity = 0;

 next = 0;

 storage = 0;

}

Stash::Stash(int sz, int initQuantity) {

 size = sz;

 quantity = initQuantity;

 next = 0;

 storage = 0;

}

Stash(int) is a special case of Stash(int, int) . Can we make this
more compact?

Overloading

Overloading
With Default
Arguments

Stash::Stash(int sz);

Stash::Stash(int sz, int initQuantity);

Can be replaced with:

Stash::Stash(int sz, int initQuantity = 0); // default
argument

With default arguments,

● Only the trailing arguments may be defaulted (why?)
● Default arguments are typically only placed in the declaration

(e.g., in the header file)
● Sometimes, you will see commented default value in the

function definition

void fn(int x /* = 0 */) { // ...

● If you have a function declaration (with the default argument),
you cannot have it on the function definition

Overloading
With Default
Arguments

void f(int i, int j = 100);
int main()
{
 f(10);
 f(10, 1000);
}

void f(int i, int j)
{
 cout << "i is " << i << endl;
 cout << "j is " << j << endl;
}

OKAY

void f(int i, int j = 100);
int main()
{
 f(10);
 f(10, 1000);
}

void f(int i, int j = 100)
{
 cout << "i is " << i <<
endl;
 cout << "j is " << j <<
endl;
}

NOT OKAY

void f(int i, int j = 100)
{
 cout << "i is " << i << endl;
 cout << "j is " << j << endl;
}

int main()
{
 f(10);
 f(10, 1000);
}

OKAY or NOT OKAY?

Overloading
With Default
Arguments

void f(int i, int j);
int main()
{
 f(10);
 f(10, 1000);
}

void f(int i, int j = 100)
{
 cout << "i is " << i << endl;
 cout << "j is " << j << endl;
}

OKAY or NOT OKAY?

Placeholder
Arguments

In C++, arguments can be declared without identifiers
void f(int x, int = 0, float = 1.1);

You also don’t need them for function definitions
void f(int x, int, float flt) { /* ... */ }

Function calls must still provide values for these arguments, even if
the function does not use them.

This is typically done in case those are needed later, without
changing all the code that calls this function.

● You could still have a name for these arguments and not use it,
but the compiler will give you a warning - this method
suppresses those warnings

Questions Any questions about initialization?

const
Keyword

First motivation for using const is to eliminate the use of #define
macros (value substitution)

It is now used for pointers, function arguments, return types, class
objects, and member functions

We will talk about how const should be used in C++ to maintain
good coding style and safety

Remember, #define is an exact textual replacement wherever it is
used

● It can lead to mistakes if not used carefully
#define CircleArea(r) (3.14 * r * r)

● There is also no concept of type checking
double CircleArea(double r) { return 3.14 * r * r;

}

● This can hide bugs and make them difficult to find

Value
Substitution

Value
Substitution

Using const brings value substitution into the domain of the
compiler

#define bufsize 100 -> const int bufsize = 100;

Now the compiler knows the value at compile time, and can perform
optimizations like “constant folding” (i.e., calculates the constant
expression at compile time, and folds it into the code, instead of
calculating them at runtime)

You can use const for all built-in types and their variants (e.g., class
objects)

const must be initialized when defined (there are exceptions).

Questions? We will take a slight detour and talk about something different (but
related)

Two types of linkage - internal and external

If a variable has internal linkage,

● Variable is visible only to the file it was defined in
● Storage is (usually) created to represent the identifier only for

the file being compiled
● Other files may use the same identifier name (also with

internal linkage) without conflict (because separate storage is
created for each)

● Internal linkage is specified by the keyword static

If a variable has external linkage

● Single piece of storage is created (once) that represents the
identifier for ALL files being compiled

● Global variables have external linkage by default
● But to access them from outside the declared file, it must be

specified as extern

Linkage

Linkage
Example

/usr/bin/ld: /tmp/ccXTLKo9.o:(.bss+0x0): multiple definition of `globe';
/tmp/ccq9rqm2.o:(.bss+0x0): first defined here
collect2: error: ld returned 1 exit status

func.cc
#include <iostream>
int globe;

int func()
{
 globe = 10;
 return globe;
}

main.cc
#include <iostream>
using namespace std;

int globe;
int func();

int main()
{
 globe = 100;
 func();
 cout << globe << endl;
 return 0;
}

External
Linkage

#include <iostream>
extern int globe;
int func()
{
 globe = 10;
 return globe;
}

#include <iostream>
using namespace std;

int globe;
int func();

int main()
{
 globe = 100;
 func();
 cout << globe << endl;
 return 0;
}

10

External
Linkage

#include <iostream>
int globe;
int func()
{
 globe = 10;
 return globe;
}

#include <iostream>
using namespace std;

extern int globe;
int func();

int main()
{
 globe = 100;
 func();
 cout << globe << endl;
 return 0;
}

10

Linkage
Example

100

func.cc
#include <iostream>
int globe;

int func()
{
 globe = 10;
 return globe;
}

main.cc
#include <iostream>
using namespace std;

static int globe;
int func();

int main()
{
 globe = 100;
 func();
 cout << globe << endl;
 return 0;
}

External
Linkage (in C)

#include <stdio.h>

int globe;

int func()
{
 globe = 10;
 return globe;
}

#include <stdio.h>

int globe;
int func();

int main()
{
 globe = 100;
 func();
 printf("%d\n", globe);
 return 0;
}

10

const in
Header Files

Since #define can be used in header files, const must also be
usable in header files (i.e., global variable).

const defaults to internal linkage (i.e., only visible within the file it
was defined in and cannot be seen at link time by other units), since
it tries to avoid allocating memory (otherwise, constant folding
becomes difficult)

So, define it as extern if you want to give it external linkage
● extern const int bufsize;
● this forces the const variable to have storage (so other files

can see it)

You must always initialize a const when you define it, except when
it is made extern

● Since memory is allocated, you can change it whenever you
want to

main.h
extern const int globe;

main.cc
#include <iostream>
#include "main.h"

using namespace std;

void func();
void test();

const int globe = 100;
int main()
{
 cout << globe << endl;
 test();
 func();
 return 0;
}

func.cc
#include <iostream>
#include "main.h"

void func()
{
 std::cout << globe << std::endl;
}

test.cc
#include <iostream>
#include "main.h"

void test()
{
 std::cout << globe << std::endl;
}

./a.out
100
100
100

const variable
as external

const variable
as internal

test.cc
#include <iostream>
#include "main.h"

const int globe = 1000;
void test()
{
 std::cout << globe << std::endl;
}

./a.out
100
1000
10

main.h
extern const int globe;

main.cc
#include <iostream>
#include "main.h"

using namespace std;

void func();
void test();

const int globe = 100;
int main()
{
 cout << globe << endl;
 test();
 func();
 return 0;
}

func.cc
#include <iostream>
#include "main.h"

const int globe = 10;
void func()
{
 std::cout << globe << std::endl;
}

const in
Header Files

Normally, C++ avoids allocating storage for const but when you
use extern with const you force C++ to allocate storage

● extern suggest external linkage, so for other units to be able
to refer to this item, it needs some sort of storage

Storage is also allocated when const is used inside complicated
structures

When storage is allocated, constant folding is prevented - because
the compiler does not know exactly what would be in that storage
location

Summary

const variables TYPICALLY do not require storage

● They must be initialized at definition
● They are constant folded into the code
● They are internal to the file
● They can be treated as #define

However, they can have storage

● For example, when they are passed in as reference to a
function, or if they are part of a more complicated data
structure, or used as an extern global variable

● In this case, constant folding is prevented, and it acts more like
“a variable whose value should not be changed”

const in global variables (e.g., header files)

● Regular global variables are extern by default
● Thus, const must declare as extern explicitly if you want

other files to see it
● This forces C++ to give it storage
● Otherwise, you can have multiple copies of const among

different files

Safety

Another reason for using const is for safety

If you initialize a variable with a value produced at runtime and you
know it will not change (or should not change), for the lifetime of
the variable, it is a good idea to make it const

● Compiler will give an error message, if you try to change it
● Makes it more difficult to introduce bugs

For example,
const int i = 100; // Typical constant

const int j = i + 10; // Value from const expr

char buf[j + 10]; // Still a const expression

int main() {

 cout << "type a character & CR:";

 const char c = cin.get(); // Can't change after this
 const char cx;
 cx = cin.get(); // Not allowed

 const char c2 = c + 1; // Allowed

 c = c + 1; // Not allowed

 cout << c2;

 // ... }

Questions?

