ClS 330
C++ and Unix

Lecture 15

Dynamic Object Creation



Remember that....
O bJ ect when an object is created in C++, two events occur

Creation e Storageis allocated (at the beginning of its scope)
e Constructor is called to initialize the object (when the
declaration is encountered)




Storage allocation can occur in one of several ways

e Before the program begins, allocated in the static area (i.e.,
exists for the lifetime of the program)
e Allocated in the stack (e.g., opening braces, function, etc.),

Al |Ocat|0n and released at the end of its scope
e Allocated on the heap

Storage

This is similar to how things are done in C




Dynamic memory in C++

e newoperator
e Not a function (e.g., malloc)
® MyType *fp = new MyType(l,2);
e Equivalenttomalloc (sizeof (MyType) ), and
e Its constructor will be called (MyType (1,2))

e delete operator
e Nota function (i.e., free)
e (Can be called for any object created with new
e Destructor will first be called, and then the memory will be
released
e Undefined if allocated with malloc (or other variations)



class Tree {

int height;

public:
Tree (int treeHeight) : height (treeHeight) {}
~Tree () { std::cout << "*"; }

friend std::ostreamé&

operator<<(std::ostream& os, const Tree* t) {

return os << "Tree height is:

Example << t->height << std::endl;

i

using namespace std;

int main () {
Tree* t = new Tree (40);
cout << t;

delete t;
Y /)i~




Tree height is: 40

*

Example




Deleting a void* is probably a bug

e Itisonly okay to use for simple data (e.g., does not require a

delete destructor)

e Onlythe storageis released, and the destructor is NOT called
(the program does not know which destructor to call, since it
can be anything)




Example

class Object {
void* data; const int size; const char id;
public:
Object (int sz, char c) : size(sz), id(c) {
data = new char[size];
cout << "Constructing object " << id
<< ", size = " << size << endl;
}
~Object () {
cout << "Destructing object " << id << endl;

delete []data; // OK, just releases storage,

}i
int main () {
Object* a = new Object (40, 'a'); delete a;
void* b = new Object (40, 'b'); delete b;
Y /) e



Example

Constructing object a,
Destructing object a

Constructing object b,

size

size

40

40



If you have a memory leak (and you are deleting new allocated
memory), check the type for the pointer being deleted

Delete

When you are using void* data to hold different types of
objects, cast it to the proper type before using it (and deleting it)




To create an array of objects
MyType* fp = new MyType[100];

e This allocates enough memory on the heap for 100 MyType
objects

new and

Let’s say you also have

delete for
Arrays

MyType* fp2 = new MyType;

What if you do
delete fp2;
delete fp;
What happens?




new and

delete for
Arrays

MyType* fp = new MyType[100];
delete fp;

This DOES free up storage for all 200 MyType objects, BUT the
constructor for only the FIRST element will be called

e Justasin free (), the OS keeps track of the memory allocated
® ggotherelements will NOT have their constructors called

Under what scenario could this cause a problem?



new and

MyType* fp = new MyType[100];
delete for
delete [] fp;

// old syntax - delete [100] fp;

Arrays




Running Out

of Memory

When new cannot find enough memory to allocate, it calls a special
function called new-handler is called

e More accurately, there is a function pointer, and if the pointer
is non-zero, this function is called

e Default behavior is to throw an exception, but if you are using
heap memory, it's better to replace it with function that prints
a message (e.g., out of memory), and then abort the program



Example

int count = 0;

void out of memory () {
cerr << "memory exhausted after " << count
<< " allocations!" << endl;
exit (1) ;
}
int main() {

set new _handler (out of memory);
while (1) {
count++;

new int[1000]; // Exhausts memory

}
Y /) e~



Arrays of

Objects

With arrays, you can only call the default constructor - what if you
need to use a non-default constructor

e Use avector - the easier solution
e Use an array of pointers - for each element, use new with a
non-default constructor to create a pointer and save it there

e Placement-new - you can pre-allocate the memory, then
initialize it with a non-default constructor by passing in the
pre-allocated memory location

e Overload the new operator (operator overloading will be
covered later)



Example

class X {

int 1i;
public:
X(int 1i = 0) : 1(ii) { cout << "this = " << this << endl;
}
~X () { cout << "X::~X(): " << this << endl; }
}i
int main () {

int 1[10]; // pre-allocate memory
cout << "1 = " << 1 << endl;
X* xp = new(l) X(47); // X at location 1

xp—>X::~X(); // Explicit destructor call required



Another

EIE

class Car {

int no;

public:
Car( int no ) : no( no ) {
}

bi

int main() {

void* raw memory = operator new (NUM CARS * sizeof (Car));
// actually allocates memory

Car* ptr = static cast<Car*>(raw memory);

for( int 1 = 0; 1 < NUM CARS; ++1i ) {
new (&ptr[i]) Car( i );

}

// destruct in reverse order

for( int 1 = NUM CARS - 1; i >= 0; --1 ) {
ptr[i]l.~Car();

}

operator delete[] ( raw memory ); // actually frees memory

return 0;



An example where using const might make sense

int* const g = new int[10];




An example where using const might make sense
int* const g = new int[10];

e ¢ points to the beginning of an array, and you typically do not want
to lose this position

e Integersinside g can still be modified, but g cannot be made to
point somewhere else




Questions?




