
CIS 330
C++ and Unix
Lecture 15

Name Control

Copy
Constructors
Summary

● A constructor for creating a new object when you make copy of
an existing object

● Enables correct copying of objects
● Compiler creates one for you if you don’t define your own
● You can also “enforce” users to always pass objects by reference

by “disabling” pass by value (which results in a copy) by creating
a private definition of a copy constructor (you don’t even have
to implement it)

Pointers to
Members

● A pointer is a variable that holds the address of some location

● It can point to either data or function, and it can be changed to
point at different things at runtime

● In C++, pointer-to-member follows this same concept, but what it
selects is a location inside a class

● But there is no “address” inside a class

● Selecting a member means find an offset into that class

● You can’t produce an actual address until the offset is combined
with the starting address of of an object

● These cannot be incremented or compared (like regular pointers)

Questions

Namespace

● Global functions are in a single global namespace

● The static keyword can give you some control over this
(allowing you to give same variable/function names in different
files)

● However, this can still cause problems in a large project with
multiple files (and multiple coders)

● Creating a namespace can give you better control over names

Properties of a
namespace

● Namespace definition can only appear at global scope, or nested
within another namespace

● No terminating semicolon is necessary (you can still put it there, if
you want)

● You can alias namespaces (e.g., if the original name is too long)

● You can also use “friendship” – any friend declaration in a given
namespace means that it is also part of the namespace

Example

1. namespace X {

2. class Y {

3. static int i;

4. public:

5. void f();

6. };

7. class Z;

8. void func();

9. }

10. int X::Y::i = 9;

11. class X::Z {

12. int u, v, w;

13. public:

14. Z(int i);

15. int g();

16. };

17. X::Z::Z(int i) { u = v = w = i; }

18. int X::Z::g() {

19. return u = v = w = 0;

20. }

21. void X::func() {

22. X::Z a(1);

23. a.g();

24. }

Notice how members inside a namespace is referenced -
similar to how class members are referenced

Is this necessary?

Using a
namepsace

● Use the directive “using”

● using namespace std;

Example

● namespace Int {

● enum sign { positive, negative };

● class Integer {

● unsigned int i;

● sign s;

● public:

● Integer(int ii = 0) : i(ii), s(i >= 0 ? positive : negative) {}

● sign getSign() const { return s; }

● void setSign(sign sgn) { s = sgn; }

● };

● }

● namespace Math {

● using namespace Int;

● Integer a, b;

● Integer divide(Integer, Integer);

● }

Example

● void arithmetic() {

● using namespace Int;

● Integer x;

● x.setSign(positive);

● }

Example
namespace supercalifragilisticexpialidocious {

}

namespace MaryPoppins = supercalifragilisticexpialidocious;

Example

● namespace Int {

● enum sign { positive, negative };

● class Integer {

● unsigned int i;

● sign s;

● public:

● Integer(int ii = 0) : i(ii), s(i >= 0 ?
positive : negative) {}

● sign getSign() const { return s; }

● void setSign(sign sgn) { s = sgn; }

● };

● }

● namespace Math {

● using namespace Int;

● Integer a, b;

● Integer divide(Integer, Integer);

● }

● using namespace Math;

● Integer a;

● a.setSign(negative);

● Math::a.setSign(positive);

Why is this necessary?

namespace
Override

● What happens if you use namespace to introduce a new name, but
you “override” that name by declaring another name in the same
scope

Example

● namespace Math {

● using namespace Int;

● Integer a, b;

● Integer divide(Integer, Integer);

● }

● namespace Calculation {

● using namespace Int;

● Integer divide(Integer, Integer);

● }

● void testFive()

● {

● using namespace Math;

● using namespace Calculation;

● Integer a(1);

● Integer b(2);

● Integer c = divide(a, b);

● }

Will this run?
If so, what would happen?

Error

lecture12.cc: In function ‘void testFive()’:

lecture12.cc:166:28: error: call of overloaded
‘divide(Int::Integer&, Int::Integer&)’ is ambiguous

 Integer c = divide(a, b);

 ^

using
Declaration

● You can “inject” names one at a time with a using declaration

● using declaration is different from the using directive

● You can use the using declaration to specify a name (as opposed to
the entire namespace with the using directive)

Example

● namespace U {

● inline void f() {}

● inline void g() {}

● }

● namespace V {

● inline void f() {}

● inline void g() {}

● }

● using namespace U;

● using V::f;

● f();

● U::f(); “using” declaration

V::f()

“using” directive

Questions?

static
Members in
C++

● When you need a single storage space for use by every object of a
class

● Use a global variable, but this allows other functions to change its
value

● Use #define, but this does not provide type checking

● Declare the member variable static

● Every object for that class shares a single variable (i.e., any change
to the static variable by a single object will be visible to every other
object of that class)

Example

1. class WithStatic {

2. static int x;

3. static int y;

4. public:

5. void print() const {

6. cout << "WithStatic::x = " << x << endl;

7. cout << "WithStatic::y = " << y << endl;

8. }

9. void inc() { x++; y++; }

10. };

11. int WithStatic::x = 1;

12. int WithStatic::y = x + 1;

You must define static
data members outside of
the class

Example

1. class WithStatic {

2. static int x;

3. static int y;

4. public:

5. void print() const {

6. cout << "WithStatic::x = " << x <<
endl;

7. cout << "WithStatic::y = " << y <<
endl;

8. }

9. void inc() { x++; y++; }

10. };

11. int WithStatic::x = 1;

12. int WithStatic::y = x + 1;

13. WithStatic a;

14. WithStatic b;

15. WithStatic c;

16. a.print();

17. a.inc();

18. b.print();

19. b.inc();

20. c.print();

Will this run?
If so, what would happen?

Example

WithStatic::x = 1
WithStatic::y = 2

WithStatic::x = 2
WithStatic::y = 3

WithStatic::x = 3
WithStatic::y = 4

static const
● Remember from previous lecture that,

● A static const variable inside a class is a non-changeable (const)
variable that is shared across all objects of that class type

Example

1. class Values {

2. static const int scSize = 100;

3. static const long scLong;

4. public:

5. void print() { cout << scSize << " " << scLong << endl; }

6. };

7. void testSeven()

8. {

9. Values x;

10. Values y;

11. x.print();

12. y.print();

13. }

Will this compile?

static const can be defined
inside the class

Error

● /usr/bin/ld: /tmp/ccBEw3NM.o: in function
`Values::print()':

● lecture12.cc:(.text._ZN6Values5printEv[_ZN6Values5
printEv]+0x32): undefined reference to
`Values::scLong'

● collect2: error: ld returned 1 exit status

Example

1. class Values {

2. static const int scSize = 100;

3. static const long scLong;

4. public:

5. void print() { cout << scSize << " " << scLong << endl; }

6. };

7. const long Values::scLong = 1000000;

8. void testSeven()

9. {

10. Values x;

11. Values y;

12. x.print();

13. y.print();

14. }

This will compile

What about
arrays?

● Works similarly to regular variables

● class Values {

● static const int scInts[];

● };

● const int Values::scInts[] = {

● 99, 47, 33, 11, 7

● };
Arrays must be initialized
outside the class (i.e., not
inline) - C++ standard

What about
static (const)
objects inside
a class?

● You can also create static const objects and arrays of such objects

● However, you cannot initialize them inline – they must be
initialized externally (like arrays)

● Objects behaves similarly to other static variables (i.e., they are
persistent across all objects of the same type)

class X {

 int i;

public:

 X(int ii) : i(ii) {}

};

Example

class Stat {

 // This doesn't work

 //! static const X x(100);

 // Both const and non-const static class

 // objects must be initialized externally:

 static X x2;

 static X xTable2[];

 static const X x3;

 static const X xTable3[];

};

X Stat::x2(100);

X Stat::xTable2[] = {

 X(1), X(2), X(3), X(4)

};

const X Stat::x3(100);

const X Stat::xTable3[] = {

 X(1), X(2), X(3), X(4)

};

int main() { Stat v; } ///:~

static
Functions

● You can also declare member functions static
● This function “works” for the class as a whole, rather than for a

particular object
● Because it is associated with the class, and not with objects, it

does not get passed the this pointer

● What does this mean for a function exactly?
● A static function can only access static variables
● It cannot access the regular data members
● It can also only call other static functions

It is more common to call it using the class name and the scope
operator (rather than associating it with an object via -> or .)

class X {

public:

 static void f(){};

};

int main() {

 X::f();

} ///:~

Example

class X {

 int i;

 static int j;

public:

 X(int ii = 0) : i(ii) {

 // Non-static member function can access

 // static member function or data:

 j = i;

 }

 int val() const { return i; }

 static int incr() {

 //! i++; // Error: static member

 // function cannot access non-

 // static member data

 return ++j;

 }

Example

 static int f() {

 //! val(); // Error: static function

 // cannot access non-static function

 return incr(); // OK

 }

}; // class X

int X::j = 0;

int main() {

 X x;

 X* xp = &x;

 x.f();

 xp->f();

 X::f(); // Only works with static

 // member functions

} ///:~

Questions?

Variable
Scope

● Variable created inside a function exists only within the function
● The scope of the variable is the function it is defined in
● Because it is created on the stack, it is `destroyed’ when the function

ends

● What if you want it to exist outside of the function?
● Make it global
● Make it static

● static variable inside a function
● NOT created on the stack
● Created on the program’s static data area
● Initialized only ONCE (the first time the function is called)

Example

1. char oneChar(const char* charArray =
nullptr) {

2. static const char* s = nullptr;

3. if(charArray) {

4. s = charArray;

5. return *s;

6. } else if(!s) {

7. cout << "Uninitialized char* s\n”;

8. exit(EXIT_FAILURE);

9. }

10. if(*s == '\0') {

11. return 0;

12. }

13. return *s++;

14. }

15. const int sz = 100;

16. char a[sz] =
"abcdefghijklmnopqrstuvwxyz";

17.

18. int main() {

19. oneChar(a);

20. char c;

21. while((c = oneChar()) != 0) {

22. cout << c << endl;

23. }

24. }

Will this run?
If so, what would happen?

Example

1. char oneChar(const char* charArray =
nullptr) {

2. static const char* s = nullptr;

3. if(charArray) {

4. s = charArray;

5. return *s;

6. } else if(!s) {

7. cout << "Uninitialized char* s\n”;

8. exit(EXIT_FAILURE);

9. }

10. if(*s == '\0') {

11. return 0;

12. }

13. return *s++;

14. }

15. const int sz = 100;

16. char a[sz] =
"abcdefghijklmnopqrstuvwxyz";

17.

18. int main() {

19. oneChar(a);

20. char c;

21. while((c = oneChar()) != 0) {

22. cout << c << endl;

23. }

24. }

Will this run?
If so, what would happen?

Example

1. char oneChar(const char* charArray =
nullptr) {

2. static const char* s = nullptr;

3. if(charArray) {

4. s = charArray;

5. return *s;

6. } else if(!s) {

7. cout << "Uninitialized char* s\n”;

8. exit(EXIT_FAILURE);

9. }

10. if(*s == '\0') {

11. return 0;

12. }

13. return *s++;

14. }

15. const int sz = 100;

16. char a[sz] =
"abcdefghijklmnopqrstuvwxyz";

17.

18. int main() {

19. oneChar(a);

20. char c;

21. while((c = oneChar()) != 0) {

22. cout << c << endl;

23. }

24. }

Will this run?
If so, what would happen?

static
variables

● Be careful when using static variables.

● Because they retain their values between function calls, you need
to keep track of it carefully

● This is particularly true when using multi-threaded programming –
if multiple threads are accessing the static variable, it’s difficult to
know if it’s in the correct ‘state.’

● For example, say a static variable is keeping track of how many
times you rang a bell. If you are the only one pressing it, you can
keep track of this count accurately. However, if someone else is
also pressing the bell (i.e., a multi-threaded code), you’ve just lost
track of how many times you’ve pressed the bell.

static class
objects

● Same rules apply for static objects inside functions

Example

1. class X {

2. int i;

3. public:

4. X(int ii = 0) : i(ii) {}

5. ~X() { cout << "X::~X()" << endl; }

6. void print_X() { cout << i << endl; i++;
}

7. };

8. void testTwo()

9. {

10. static X x(47);

11. x.print_X();

12. x.print_X();

13. }

14. int main() {

15. testTwo();

16. testTwo();

17. testTwo();

18. }

Will this run?
If so, what would happen?

Example

47
48
49
50
51
52
X::~X()

static class
Object
Destructor

● Remember,
● Destructors are called for objects that has been constructed

● Global objects are created before main and destroyed when main
ends

● If a function containing a local static object is never called, the
constructor is never executed, and therefore, the destructor is not
executed

Example

1. class Obj {

2. char c;

3. public:

4. Obj(char cc) : c(cc) {

5. cout << "Obj::Obj() for " << c << endl;

6. }

7. ~Obj() {

8. cout << "Obj::~Obj() for " << c << endl;

9. }

10. };

11. Obj aa('a');

12. void f() {

13. static Obj b('b');

14. }

15. void g() {

16. static Obj c('c');

17. }

18. void
testThree()

19. {

20. f();

21. }

22. int main() {

23. testThree();

24. }

Will this run?
If so, what would happen?

Different
Meaning to
static

● We’ve covered this before, but…
● Any name at file scope (i.e., not inside a class or a function, so essentially

global) is visible to other files at link time – this is called “external linkage”
● Exception to this is the const variables

● However, sometimes you want these names to be only visible to the file it
resides in (maybe it clashes with names in a different file)

● Name it static to make it invisible to files outside – i.e., it has “internal
linkage”

● This has different meaning from our usage of static from the previous
few slides

● Global variables are already “static” in nature (it persists across the
lifetime of the program), so adding static in front of it has a different
meaning (i.e., internal/external linkage)

Example

● In file a.cc,

● static int a = 1;

●

● int main() {

● return 0;

● }

● The variable a is only visible within a.cc

Questions?

Object
Creation

Remember that….

when an object is created in C++, two events occur

● Storage is allocated
● Constructor is called to initialize the object

Storage
Allocation

Storage allocation can occur in one of several ways

● Before the program begins, allocated in the static area (i.e.,
exists for the lifetime of the program, such as global variables)

● Allocated in the stack (e.g., opening braces, function, etc.),
and released at the end of its scope

● Allocated on the heap

This is similar to how things are done in C

Dynamic memory in C++

● new operator
● Not a function (e.g., malloc)
● MyType *fp = new MyType(1,2);

● Equivalent to malloc(sizeof(MyType)), and
● Its constructor will be called

● delete operator
● Not a function (i.e., free)
● Can be called for any object created with new
● Destructor will first be called, and then the memory will be

released
● Undefined if allocated with malloc (or other variations)

C++

class Tree {

int height;

public:

 Tree(int treeHeight) : height(treeHeight) {}

 ~Tree() { std::cout << "*"; }

 friend std::ostream&

 operator<<(std::ostream& os, const Tree* t) {

 return os << "Tree height is: "

 << t->height << std::endl;

 }

};

using namespace std;

int main() {

 Tree* t = new Tree(40);

 cout << t;

 delete t;
} ///:~

Example

Example Tree height is: 40
*

delete

Deleting a void* is probably a bug

● It only okay for simple data (e.g., does not require a
destructor)

● Only the storage is released, and the destructor is not called
(the program does not know which destructor to call, since it
can be anything)

class Object {

 void* data; const int size; const char id;

public:

 Object(int sz, char c) : size(sz), id(c) {

 data = new char[size];

 cout << "Constructing object " << id

 << ", size = " << size << endl;

 }

 ~Object() {

 cout << "Destructing object " << id << endl;

 delete []data; // OK, just releases storage,

 }

};

int main() {

 Object* a = new Object(40, 'a'); delete a;

 void* b = new Object(40, 'b'); delete b;

} ///:~

Example

Example
Constructing object a, size = 40

Destructing object a

Constructing object b, size = 40

Delete
If you have a memory leak (and you are deleting new allocated
memory), check the type for the pointer being deleted

When you are using void* data to hold different types of
objects, cast it to the proper type before using it (and deleting it)

new and
delete for
Arrays

To create an array of objects

MyType* fp = new MyType[100];

● This allocates enough memory on the heap for 100 MyType
objects

Let’s say you also have

MyType* fp2 = new MyType;

What if you do

delete fp2;

delete fp;

What happens?

new and
delete for
Arrays

MyType* fp = new MyType[100];

delete fp;

This DOES free up storage for all 100 MyType objects, BUT the
constructor for only the FIRST element will be called

● Just as in free(), the OS keeps track of the memory allocated
● 99 other elements will NOT have their constructors called

Under what scenario could this cause a problem?

new and
delete for
Arrays

MyType* fp = new MyType[100];

delete [] fp;

// old syntax - delete [100]fp;

Questions?

Running Out
of Memory

When new cannot find enough memory to allocate, it calls a special
function called new-handler

● More accurately, there is a function pointer, and if the pointer
is non-zero, this function is called

Example

int count = 0;

void out_of_memory() {

 cerr << "memory exhausted after " << count

 << " allocations!" << endl;

 exit(1);

}

int main() {

 set_new_handler(out_of_memory);

 while(1) {

 count++;

 new int[1000]; // Exhausts memory

 }
} ///:~

Arrays of
Objects

With arrays, you can only call the default constructor - what if you
need to use a non-default constructor

● Use a vector - the easier solution
● Use an array of pointers - for each element, use new with a

non-default constructor to create a pointer and save it there
● Placement-new - a special case of new where you can

pre-allocate the memory, then initialize it with a non-default
constructor by passing in the pre-allocated memory location

● Overload the new operator (operator overloading will be
covered later)

Arrays of
Objects

Use an array of pointers

MyClass** list = new MyClass*[100];
for(int i = 0; i < 100; i++) {
 list[i] = new MyClass(i);
}

for(int i = 0; i < 100; i++) {
 delete list[i];
}

delete [] list;

class X {

 int i;

public:

 X(int ii = 0) : i(ii) { cout << "this = " << this << endl; }

 ~X() { cout << "X::~X(): " << this << endl; }

};

int main() {

 int L[10];

 cout << "L = " << L << endl;

 X* xp = new(L) X(47); // X at location L[0]

 X* xp = new(L+1) X(53); // X at location L[1]

 // etc.

 xp2->X::~X(); // Explicit destructor call required

 xp->X::~X(); // Explicit destructor call required

}

Placement-New
Example

Separates memory
allocation and
initialization

Another
Example

class Car {
 int _no;
public:
 Car(int no) : _no(no) { }
};

int main() {
 void* raw_memory = operator new(NUM_CARS * sizeof(Car));
 Car* ptr = static_cast<Car*>(raw_memory);
 for(int i = 0; i < NUM_CARS; ++i) {
 new (&ptr[i]) Car(i); // placement-new
 }
 // destruct in reverse order
 for(int i = NUM_CARS - 1; i >= 0; --i) {
 ptr[i].~Car();
 }
 operator delete [](raw_memory); // only frees memory
 return 0;
}

ONLY allocates
memory

Questions?

