
CIS 330
C++ and Unix
Lecture 15

Operator Overloading

Operator
Overloading

Syntactic sugar - simply another way of calling a function

Instead of arguments appearing inside (…), they surround the
operator

You can define new operators that work with specific classes

● For example, “adding” two classes may have some semantic
meaning

● Define the “+” operator to do this (which will then call a
function)

Warning
Do not overuse operator overloading

Only use it if it makes sense, AND makes it easier to read your code

You cannot overload operators that are used with built-in types

● For example, you cannot change the meaning of + in 5 + 10

Definition
Define it like a regular function, but with

operator@

Where @ is the operator you want to overload

class Integer {

 int i;

public:

 Integer(int ii) : i(ii) {}

 const Integer operator+(const Integer& rv) const {

 return Integer(i + rv.i);

 }

 Integer& operator+=(const Integer& rv) {

 i += rv.i;

 return *this; // l-value

 }

};

int main() {

 cout << "built-in types:" << endl;

 int i = 1, j = 2, k = 3;

 k += i + j;

 cout << "user-defined types:" << endl;

 Integer ii(1), jj(2), kk(3);

 kk += ii + jj;

}

Example

class Integer {

 int i;

public:

 Integer(int ii) : i(ii) {}

 const Integer operator+(const Integer& rv) const {

 Integer(i + rv.i);

 }

 Integer& operator+=(const Integer& rv) {

 i += rv.i;

 return *this; // l-value

 }

};

int main() {

 cout << "built-in types:" << endl;

 int i = 1, j = 2, k = 3;

 k += i + j;

 cout << "user-defined types:" << endl;

 Integer ii(1), jj(2), kk(3);

 kk += ii + jj;

}

Example The operator+ produces a
new Integer (a temporary) that
is used as the rv argument for
the operator+=.

The temporary is destroyed
when it is no longer needed

Return Value

Member function operator is called for the object on the left-hand
side (LHS) of the operator

The argument will be the right-hand side (RHS) of the operator

For non-conditional operators (conditionals usually return a
boolean), you will almost always want to return an object, or a
reference to an object of the same class/type

● If they are NOT the same type, the interpretation of what it
should produce is up to you (e.g., for classes that store char
and int, what should char + int produce?)

Overloadable
Operators

You can overload almost all the operators in C

● But their use is fairly restrictive. For example,
● you cannot combine operators that have no meaning in C

(e.g., ** to represent exponentiation),
● you cannot change the order of evaluation precedence,
● you cannot change the number of arguments required

Two methods

● Define it as a global functions (and use friend to allow
access)

● Define it as a member function

class Integer {

 long i;

 Integer* This() { return this;
}

public:

 Integer(long ll = 0) : i(ll) {}

 // No side effects takes

 // const& argument:

 friend const Integer&

 operator+(const Integer& a);

 friend const Integer

 operator-(const Integer& a);

 friend const Integer

 operator~(const Integer& a);

 friend Integer*

 operator&(Integer& a);

 friend int

 operator!(const Integer& a);

 // Side effects have non-const&

 // argument:

 // Prefix:

 friend const Integer&

 operator++(Integer& a);

 // Postfix:

 friend const Integer

 operator++(Integer& a, int);

 // Prefix:

 friend const Integer&

 operator--(Integer& a);

 // Postfix:

 friend const Integer

 operator--(Integer& a, int);

};

Unary
Operators
(Global)

const Integer& operator++(Integer& a) {

 cout << "++Integer\n";

 a.i++; // a is changed

 return a; // a is returned

}

const Integer operator++(Integer& a, int) {

 cout << "Integer++\n";

 Integer before(a.i);

 a.i++; // a is changed

 return before; // copy of a before change
is returned

}

const Integer& operator--(Integer& a) {

 cout << "--Integer\n";

 a.i--;

 return a;

}

const Integer operator--(Integer& a, int) {

 cout << "Integer--\n";

 Integer before(a.i);

 a.i--;

 return before;

}

const Integer& operator+(const Integer& a) {

 cout << "+Integer\n";

 return a; // Unary + has no effect

}

const Integer operator-(const Integer& a) {

 cout << "-Integer\n";

 return Integer(-a.i); // Create a new
Integer object

}

const Integer operator~(const Integer& a) {

 cout << "~Integer\n";

 return Integer(~a.i);

}

Integer* operator&(Integer& a) {

 cout << "&Integer\n";

 return a.This(); // what happens if we make
this const?

}

int operator!(const Integer& a) {

 cout << "!Integer\n";

 return !a.i;

}

Unary
Operators
(Global)

class Byte {

 unsigned char b;

public:

 Byte(unsigned char bb = 0) : b(bb) {}

 const Byte& operator+() const {

 cout << "+Byte\n"; return *this;

 }

 const Byte operator-() const {

 cout << "-Byte\n"; return Byte(-b);

 }

 const Byte operator~() const {

 cout << "~Byte\n"; return Byte(~b);

 }

 Byte operator!() const {

 cout << "!Byte\n"; return Byte(!b);

 }

 Byte* operator&() {

 cout << "&Byte\n"; return this;

 }

 const Byte& operator++() { //pre

 cout << "++Byte\n";

 b++; return *this;

 }

 const Byte operator++(int) { //post

 cout << "Byte++\n";

 Byte before(b);

 b++; return before;

 }

 const Byte& operator--() { //pre

 cout << "--Byte\n";

 --b; return *this;

 }

 const Byte operator--(int) { //post

 cout << "Byte--\n";

 Byte before(b);

 --b; return before;

 }

};

Unary
Operators
(Member)

No argument

Why are these different?

++ and --

You want to be able to call different functions, depending on
whether it’s ++a (pre) or a++ (post)

● ++a generate a call to operator++(a)
● a++ generate a call to operator++(a, int)
● This is done simply to differentiate the functions - the second

int for a++ does not get used

Binary
Operators
(Global)

class Integer {

 long i;

public:

 Integer(long ll = 0) : i(ll) {}

 // Operators that create new,

 // modified value:

 friend const Integer

 operator+(const Integer& left,

 const Integer& right);

 friend const Integer

 operator<<(const Integer& left,

 const Integer& right);

…

 // Assignments modify & return
lvalue:

 friend Integer&

 operator+=(Integer& left,

 const Integer& right);

…

 // Conditional operators return
true/false:

 friend int

 operator==(const Integer& left,

 const Integer& right);

…

void print(std::ostream& os) const {
os << i; }

};

// Operators that create new,

// modified value:

const Integer

 operator+(const Integer& left,

 const Integer& right) {

 return Integer(left.i + right.i);

}

const Integer

 operator<<(const Integer& left,

 const Integer& right) {

 return Integer(left.i << right.i);

}

Binary
Operators
(Global)

 // Assignments modify & return lvalue:

Integer& operator+=(Integer& left,

 const Integer& right)
{

 if(&left == &right) {

 /* self-assignment */}

 left.i += right.i;

 return left;

}

 // Conditional operators return
true/false:

int operator==(const Integer& left,

 const Integer& right) {

 return left.i == right.i;

}

For example, (a+=1)++; is legal, but
(++a)++; is NOT legal in C++

class Byte {

 unsigned char b;

public:

 Byte(unsigned char bb = 0) : b(bb) {}

 // No side effects: const member
function:

 const Byte

 operator+(const Byte& right) const {

 return Byte(b + right.b);

 }

…

 const Byte

 operator<<(const Byte& right) const {

 return Byte(b << right.b);

 }

…

Binary
Operator
(Member)

Byte& operator=(const Byte& right) {

 // Handle self-assignment:

 if(this == &right) return *this;

 b = right.b;

 return *this;

}

…

 Byte& operator+=(const Byte& right) {

 if(this == &right) {/* self-assignment
*/}

 b += right.b;

 return *this;

 }

…

 int operator==(const Byte& right) const {

 return b == right.b;

 }

…

};

operator= is ONLY allowed to be a member function

Assignments operators (e.g., operator+=) have code to check for
self-assignment (although it does not do anything)

● This is a general guideline - there are cases where
self-assignment is required (e.g., A+=A to add to itself)

● However, for operator= (depending on what the “=” means)
you may have to handle self-assignment as a separate case

Binary
Operator

Summary

Unary

● Global vs. Member
● friend const Integer operator-(const Integer& a); vs.
● const Byte operator-() const

● Differentiate pre- and post- operator using different function definition
● friend const Integer& operator++(Integer& a);
● friend const Integer operator++(Integer& a, int);

Binary

● Global vs. Member
● friend Integer& operator+=(Integer& left, const Integer& right); vs.
● Byte& operator+=(const Byte& right);

● operator= is only allowed as a member overloaded function

Arguments
and Return
Values

You can pass it in any way you want

● You just deal with bugs later

However, the better practice is to restrict what you can do with
them depending on what the operator requires

● For example, if you only need to read from the arguments,
default to passing it as const reference
● Ordinary operators like +, -, conditionals, typically do not

change their arguments, so need to be passed in as const
reference

● If they are member functions make it a const member
function

For assignment operators (e.g., +=, =) that change the left-hand
argument, the left-hand side is NOT a const

Arguments
and Return
Values

Type of return value depends on the expected “meaning” of the
operation

All assignment operators modify the left-hand value (l-value)

● To allow this to be used in chained expression (e.g., a = b=
c;), it is expected that reference to the l-value that was
modified is returned

● Since a = b = c; is read from left to right by the compiler,
you CAN have it return const, but if you want to perform an
operation on it (e.g., (a = b).func(); to call func()
on a after assigning b to it), the return value should be
non-const reference (remember that you can’t call
non-const member functions on a const object).

For logical operators, everyone expects int at worst, and bool at
best

More on
Return Value
as const

Consider func(a + b)

● a + b will be automatically stored as a const because it is a
temporary - so making the return value const may seem
redundant

● Also, you may want to do (a + b).func2()
● Now, only a const function would be executed if the return

value is const
● This is actually the correct thing to do - why?

● (a + b) isn’t explicitly stored anywhere - so this prevents
you from storing potentially valuable information on an
object that will likely be lost

● For example

(a + b).func2(); // increment the result by 1

(a + b).func2(); // increment the result by 1

What would be the end result?

Return Value
Optimization

return Integer(left.i + right.i);

● This is NOT a function call to a constructor (we have seen this
format before in aggregate init)

● This actually means, make a temporary Integer object and
return it

● This different from
Integer tmp(left.i + right.i);

return tmp;
● tmp object is created using its constructor -> copy-constructor copies

its value to where the return value is stored -> destructor is called for
tmp

● This is less efficient than the first method
● Compiler directly creates the object into the return value

location (i.e., 1 constructor call, no copy-constructor, no
destructor)

