
CIS 330
C++ and Unix
Lecture 15

Dynamic Object Creation

Object
Creation

Remember that….

when an object is created in C++, two events occur

● Storage is allocated (at the beginning of its scope)
● Constructor is called to initialize the object (when the

declaration is encountered)

Storage
Allocation

Storage allocation can occur in one of several ways

● Before the program begins, allocated in the static area (i.e.,
exists for the lifetime of the program)

● Allocated in the stack (e.g., opening braces, function, etc.),
and released at the end of its scope

● Allocated on the heap

This is similar to how things are done in C

Dynamic memory in C++

● new operator
● Not a function (e.g., malloc)
● MyType *fp = new MyType(1,2);

● Equivalent to malloc(sizeof(MyType)), and
● Its constructor will be called (MyType(1,2))

● delete operator
● Not a function (i.e., free)
● Can be called for any object created with new
● Destructor will first be called, and then the memory will be

released
● Undefined if allocated with malloc (or other variations)

C++

class Tree {

int height;

public:

 Tree(int treeHeight) : height(treeHeight) {}

 ~Tree() { std::cout << "*"; }

 friend std::ostream&

 operator<<(std::ostream& os, const Tree* t) {

 return os << "Tree height is: "

 << t->height << std::endl;

 }

};

using namespace std;

int main() {

 Tree* t = new Tree(40);

 cout << t;

 delete t;
} ///:~

Example

Example Tree height is: 40
*

delete

Deleting a void* is probably a bug

● It is only okay to use for simple data (e.g., does not require a
destructor)

● Only the storage is released, and the destructor is NOT called
(the program does not know which destructor to call, since it
can be anything)

class Object {

 void* data; const int size; const char id;

public:

 Object(int sz, char c) : size(sz), id(c) {

 data = new char[size];

 cout << "Constructing object " << id

 << ", size = " << size << endl;

 }

 ~Object() {

 cout << "Destructing object " << id << endl;

 delete []data; // OK, just releases storage,

 }

};

int main() {

 Object* a = new Object(40, 'a'); delete a;

 void* b = new Object(40, 'b'); delete b;

} ///:~

Example

Example
Constructing object a, size = 40

Destructing object a

Constructing object b, size = 40

Delete
If you have a memory leak (and you are deleting new allocated
memory), check the type for the pointer being deleted

When you are using void* data to hold different types of
objects, cast it to the proper type before using it (and deleting it)

new and
delete for
Arrays

To create an array of objects

MyType* fp = new MyType[100];

● This allocates enough memory on the heap for 100 MyType
objects

Let’s say you also have

MyType* fp2 = new MyType;

What if you do

delete fp2;

delete fp;

What happens?

new and
delete for
Arrays

MyType* fp = new MyType[100];

delete fp;

This DOES free up storage for all 100 MyType objects, BUT the
constructor for only the FIRST element will be called

● Just as in free(), the OS keeps track of the memory allocated
● 99 other elements will NOT have their constructors called

Under what scenario could this cause a problem?

new and
delete for
Arrays

MyType* fp = new MyType[100];

delete [] fp;

// old syntax - delete [100] fp;

Running Out
of Memory

When new cannot find enough memory to allocate, it calls a special
function called new-handler is called

● More accurately, there is a function pointer, and if the pointer
is non-zero, this function is called

● Default behavior is to throw an exception, but if you are using
heap memory, it’s better to replace it with function that prints
a message (e.g., out of memory), and then abort the program

Example

int count = 0;

void out_of_memory() {

 cerr << "memory exhausted after " << count

 << " allocations!" << endl;

 exit(1);

}

int main() {

 set_new_handler(out_of_memory);

 while(1) {

 count++;

 new int[1000]; // Exhausts memory

 }
} ///:~

Arrays of
Objects

With arrays, you can only call the default constructor - what if you
need to use a non-default constructor

● Use a vector - the easier solution
● Use an array of pointers - for each element, use new with a

non-default constructor to create a pointer and save it there

● Placement-new - you can pre-allocate the memory, then
initialize it with a non-default constructor by passing in the
pre-allocated memory location

● Overload the new operator (operator overloading will be
covered later)

class X {

 int i;

public:

 X(int ii = 0) : i(ii) { cout << "this = " << this << endl;
}

 ~X() { cout << "X::~X(): " << this << endl; }

};

int main() {

 int l[10]; // pre-allocate memory

 cout << "l = " << l << endl;

 X* xp = new(l) X(47); // X at location l

 xp->X::~X(); // Explicit destructor call required

}

Example

Another
Example

class Car {
 int _no;
public:
 Car(int no) :_no(no) {
 }
};

int main() {
 void* raw_memory = operator new(NUM_CARS * sizeof(Car));

// actually allocates memory
 Car* ptr = static_cast<Car*>(raw_memory);
 for(int i = 0; i < NUM_CARS; ++i) {
 new (&ptr[i]) Car(i);
 }
 // destruct in reverse order
 for(int i = NUM_CARS - 1; i >= 0; --i) {
 ptr[i].~Car();
 }
 operator delete[](raw_memory); // actually frees memory
 return 0;
}

const
An example where using const might make sense

int* const q = new int[10];

const

An example where using const might make sense

int* const q = new int[10];

● q points to the beginning of an array, and you typically do not want
to lose this position

● Integers inside q can still be modified, but q cannot be made to
point somewhere else

Questions?

