
CIS 330
C/C++ and Unix
Lecture 14

Copy Constructors

Return Values

If you say that a function’s return value is const

const int g() {int a = 1; return a;}

You are promising that the original variable (a from inside the
function) will not be modified

● Again, this is implicit, since you’re returning by value (it’s a
copy of the original variable inside the function, which will be
destroyed when the function ends)

For built-in types, avoid returning value as const (as it can lead to
more confusion and has not real impact)

However, things are different for objects

Return Values

const becomes more important when using user-defined types
(e.g., classes)

If a function returns a class object as const, the return value of that
function cannot be an l-value (i.e., it cannot be assigned or
modified)

L-value - something that points to a memory location

● Exists as variables and lives longer

R-value - something that does not point to anything

● Temporary and short lived

int x = 666; // x is l-value, 666 is r-value

Left operand of an assignment operator must be an l-value,

Temporaries

During the evaluation of an expression, compiler must create
temporary objects

● int x = x * y + z;
● x * y must be stored in a temporary before z is added
● They require storage, and are constructed and destroyed (like

any other objects)
● They are automatically const
● Modifying a temporary is most likely a mistake/bug (even

though the compiler may allow it)

Summary
X f5() {

 return X();

}

f5() = X(1);

f5().modify();

Fundamental data types returned by a function

● returned as const
● cannot be an l-value
● specifying the function as const is unnecessary

(e.g., const int foo(int i))

Objects returned by a function

● Not returned as a const
● Can be an l-value
● Must be specified as const if you don’t want to

modify it (i.e., use it as an l-value)

Temporaries

● const by default
● (f5() + f5()).modify() - illegal

Summary

What type should a function argument be

● When you want to
● pass by reference - pass it by reference (e.g., int& a)
● pass by value

i. pass it by value (e.g., int a)
ii. pass it by reference (because it requires less storage) but

specify it as const so that the original variable cannot be
modified

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal

 int i = *cip; // OK -- copies
value

//! int* ip2 = cip; // Illegal:
non-const

}

const char* v() {

 // Returns address of static
character array:

 return "result of function v()" ;

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w();
// OK

 const int* cip2 = w(); // OK

//! *w() = 1; // Not OK

} ///:~

Example

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal

 int i = *cip; // OK -- copies
value

//! int* ip2 = cip; // Illegal:
non-const

}

const char* v() {

 // Returns address of static
character array:

 return "result of function v()" ;

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w();
// OK

 const int* cip2 = w(); // OK

//! *w() = 1; // Not OK

} ///:~

Example

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal

 int i = *cip; // OK -- copies
value

//! int* ip2 = cip; // Illegal:
non-const

}

const char* v() {

 // Returns address of static
character array:

 return "result of function v()" ;

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w();
// OK

 const int* cip2 = w(); // OK

//! *w() = 1; // Not OK

} ///:~

Example

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal

 int i = *cip; // OK -- copies
value

//! int* ip2 = cip; // Illegal:
non-const

}

const char* v() {

 // Returns address of static
character array:

 return "result of function v()" ;

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w(); // OK

 const int* cip2 = w(); // Why is
this OK?

//! *w() = 1; // Not OK

} ///:~

Example

Standard
Argument
Passing

It is possible to pass a temporary object to a function that takes
const reference (but not a function that accepts a pointer)

class X {};

X f() { return X(); } // Return by value

void g1(X&) {} // Pass by non-const reference

void g2(const X&) {} // Pass by const reference

int main() {

 // Error: f() creates a temporary (which is const)

 //! g1(f()); // g1 accepts non-const, so this is illegal

 // OK: g2 takes a const reference, so it’s legal

 g2(f());

}

Standard
Argument
Passing

This can be confusing - aren’t addresses and references the same
thing?

● Yes and no - references are (likely) implemented using
addresses

● However, references can be considered a “safe” address - so
compiler just does not allow you to access the address of a
variable but allows you to pass a variable’s reference so its
content can still be changed

const and
Classes

Meaning of const inside a class is slightly different

You can make an entire object (of a class) const (e.g., a temporary
object), but preserving the const-ness of an object is more
complex

● Remember, the compiler enforces the constness of built-in
types, but with the complexity of classes, it’s more difficult to
do so

● To guarantee the constness of of a class object, const
member functions are used - only a const member function
may be called for a const object

const in
Classes

Let’s say you want to #define an array size inside a class

● A const int inside the class does not produce the desired
effect

● It reverts to the C definition - it’s a storage allocated inside the
object, initialized once, and cannot be changed for the lifetime
of the object

● However, each object may hold a different value for this
const int

● By its definition (i.e., #define), it should not change across
objects for the same class

const in
Classes

When you create a const inside a class, you cannot give it an initial
value (and it’s okay, since storage is allocated for it)

Initialization must occur in the constructor (like other variables), but
in a special place in the constructor

Because const must be initialized when it is created, it must
already be initialized when you reach the main body of the
constructor (remember, storage is allocated for an object, and then
the constructor is called to initialize it)

const in
Classes

Use the constructor initializer list

● Originally put in place for use in inheritance
● Occurs only in the definition of the constructor
● It is a list of constructor calls that occur after the function

argument list (and a colon), but BEFORE the opening braces
of the constructor body

const in
Classes

#include <iostream>

using namespace std;

class Fred {

 const int size;

public:

 Fred(int sz);

 void print();

};

Fred::Fred(int sz) : size(sz) {}

void Fred::print() { cout << size << endl; }

int main() {

 Fred a(1), b(2), c(3);

 a.print(), b.print(), c.print();

}

Variable
Initialization

int a = 5; /* Regular */

int b(6); /* constructor init */

int c{9}; /* uniform init */

● Uniform init requires new C++ standard
● This makes it easier to differentiate because {} and () –

functional form
● This will make more sense when we start talking about

classes and objects (and constructors)

const in
Classes

To answer the original question - what is the proper way of #define
constant value inside a class?

● Use the static keyword in addition to const - means only
one instance of this data member, regardless of how many
objects are created

● Similar to static variables in functions - they exist across
multiple function calls, which can be seen as only one copy
existing across all function calls

● static const of a built-in type is treated as a
compile-time constant

const in
Classes

class StringStack {

 static const int size = 100;

 const string* stack[size];

 int index;

public:

 StringStack();

 void push(const string* s);

 const string* pop();

};

const Objects
and Member
Functions

const objects are created similarly to those of built-in types
const int i = 1;

const blob b(2);

Since blob is a const, no member of the blob object must change
during its lifetime

● How do we know which member functions can be executed
safely (i.e., and not change its data)?

● Declare a member function also const, and the compiler
knows this function can be called safely

const Objects
and Member
Functions

class X {

 int i;

public:

 X(int ii);

 int f() const;

};

X::X(int ii) : i(ii) {}

int X::f() const { return i; } // reiterate const at def

// error if you try to change any member of the object

// or call another non-const member function

int main() {

 X x1(10);

 const X x2(20);

 x1.f();

 x2.f();

}

const Objects
and Member
Functions

Constructors and destructors are not const (even for a const
object), since it almost always changes things

But these are still called, since they are only called at initialization
and at end of scope/life

volatile

As before, these are variables that can change by external forces
(i.e., the compiler does not know)

Even if you read a variable x at time A and not change x between
time A and time B, you cannot assume the data has not changed at
time B.

Therefore, you cannot optimize away the read at point B and reuse
the value in x

You can make objects volatile

You can also create const volatile - you can’t change its value
but it may still change (by external forces)

Only volatile functions can be called by a volatile object
(just as with const objects)

Questions

References

● Pointer overview – C allows void pointers (void*)
1. bird* b;
2. rock* r;
3. void* v;
4. v = r;
5. b = v;

● C++ does NOT allows this because it is a strongly typed language
(i.e., stronger type rules at compile time)

`&` is like a constant pointer that is automatically dereferenced

1. int y = 13;

2. int& r = y;

3. cout << "y = " << y << endl;

4. cout << "r = " << r << endl;

5. const int& q = 12;

6. int x = 0;

7. int& a = x;

8. cout << "x = " << x << ", a = " << a << endl;

9. a++; x++;

10. cout << "x = " << x << ", a = " << a << endl;

C++ Reference

r is a “pointer” to y

but you can use it
like a regular variable

References must be
initialized at definition

When references are created, they must be initialized

C++ Reference
y = 13
r = 13
x = 0, a = 0
x = 2, a = 2

C++ Reference

● A reference must be initialized when it is created (pointers can be
initialized any time)

● Once initialized, it cannot refer to another object (pointers can)

● You cannot have a NULL reference (must be connected to real
storage)

● References are like fancy pointers that you never have to wonder
about initialization (it won’t compile if not initialized) and how to
deference it (compiler does it automatically).

1. int y = 13;

2. int &r = y;

3. int x = 0;

4. int &a = x;

5. a++; x++;

6. a = y;

7. a++;

8. cout << "x = " << x << ", a = " << a << endl;

9. cout << "y = " << y << ", r = " << r << endl;

Example

Will this work?
If so, what would it do?

Example X = 14, a = 14
Y = 13, r = 13

References in
Functions

● Acts as pass by reference without using pointers
1. int* f(int *x)

2. {

3. *x = *x + 1;

4. return x;

5. }

6. int& g(int &x)

7. {

8. x++;

9. return x;

10. }

11. int a = 0;

12. int* b = f(&a);

13. cout << a << endl;

14. a = g(a);

15. cout << a << endl;

Will this work?
If so, what would it do?

References in
Functions

1
2

Pointer
References

● In C, if you want to change the content of a pointer (vs. what it
points to), you need to use a double pointer (I.e., int**)

1. void dp(int **j)

2. {

3. int *x = (int*) malloc(sizeof(int));

4. x[0] = 100;

5. *j = x;

6. }

7. int i = 47;

8. int *j = &i;

9. cout << *j << endl;

10. dp(&j);

11. cout << *j << endl;

Pointer
References

● However, if you use references

1. void ref(int*& k)

2. {

3. int *x = (int*) malloc(sizeof(int));

4. x[0] = 200;

5. k = x;

6. }

7. int i = 47;

8. int *k = &i;

9. cout << *k << endl;

10. ref(k);

11. cout << *k << endl;

References

● Provides a cleaner method of pass-by-reference

● However, it’s less explicit than pointers (so it could lead to
confusion if you’re used to C pointers).

● You also don’t know if a function will change the value of a variable
passed in (if you don’t read the header definition carefully).

Argument
Passing
Guideline

● In C++, passing argument to a function should be done as const
reference

● If not, what would happen if you pass an integer value to a
function that accepts int?

void f(int&) {}

void g(const int&) {}

int main() {

 f(1); // Error

 g(1);

} ///:~

Argument
Passing
Guideline

● In C++, passing argument to a function should be done as const
reference

● If not, what would happen if you pass an integer value to a
function that accepts int?

● Passing by reference is more efficient, because you’re not making
a copy of the argument (which can expensive for large classes) in
terms of storage and construction/destruction (whenever you
create an object, you call the constructor and destructor)

● However, if they are not meant to be changed, they should be
passed as const

● Only exception might be when you might change the object in a
destructive manner within the function, so you want to send just a
copy of it

My Advice

Use pointers to make it less ambiguous that you are passing in an
address

● But you still have to know this because others will be using
references in their code

You can prevent people from modifying your data (that has been
passed using a pointer) by declaring the argument as const

1. void ff(const int *x)

2. {

3. cout << x[0] << endl;

4. x[0] = 100;

5. }

6. void testSix()

7. {

8. int *x = new int[10];

9. ff(x);

10. }

Allowed

Not allowed

Questions?

Copy
Constructor

● Constructor for passing and returning user-defined types by
value (during function calls)

● Compiler will automatically create one if you don’t provide one
yourself (like the default constructor), but it’s typically better to
create it yourself for efficiency and correctness

● For simple data types, the constructor does bit-by-bit copy

Example

1. class HowMany {

2. private:

3. static int objectCount;

4. public:

5. HowMany() { objectCount++; }

6. static void print(const string& msg = "") {

7. if(msg.size() != 0) {

8. cout << msg << ": ";

9. }

10. cout << "objectCount = "

11. << objectCount << endl;

12. }

13. ~HowMany() {

14. objectCount--;

15. print("~HowMany()");

16. }

17. };

18. int HowMany::objectCount = 0;

19.

20. HowMany f(HowMany x) {

21. x.print("x argument inside

22. f()");

23. return x;

24. }

25. void testFour()

26. {

27. HowMany h1;

28. HowMany::print("after construction
of h1");

29. HowMany h2 = f(h1);

30. HowMany::print("after f()");

31. }

Why?

after construction of h1: objectCount = 1

x argument inside f(): objectCount = 1

~HowMany(): objectCount = 0

after f(): objectCount = 0

~HowMany(): objectCount = -1

~HowMany(): objectCount = -2

Why

18. HowMany f(HowMany x) {

19. x.print("x argument inside

20. f()");

21. return x;

22. }

23. void testFour()

24. {

25. HowMany h1;

26. HowMany::print("after

27. construction of h1");

28. HowMany h2 = f(h1);

29. HowMany::print("after f()");

30. }

h1 exists
(object count = 1)

copy of h1 exists
inside f()

copy of h1 is
destroyed when
function ends (1st
destroy)

same for h2

h1 and h2 are
destroyed (2nd and 3rd destroy)

Why?

● Copy of h1 in the function f() is a bit-by-bit copy (i.e., constructor
was not called), which is why objectCount was not
incremented (via default copy-constructor)

● Same goes for h2 (i.e., h2 was a bit-by-bit copy of the return value
of f(), which was a bit-by-bit copy of h1)

● Then copy of h1, h1, and h2 are destroyed (decremented 3 times)

● This problem happens because the compiler makes certain
assumptions about how to create a new object from an existing
object (i.e., a copy)

Copy
Constructor

1. class HowMany2 {

2. private:

3. string name;

4. static int objectCount;

5. public:

6. HowMany2(const string& id = "") : name(id) {

7. ++objectCount;

8. print("HowMany2()");

9. }

10. ~HowMany2() {

11. --objectCount;

12. print("~HowMany2()");

13. }:

14. HowMany2(const HowMany2& h) : name(h.name) {

15. name += " copy";

16. ++objectCount;

17. print("HowMany2(const HowMany2&)");

18. }

19. void print(const string& msg = "")
const {

20. if(msg.size() != 0) {

21. cout << msg << endl;

22. }

23. cout << '\t' << name << ": "

24. << "objectCount = "

25. << objectCount << endl;

26. }

27. };

28. HowMany2 f(HowMany2 x) {

29. x.print("x argument inside f()");

30. out << "Returning from f()" << endl;

31. return x;

32. }

Copy
Constructor

● HowMany2 h1("h1");

● cout << "Entering f()" << endl;

● HowMany2 h2 = f(h1);

● h2.print("h2 after call to
f()");

● HowMany2()

● h1: objectCount = 1

● Entering f()

● HowMany2(const HowMany2&)

● h1 copy: objectCount = 2

● x argument inside f()

● h1 copy: objectCount = 2

● Returning from f()

● HowMany2(const HowMany2&)

● h1 copy copy: objectCount = 3

● ~HowMany2()

● h1 copy: objectCount = 2

● h2 after call to f()

● h1 copy copy: objectCount = 2

Copy
Constructor

● HowMany2 h1("h1");

● cout << "Entering f()" << endl;

● HowMany2 h2 = f(h1);

● h2.print("h2 after call to
f()");

● HowMany2()

● h1: objectCount = 1

● Entering f()

● HowMany2(const HowMany2&)

● h1 copy: objectCount = 2

● x argument inside f()

● h1 copy: objectCount = 2

● Returning from f()

● HowMany2(const HowMany2&)

● h1 copy copy: objectCount = 3

● ~HowMany2()

● h1 copy: objectCount = 2

● h2 after call to f()

● h1 copy copy: objectCount = 2

Copy
Constructor

● HowMany2()

● h1: objectCount = 1

● Entering f()

● HowMany2(const HowMany2&)

● h1 copy: objectCount = 2

● x argument inside f()

● h1 copy: objectCount = 2

● Returning from f()

● HowMany2(const HowMany2&)

● h1 copy copy: objectCount = 3

● ~HowMany2()

● h1 copy: objectCount = 2

● h2 after call to f()

● h1 copy copy: objectCount = 2

● HowMany2 h1("h1");

● cout << "Entering f()" << endl;

● HowMany2 h2 = f(h1);

● h2.print("h2 after call to
f()");

● HowMany2()

● h1: objectCount = 1

● Entering f()

● HowMany2(const HowMany2&)

● h1 copy: objectCount = 2

● x argument inside f()

● h1 copy: objectCount = 2

● Returning from f()

● HowMany2(const HowMany2&)

● h1 copy copy: objectCount = 3

● ~HowMany2()

● h1 copy: objectCount = 2

● h2 after call to f()

● h1 copy copy: objectCount = 2

Copy
Constructor

● HowMany2 h1("h1");

● cout << "Entering f()" << endl;

● HowMany2 h2 = f(h1);

● h2.print("h2 after call to
f()");

Creates a copy using
the
copy-constructor

Copy
Constructor

● HowMany2 h1("h1");

● cout << "Entering f()" << endl;

● HowMany2 h2 = f(h1);

● h2.print("h2 after call to
f()");

● HowMany2()

● h1: objectCount = 1

● Entering f()

● HowMany2(const HowMany2&)

● h1 copy: objectCount = 2

● x argument inside f()

● h1 copy: objectCount = 2

● Returning from f()

● HowMany2(const HowMany2&)

● h1 copy copy: objectCount = 3

● ~HowMany2()

● h1 copy: objectCount = 2

● h2 after call to f()

● h1 copy copy: objectCount = 2

Return value is
created

Copy
Constructor

● HowMany2 h1("h1");

● cout << "Entering f()" << endl;

● HowMany2 h2 = f(h1);

● h2.print("h2 after call to
f()");

● HowMany2()

● h1: objectCount = 1

● Entering f()

● HowMany2(const HowMany2&)

● h1 copy: objectCount = 2

● x argument inside f()

● h1 copy: objectCount = 2

● Returning from f()

● HowMany2(const HowMany2&)

● h1 copy copy: objectCount = 3

● ~HowMany2()

● h1 copy: objectCount = 2

● h2 after call to f()

● h1 copy copy: objectCount = 2

h1 copy is destroyed at the end
of the function f()

Copy
Constructor

● HowMany2 h1("h1");

● cout << "Entering f()" << endl;

● HowMany2 h2 = f(h1);

● h2.print("h2 after call to
f()");

● HowMany2()

● h1: objectCount = 1

● Entering f()

● HowMany2(const HowMany2&)

● h1 copy: objectCount = 2

● x argument inside f()

● h1 copy: objectCount = 2

● Returning from f()

● HowMany2(const HowMany2&)

● h1 copy copy: objectCount = 3

● ~HowMany2()

● h1 copy: objectCount = 2

● h2 after call to f()

● h1 copy copy: objectCount = 2

Copy
Constructor

● ~HowMany2()

● h1 copy copy: objectCount = 1

● ~HowMany2()

● h1: objectCount = 0

h2 is destroyed

h1 is destroyed

Copy
Constructor
for Composite
Class

● When a new class is created that uses other classes, the compiler
creates a default copy constructor using the copy-constructors for
those member classes

● If a member class does not have a copy-constructor, it will use the
default copy-constructor for that class (i.e., bit-by-bit copy)

Alternatives
to Copy
Constructors

Do not pass by value (copy-constructor is called only when you
pass-by-value, or make a copy)
You can prevent pass by value by creating a private member
copy-constructor – it does not even have to be defined, just declaring
one is sufficient

1. class NoCC {

2. int i;

3. NoCC(const NoCC&);

4. public:

5. NoCC(int ii = 0) : i(ii) {}

6. };

7. void f(NoCC);

8. int main() {

9. NoCC n;

10. //! f(n); // Error: copy-constructor called

11. //! NoCC n2 = n; // Error: c-c called

12. //! NoCC n3(n); // Error: c-c called

13. }

Questions?

