
Lecture 12

Constants contd.

CIS 330
C/C++ and Unix

Summary

const variables TYPICALLY do not require storage

● They must be initialized at definition
● They are constant folded into the code
● They are internal to the file
● They can be treated as #define

However, they can have storage

● For example, when they are passed in as reference to a
function, or if they are part of a more complicated data
structure, or used as an extern global variable

● In this case, constant folding is prevented, and it acts more like
“a variable whose value should not be changed”

const in global variables (e.g., header files)

● Regular global variables are extern by default
● Thus, const must declare as extern explicitly if you want

other files to see it
● This forces C++ to give it storage
● Otherwise, you can have multiple copies of const among

different files

Aggregates

// Constants and aggregates

const int i[] = { 1, 2, 3, 4 };

//! float f[i[3]]; // Illegal

struct S { int i, j; };

const S s[] = { { 1, 2 }, { 3, 4 } };

//! double d[s[1].j]; // Illegal

int main() {//...}

Aggregates are complicated, so storage will be allocated (therefore,
value is not known at compile time, and cannot be used then).

If these were in the main() function, it would actually be allowed, as
the code in the main function are assumed to be known only at
runtime

● It’s only global variables that this matters - because variables
are ‘defined’ but no code is ‘executed.’

Differences
with C

In C, const always occupies storage and NOT a compile time
constant

Because storage is allowed, it’s okay to say

const int bufsize;

const defaults to external linkage in C (vs. internal in C++)

Pointers and
const

Pointers can be made const as well

● The compiler will try to prevent storage allocation (because its
value can’t be changed, new address cannot be assigned to it)

● The compiler will also try to do constant folding

When using pointers, you have two options

const is applied to what the pointer is pointing to, or

const is applied to the address stored in the pointer

As with pointers, read it at the identifier and work your way out

● const binds to the thing it is closest to
● const int* u;

● u is a pointer to a constant int
● int is the one that cannot be changed
● this is why u does not have to be initialized, as u IS

ALLOWED to change (i.e., the address it is pointing to can
change)

● int const* v;
● v is a constant pointer to int?

Pointer to
const

As with pointers, read it at the identifier and work your way out

● const binds to the thing it is closest to
● const int* u;

● u is a pointer to a constant int
● int is the one that cannot be changed
● this is why u does not have to be initialized, as u IS

ALLOWED to change (i.e., the address it is pointing to can
change)

● int const* v;
● v is a constant pointer to int
● v is an (ordinary) pointer to an int that happens to be

const
● const is bound to int again (i.e., integer value can’t

change)

Stick to the first form (which is less confusing)

Pointer to
const

const Pointer

To make the pointer itself const, const must be placed right
after the *

int d = 1;

int* const w = &d;

w is a const pointer to int

You can still change the value of d (e.g., *d = 100);

What would then be the correct method to make the pointer AND
the value held in that address both const?

int d = 1;const Pointer
to a const
object

const Pointer
to a const
object

What would then be the correct method to make the pointer AND the
value held in that address both const?

int d = 1;

const int* const x = &d; // (1) legal

int const* const x2 = &d; // (2) also legal, but less
preferred (confusing)

Remember that

value inside the address stored in a pointer is constant - const is
before *

const int* u;

int const* v;

Pointer is constant - const is after *

int* const w

Type Checking

C++ is VERY particular about type checking

● You don’t have the same freedom as C
● For example, in C++ can you:

● Assign the address of a non-const object to const
pointer?

● Assign the address of a const object to a non-const
pointer?

● Which is allowed?

Type Checking

C++ is VERY particular about type checking

● You don’t have the same freedom as C
● For example, in C++ can you:

● Assign the address of a non-const object to a const
pointer

● You’re promising NOT to change something (the
const pointer) that is okay to change (non-const
object address)

● Assign the address of a const object to a non-const
pointer

● You may change something (non-const pointer) that is
not allowed (const object address) to be changed

Example

int d = 1;

const int e = 2;

int* u = &d; // OK?

int* v = &e; // OK?

int* w = (int*)&e; // OK?

int main() {}

Example

int d = 1;

const int e = 2;

int* u = &d; // OK -- d not const

// int* v = &e; // Illegal -- e const

int* w = (int*)&e; // Legal but bad practice (and undefined
behavior)

int main() {}

Example

1)
 const int e = 2;
 const int* v = &e;
2)
 const int e = 2;
 int* const v = &e;

Which is legal?

Example

1)
 const int e = 2;
 const int* v = &e; // v is a pointer to a const int (int cannot be changed)
2)
 const int e = 2;
 int* const v = &e; // v is a constant pointer to int (int can still change)

Function
Arguments

You can specify function arguments as const when passing-by-value
void f1(const int i) {

 i++; // illegal

}

● You are making sure that i is something that should not
change inside the function

● You are also making a promise that original value will
not be changed by the function

● However, this is implicitly kept since the value is
passed-by-value

Function
Arguments

Alternatively, you could say:
void f2(int ic) {

 const int i = ic;

 i++; // still illegal

}

● Caller makes no assumption about the value being passed
(other than that it’s passed by value, so a copy is made inside)

● Inside the function, you are still not allowed to change the
value of ic

Quiz

Quiz

Question 1 - Which of the following are NOT true?

A. const can be used to replace #define
B. const allows type checking whereas #define does not
C. constant folding is where you reuse an identical calculation

that has already been done before to skip calculation at
runtime

D. const are allowed in header files

Quiz

#include <iostream>
extern int globe;
int func()
{
 globe = 10;
 return globe;
}

#include <iostream>
using namespace std;

static int globe;
int func();

int main()
{
 globe = 100;
 func();
 cout << globe << endl;
 return 0;
}

Question 2 - Given the following piece of code, what will be printed?

A. 10
B. 100
C. Compile error
D. Undefined behavior

Question 3 - Given the following piece of code which of the
following options list the lines in the code that will cause a compile
error?

#include <iostream>
using namespace std;

1. const int i[] = {1, 2, 3, 4};
2. float f[i[0]];

3. int main(int argc, char** argv)
4. {
5. const int j[] = {1, 2, 3, 4};
6. float g[i[0]];
7. float h[j[0]];
8. }

A. Only lines 2, 6, and 7
B. Only lines 2 and 6
C. Only line 2
D. Only line 6
E. Only line 7

Quiz

Quiz

Question 4 - Given the following piece of code which of the
following options list the lines in the code that will cause compile
error?
1. int d = 1;
2. const int e = 2;
3. int* const f = &e;
4. int* u = &d;
5. int* v = &e;
6. int* w = (int*)&e;
7. int main() {}

A. Only lines 3, 4, 5, and 6
B. Only lines 4 and 5
C. Only line 5
D. Only lines 5 and 6
E. Only lines 3 and 5

Questions?

Previously…

Constants

● Designed to replace #define
● It will try to textual replace, and evaluate constant expressions

(e.g., after textual replacement 10 + 20 = 30) at compile time
● Normally not given any storage
● All of the above changes when being used as a global variable

with external linkage

const keyword

● If “const” goes before the *, than it applies to the data
● If “const” goes after the *, than it applies to the pointer

variable

Questions?

Return Values

If you say that a function’s return value is const

const int g() {int a = 1; return a;}

You are promising that the original variable (a from inside the
function) will not be modified

● Again, this is implicit, since you’re returning by value (it’s a
copy of the original variable a from inside the function, which
will be destroyed when the function ends)

For built-in types, avoid returning value as const (as it can lead to
more confusion and has no real impact)

However, things are different for objects

Return Values

const becomes more important when using user-defined types
(e.g., classes)

If a function returns a class object, then it can be an l-value (unlike
fundamental types, such as int, char, etc.)

If a function returns a class object as const, the return value of that
function cannot be an l-value (i.e., it cannot be assigned or
modified)

L-value - something that points to a memory location

● Exists as variables and lives longer

R-value - something that does not point to anything

● Temporary and short lived

int x = 666; // x is l-value, 666 is r-value

Left operand of an assignment operator must be an l-value,

L-value vs.
R-value

int func()
{
 int x = 100;
 return x;
}

int main()
{
 func() = 200;
 return 0;
}
main.cc: In function ‘int main()’:
main.cc:12:14: error: lvalue
required as left operand of
assignment
 func() = 200;

int& func()
{
 int x = 100;
 return x;
}

int main()
{
 func() = 200;
 return 0;
}
main.cc: In function ‘int& func()’:
main.cc:6:9: warning: reference
to local variable ‘x’ returned
[-Wreturn-local-addr]
 int x = 100;
 ^

You are returning
a copy of x, which
is a temporary

You are returning
a reference to x, which
makes it an l-value

However, not a good
idea, since x will be
“destroyed” when the
function ends

Example

class X {

 int i;

public:

 X(int ii = 0) { i = ii; }

 void modify() { i++; }

};

X f5() {

 return X();

}

const X f6() {

 return X();

}

void f7(X& x) {

 x.modify();

}

int main() {

 f5() = X(1); // OK --
non-const return value (usable
as lvalue)

 f5().modify(); // OK

// Causes compile-time errors:

//! f7(f5());

//! f6() = X(1); // (not an
lvalue)

//! f6().modify();

//! f7(f6());

} ///:~

Questions?

Returning a fundamental data type (int, char, etc.) creates an r-value
(which are short-lived and unmodifiable)

Returning a class object creates an l-value (which can be modified)

● However, return it as const makes it an r-value (which cannot
be modified)

Example

class X {

 int i;

public:

 X(int ii = 0) { i = ii;
}

 void modify() { i++; }

};

X f5() {

 return X();

}

const X f6() {

 return X();

}

void f7(X& x) {

 x.modify();

}

int main() {

 f5() = X(1); // OK --
non-const return value (usable
as lvalue)

 f5().modify(); // OK

// Causes compile-time errors:

//! f7(f5());

//! f6() = X(1); // (not an
lvalue)

//! f6().modify();

//! f7(f6());

} ///:~

f7() will cause compile error because
f5() and f6() create a temporary

Temporaries

During the evaluation of an expression, compiler must create
temporary objects

● int x = a * y + z;
● a * y must be stored in a temporary before z is added
● Temporaries requires storage, and if they are objects, they are

constructed and destroyed (like any other objects)
● Temporaries are automatically const
● Modifying a temporary is most likely a mistake/bug (even

though the compiler may allow it)

Temporaries

In the example,
void f7(X& x) {

 x.modify();

}

X f5() {

 return X();

}

f7(f5());

A temporary object is required to hold the return value of f5(), so it
can be passed to f7()

If f7() took argument by value (i.e., void f7(X x)), it would be okay -
the temporary would be passed in normally

However, f7() takes in a reference (i.e., address of the temporary, kind
of), and since it’s not a const reference to X, it has permission to
modify the temporary object

Since temporary will vanish (after it has served its purpose), compiler
does not allow it

Questions?

Temporaries

Remember that the following was allowed:

f5() = X(1);

f5().modify();

This will also cause problems:

● f5() will return an object of type X
● It will disappear once it has served its purpose, so any

modification will likely be lost
● The first f5() and second f5() are actually two different

objects

Passing and
Returning
Addresses

Whenever you pass in a reference to a function (for efficiency), make
it const (if possible)

Otherwise, it prevents the function from accepting arguments
that are const (temporaries can be const reference)

For example,
void f13(int& x)
{
 cout << x << endl;
}
f13(100);

main.cc:27:4: error: no matching function for call to 'f13'

 f13(100);

void f13(const int& x) will work

Questions? Again, best way to test the inner-workings of const is to try and
write code snippets to see which works and which doesn’t

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal

 int i = *cip; // OK -- copies
value

//! int* ip2 = cip; // Illegal:
ip2 is non-const

}

const char* v() {

 // Returns address of static
character array:

 return "result of function v()" ;

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w();
// OK

 const int* cip2 = w(); // OK

//! *w() = 1; // Not OK

} ///:~

Example

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal

 int i = *cip; // OK -- copies
value

//! int* ip2 = cip; // Illegal:
non-const

}

const char* v() {

 // Returns address of static
character array:

 return "result of function v()" ;

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w();
// OK

 const int* cip2 = w(); // OK

//! *w() = 1; // Not OK

} ///:~

Example

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal

 int i = *cip; // OK -- copies
value

//! int* ip2 = cip; // Illegal:
non-const

}

const char* v() {

 // Returns address of static
character array:

 return "result of function v()" ;

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w();
// OK

 const int* cip2 = w(); // OK

//! *w() = 1; // Not OK

} ///:~

Example

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal

 int i = *cip; // OK -- copies
value

//! int* ip2 = cip; // Illegal:
non-const

}

const char* v() {

 // Returns address of static
character array:

 return "result of function v()" ;

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w(); // OK

 const int* cip2 = w(); // Why is
this OK?

//! *w() = 1; // Not OK

} ///:~

Example

Standard
Argument
Passing

It is possible to pass a temporary object to a function that takes
const reference (but not a function that accepts a reference)

Temporary (remember, a temporary is always a const) can
have its address passed to a function

class X {};

X f() { return X(); } // Return by value

void g1(X&) {} // Pass by non-const reference

void g2(const X&) {} // Pass by const reference

int main() {

 // Error: f() creates a temporary (which is const)

 //! g1(f()); // g1 accepts non-const reference, so this is
illegal

 // OK: g2 takes a const reference, so it’s legal

 g2(f());

}

Questions?

const inside
Classes

Let’s say you want to #define an array size inside a class

● A const int inside the class does not produce the desired
effect

● It reverts to the C definition - it’s a storage allocated inside the
object, initialized once, and cannot be changed for the lifetime
of the object

● However, each object may hold their own, different value
for this const int

● By its definition (i.e., #define), it should not change across
objects for the same class

const in
Classes

When you create a const inside a class, you cannot give it an initial
value (and it’s okay, since storage is allocated for it)

Initialization must occur in the constructor (like other variables), but
in a special place in the constructor

Because const must be initialized when it is created, it must
already be initialized when you reach the main body of the
constructor (remember, storage is allocated for an object, and then
the constructor is called to initialize it)

const in
Classes

Use the constructor initializer list

Originally put in place for use in inheritance

Occurs only in the definition of the constructor

It is a list of constructor calls that occur after the function
argument list (and a colon), but BEFORE the opening braces of the
constructor body

const in
Classes

#include <iostream>

using namespace std;

class Fred {

 const int size;

public:

 Fred(int sz);

 void print();

};

Fred::Fred(int sz) : size(sz) {} // same as size = sz;

void Fred::print() { cout << size << endl; }

int main() {

 Fred a(1), b(2), c(3);

 a.print(), b.print(), c.print();

}

Variable
Initialization

int a = 5; /* Regular */

int b(6); /* constructor init */

int c{9}; /* uniform init */

● Uniform init requires new C++ standard
● This makes it easier to differentiate because {} and () –

functional form
● This will make more sense when we start talking about

classes and objects (and constructors)

const in
Classes

To answer the original question - what is the proper way of #define
constant value inside a class?

● Use the static keyword in addition to const - means only
one instance of this data member, regardless of how many
objects are created

● Similar to static variables in functions - they exist across
multiple function calls, which can be seen as only one copy
existing across all function calls

● static const of a built-in type is treated as a
compile-time constant

const in
Classes

class StringStack {

 static const int size = 100;

 const string* stack[size];

 int index;

public:

 StringStack();

 void push(const string* s);

 const string* pop();

};

Questions?

const Objects
and Member
Functions

const objects are created similarly to those of built-in types
const int i = 1;

const blob b(2);

Since blob is a const, no member of the blob object must change
during its lifetime

How do we know which member functions can be executed
safely (i.e., and not change its data)?

Declare a member function also const, and the compiler
knows this function can be called safely

const Objects
and Member
Functions

class X {

 int i;

public:

 X(int ii);

 int f() const;

};

X::X(int ii) : i(ii) {}

int X::f() const { return i; } // reiterate const at definition

// error if you try to change any member of the object

// or call another non-const member function

int main() {

 X x1(10);

 const X x2(20);

 x1.f();

 x2.f();

}

const Objects
and Member
Functions

Exceptions -

● Constructors and destructors are not const (even for a const
object), since it almost always changes things

● But these are still called, since they are only called at
initialization and at end of scope/life

Questions?

volatile

As before, these are variables that can change by external forces
(i.e., the compiler does not know)

Even if you read the data at point A (to variable x) and not change it
between A and B, you cannot assume the data has not changed

Therefore, you cannot optimize away the read at point B and reuse
the value in x

You can also make objects volatile

You can also create const volatile - you can’t change its value
but it may still change (by external forces)

class Comm {

 const volatile unsigned char byte;

 volatile unsigned char flag;

 enum { bufsize = 100 };

 unsigned char buf[bufsize];

 int index;

public:

 Comm();

 void isr() volatile;

 char read(int index) const;

};

Comm::Comm() : index(0), byte(0),
flag(0) {}

volatile

// Only a demo; won't actually work as
an interrupt service routine:

void Comm::isr() volatile {

 flag = 0;

 buf[index++] = byte;

 // Wrap to beginning of buffer:

 if(index >= bufsize) index = 0;

}

char Comm::read(int index) const {

 if(index < 0 || index >= bufsize)

 return 0;

 return buf[index];

}

int main() {

 volatile Comm Port;

 Port.isr(); // OK

//! Port.read(0); // Error, read()
not volatile

} ///:~

Questions

