CIS 330 C/C++ and Unix

Red-Black Tree

Binary Search Tree (BST)

Search Tree

- Data structure that support many dynamic-set operations (i.e., change over time), including
- Search, minimum, maximum, predecessor, successor, insert, and delete

Binary Search Tree - Search tree where each node has two children (except for the leaves)

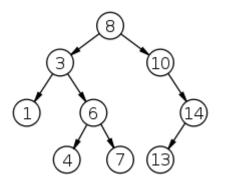
Items can be looked up, as they are stored in sorted form (by key)

Complexity

- Log N if complete
- N if a linear chain with n nodes

Property of a BST

Binary Search Tree with


- Size 9
- Height 3
- Root at 8

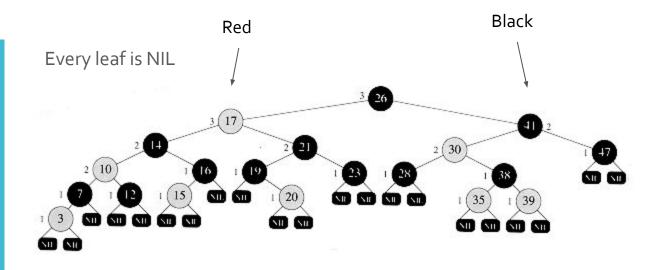
Each node contains

- Key
- Left, right, parent node pointers (nil/null if missing)

Property

- Let x be a node in a BST -
 - if y is a node in the left subtree, then key[y] <= key[x]
 - if y is a node in the right subtree, then key[x] <= key[y]

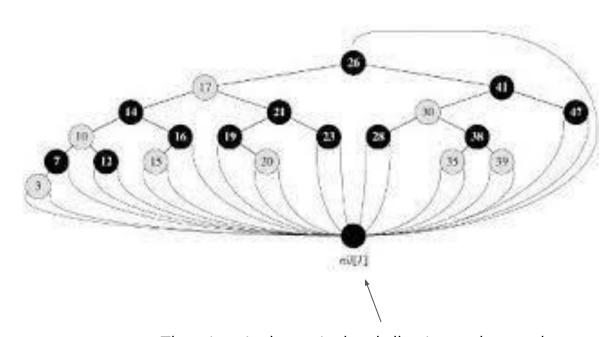
Red-Black Tree


BST with extra bit of information in each node - its color - RED or BLACK

By constraining the way nodes can be colored on any path from the root to a leaf, red-black trees ensure that no such path is more than twice as long as any other (i.e., it is approximately balanced)

Property

- 1. Every node is either RED or BLACK
- 2. The root is BLACK
- 3. Every leaf (a NIL) is BLACK (we'll see what this means in a bit)
- 4. If a node is RED, then both its children are BLACK
- 5. For each node, all paths from the node to descendent leaves contain the same number of BLACK nodes


Red-Black Tree

Every NIL (or nullptr in C++) is replaced with an actual Node*

We call this the sentinel

- Sentinel is of type Node* (or RBTNode*)
- Sentinel color is BLACK
- Other fields (i.e., parent, left, right, and key) are arbitrary (and usually not important)
- Represented as *nil*[T] in CLRS

There is a single sentinel and all pointers that used to point to NIL/nullptr in BST now points to this sentinel

For example

```
To accommodate RBT in our BST implementation, modifications have been made by adding a defaulted argument nilptr
```

```
Node* BST::get_min(Node* in) {
```

```
Node* cur = in;
while(cur->get_left() != nullptr) {
    cur = cur->get_left();
}
return cur;
```

get_min(in)

}

```
Node* get_min(Node* in, Node* nilptr = nullptr);
```

```
Node* BST::get_min(Node* in, Node nilptr)
{
    Node* cur = in;
    while(cur->get_left() != nilptr) {
        cur = cur->get_left();
    }
    return cur;
}
```

get_min(in, sentinel)

Red-Black Tree

What is required for the homework

- rb-insert
 - **rb-insert-fixup** (required to maintain RBT property)
 - left-rotate, right-rotate
- rb-delete
 - **rb-delete-fixup** (required to maintain RBT property)
 - left-rotate, right-rotate

Rotation

RIGHT-ROTATE(T, y)х α y LEFT-ROTATE(T, x)LEFT-ROTATE(T, x)1 $y \leftarrow right[x]$ \triangleright Set y. 2 $right[x] \leftarrow left[y]$ \triangleright Turn y's left subtree into x's right subtree. 3 if $left[y] \neq NIL$ then $p[left[y]] \leftarrow x$ 4 5 $p[y] \leftarrow p[x]$ \triangleright Link x's parent to y. 6 if p[x] = NIL7 then $root[T] \leftarrow y$ 89 else if x = left[p[x]]then $left[p[x]] \leftarrow y$ 10 else right[p[x]] $\leftarrow y$ 11 $left[y] \leftarrow x$ \triangleright Put x on y's left. 12 $p[x] \leftarrow y$

Rotation

Right rotate is similar to left-rotate (somewhat symmetrical) Design the algorithm first, and then implement

Insert

			ise existing code!
F	RB-	INSERT(1, X)	vever, be careful here, you may need
	1 2	TDEE INCEDT(/ Y)	lo some additional things to account sentinels in the skeleton code
	3	while $x \neq root[T]$ and $color[p[x]] =$	= RED
	4	do if $p[x] = left[p[p[x]]]$	
	5	then $y \leftarrow right[p[p[x]]]$	
	6	if $color[y] = RED$	
	6 7 8	then $color[p[x]] \leftarrow$	BLACK D Case 1
	8	$color[y] \leftarrow BL$	ACK ▷ Case 1
	9	color[p[p[x]]]	\leftarrow RED \triangleright Case 1
	0	$x \leftarrow p[p[x]]$	⊳ Case 1
1	11	else if $x = right[p$	[x]]
	12	then $x \leftarrow p$	[x] riangle Case 2
	13	Left-	ROTATE(T, x) ightarrow Case 2
3	14	$color[p[x]] \leftarrow$	BLACK D Case 3
1	15	color[p[p[x]]]	\leftarrow RED \triangleright Case 3
	16	RIGHT-ROTA	$TE(T, p[p[x]]) \triangleright Case 3$
	17	else (same as then clause	
		with "right" and "	left" exchanged)
	18	$color[root[T]] \leftarrow black$	

Used to restore the red-black properties of the tree

Recall that

Property

- 1. Every node is either RED or BLACK
- 2. The root is BLACK
- 3. Every leaf is a sentinel and is BLACK (sentinel is BLACK by definition)
- 4. If a node is RED, then both its children are BLACK
- 5. For each node, all paths from the node to descendent leaves contain the same number of BLACK nodes

After regular BST insertion, which properties are violated?

1 -> every node is still RED or BLACK

3 -> Every leaf (or sentinel) is BLACK

5-> What about this one?

For each node, all paths from the node to descendent leaves contain the same number of BLACK nodes Node x replaces the sentinel (BLACK) on the left or right 1 fewer BLACK 1 more RED (because x is colored RED during rb-insert) x's children are pointing to the sentinel 1 more BLACK to left 1 more BLACK to right Total number of BLACK remains the same BLACK: -1 + 1 = 0 (either right or left)

Property

- 1. Every node is either RED or BLACK
- 2. The root is BLACK
- 3. Every leaf (a NIL) is BLACK (we'll see what this means in a bit)
- 4. If a node is RED, then both its children are BLACK
- For each node, all paths from the node to descendent leaves contain the same number of BLACK nodes

2 -> If the new node becomes the root, this is violated

 Fixed by setting the root to BLACK (since BLACK node can have either RED or BLACK children, no property is violated)

4-> Newly added node is RED, and if it's added to a parent who happens to be RED, this is violated

Insert

		The while loop maint	
RB-	-INSERT (T, x)	at the beginning of ea	
1	Tree-Insert (T, x)		
2	$color[x] \leftarrow \text{RED}$		
3	while $x \neq root[T]$ and $color[p[x]]$]] = RED	
4	do if $p[x] = left[p[p[x]]]$		
5	then $y \leftarrow right[p[p[x]]]$]	
6	if $color[y] = RED$		
6 7 8	then color[p[x]	$] \leftarrow BLACK$	⊳ Case 1
8	$color[y] \leftarrow$	BLACK	⊳ Case 1
9	color[p[p[x]]] \leftarrow red	⊳ Case 1
10	$x \leftarrow p[p[x]$	c]]	⊳ Case 1
11	else if $x = rightarrow rightarr$	it[p[x]]	
12	then x -	-p[x]	⊳ Case 2
13	LE	ft-Rotate(T, x)	\triangleright Case 2
14	color[p[x]]	$] \leftarrow BLACK$	⊳ Case 3
15	color[p[p[$x]] \leftarrow \text{Red}$	⊳ Case 3
16	RIGHT-RC	DTATE(T, p[p[x]])	\triangleright Case 3
17	else (same as then cla	use	
	with "right" an	d "left" exchanged)	
18	$color[root[T]] \leftarrow black$		

Invariant

- 1. Node x (input) is RED
- 2. If p[x] is the root, p[x] is BLACK
- 3. If there is a violation of the red-black properties, there is at most one violation, and it's either property 2 or property 4
 - a. If it's violation of 2, it occurs because x is the root (and is therefore, RED)
 - b. If it's violation of 4, it occurs because both x and p[x] are RED.

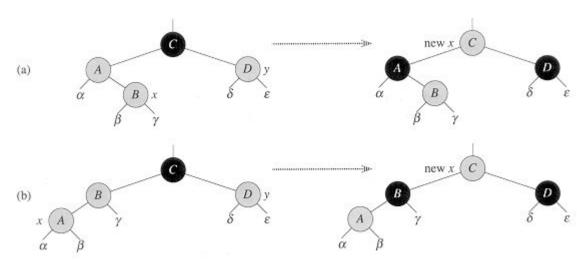
3 needs to be resolved so that the algorithm can terminate

During the algorithm iteration, either

- 1. x moves up the tree, or
- 2. some rotation is performed and the loop terminates

Insert

RB-Insert (T, x)			First conditional takes care of when	
1	Tree-Insert (T, x)	p[x] is a left chi	ild (of p[p[x]]	
2	$color[x] \leftarrow \text{RED}$			
3	while $x \neq root[T]$ and color	[p[x]] = RED		
4	do if $p[x] = left[p[p[x]]]$			
5	then $y \leftarrow right[p[p]]$			
6	if $color[y] =$			
6 7 8 9	then color[$p[x]] \leftarrow \text{BLACK}$	⊳ Case 1	
8	color[$y] \leftarrow black$	⊳ Case 1	
9	color[$p[p[x]] \leftarrow \text{RED}$	⊳ Case 1	
10	$x \leftarrow \mu$	p[p[x]]	⊳ Case 1	
11	else if $x =$	right[p[x]]		
12	the	$\mathbf{n} \ x \leftarrow p[x]$	⊳ Case 2	
13	Left-Rotate (T, x)		⊳ Case 2	
14	color[$p[x]] \leftarrow \text{BLACK}$	⊳ Case 3	
15	color[$p[p[x]] \leftarrow \text{Red}$	⊳ Case 3	
16	RIGH	r-Rotate $(T, p[p[x]])$	⊳ Case 3	
17	else (same as the	n clause		
	with "right	" and "left" exchanged)	\	
18	$color[root[T]] \leftarrow BLACK$		/	
		Second part take	es care of when	
		`		


p[x] is a right child (of p[p[x]])

Insert

RB-	-Insert (T, x)	<pre>v is the sibling of p[x]</pre>
1	TREE-INSERT(T, x)	or x's uncle)
2	$color[x] \leftarrow \text{RED}$	
3	while $x \neq root[T]$ and $color[p[x]] = RED$	
4	do if $p[x] = left[p[p[x]]]$	Case 1 - if both parent
5	then $y \leftarrow right[p[p[x]]]$	and uncle are RED
6	if $color[y] = RED$	
7 8	then $color[p[x]] \leftarrow BLACK$	\triangleright Case 1
8	$color[y] \leftarrow black$	\triangleright Case 1
9	$color[p[p[x]]] \leftarrow \text{Red}$	\triangleright Case 1
10	$x \leftarrow p[p[x]]$	⊳ Case 1
11	else if $x = right[p[x]]$	
12	then $x \leftarrow p[x]$	⊳ Case 2
13	Left-Rotate	(T, x) riangle Case 2
14	$color[p[x]] \leftarrow black$	⊳ Case 3
15	$color[p[p[x]] \leftarrow \text{RED}$	⊳ Case 3
16	RIGHT-ROTATE $(T, p[$	$p[x]$ \triangleright Case 3
17	else (same as then clause	
	with "right" and "left" exc	changed)
18	$color[root[T]] \leftarrow BLACK$	

Case 1

x's uncle y is RED

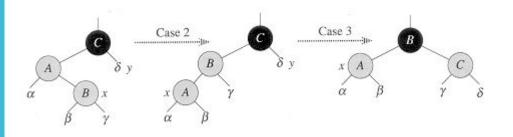
p[p[x]] has to be BLACK (otherwise it wouldn't have been a legal RBT in the first place)

Color p[x] and y BLACK, and p[p[x]] as RED, fixing the problem *locally*

Move x up the tree by two levels to p[p[x]], and repeat the while loop with p[p[x]] as the new input x

Insert

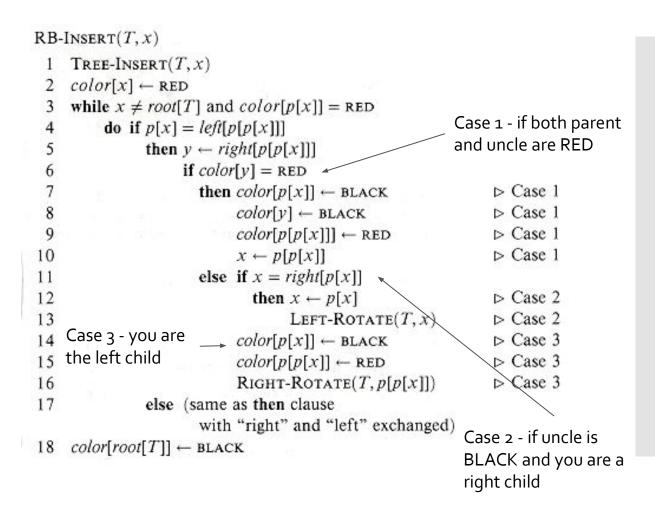
Insert


Is invariance at the beginning of the while loop maintained?

- 1. new x is RED (since that's what we did)
- if p[x] is the root, p[x] is BLACK (since we haven't touched this, node, it should be BLACK if it is the root)
- 3. If new x is the root at the start of the next iteration, there was only 1 violation of property 4 and it has been fixed and the only violation to consider is property 2.

If new x is NOT the root at the start of the next iteration, then we have not created a violation of property 2. If p[new x] is RED, we now created **a violation to property 4**, otherwise there is **no violation** to property 4

 \rightarrow Therefore, there is at most 1 violation, either violation of property 2 or property 4


Case 2 - x's uncle y is BLACK and x is a right child Case 3 - x's uncle y is BLACK and x is a left child

Left rotation transforms case 2 to case 3 Color change + right rotate fixes the problem

Insert

Insert

That was the easy part Let's move on to delete

Similar to insert

Requires a small modification to deletes (BST) and a fixup code to re-"balance" the tree

NIL/nullptr replaced by nil[T] RB-DELETE (T, z) 1 if left[z] = nil[T] or right[z] = nil[T] BST delete: 2 then $y \leftarrow z$ 3 else y \leftarrow TREE-SUCCESSOR(z) if(x != NIL)4 if left[y] \neq nil[T] p[x] <- p[y]then $x \leftarrow left[y]$ 5 If x is the sentinel, it is used to 6 else x \leftarrow right[y] temporarily store p[y] $7 p[x] \leftarrow p[y]$ 8 if p[y] = nil[T]then root[T] $\leftarrow x$ else if y = left[p[y]]10 The BST assignment required then $left[p[y]] \leftarrow x$ 11 "splicing" the nodes instead 12 else right[p[y]] $\leftarrow x$ of copying the data - the 13 if $y \neq z$ 14 then $key[z] \leftarrow key[y]$ "key" data for Node class was 15 If y has other fields, copy them, too. made private so that you 16 if color[y] = BLACKcouldn't replace existing data then RB-DELETE-FIXUP (T,x) 17 in Nodes 18 return y

If y is RED, fixup is not necessary, as red-black properties still hold when y is spliced out Red-black tree fixup on x (not z)

If the spliced out node, y, is BLACK, three problems may arise

- 1. if y had been the root, and a RED child of y becomes the new root, we have violated **property 2** (i.e., root is BLACK)
- if both x and p[y] (which is now p[x]) were RED, then we have violated property 4 (if a node is RED, both its children are BLACK)
- 3. y's removal causes any path that had previously contained y to have one fewer BLACK node and violates **property 5** (all paths from a node to descendant leaves contains the same number of BLACK nodes)

What can we do?

- Say that node x has an "extra" BLACK i.e., increase the count of BLACK nodes by 1 whenever it encounters x
- This fixes the violation to property 5.
- Additionally, assume that x can be either BLACK-BLACK, or RED-BLACK (both options add an extra BLACK to x)

RB-DELETE-FIXUP

Property 2 and 4 are easy to handle (similar in idea to what we did in insert)

By trying to fix property 5, we made a node RED-BLACK or BLACK-BLACK, we broke property 1

fixup moves the extra BLACK up the tree until

- x points to a RED-BLACK node, in which case we make it BLACK, or
- x points to the root, in which case the extra BLACK is simply removed, or
- suitable rotation and recoloring can be performed

Remember that the node x passed to fixup is one of two nodes

- The node that was y's sole child before y was spliced out (if y had a child that was not the sentinel/NIL)
- Sentinel nil[T] (if y had no children)

Within the while loop, x is **RB-DELETE-FIXUP**(T, x)always a non-root and a while $x \neq root[T]$ and color[x] = BLACKdouble-BLACK node do if x = left[p[x]]2 3 then $w \leftarrow right[p[x]]$ if color[w] = REDthen $color[w] \leftarrow BLACK$ 5 ▷ Case 1 $color[p[x]] \leftarrow RED$ ▷ Case 1 6 LEFT-ROTATE(T, p[x])▷ Case 1 8 $w \leftarrow right[p[x]]$ ▷ Case 1 9 if color[left[w]] = BLACK and color[right[w]] = BLACK10 then $color[w] \leftarrow RED$ ▷ Case 2 11 $x \leftarrow p[x]$ ▷ Case 2 12 else if color[right[w]] = BLACK> Case 3 13 then $color[left[w]] \leftarrow BLACK$ > Case 3 14 $color[w] \leftarrow RED$ 15 RIGHT-ROTATE(T, w)▷ Case 3 16 $w \leftarrow right[p[x]]$ ▷ Case 3 17 $color[w] \leftarrow color[p[x]]$ > Case 4 18 > Case 4 $color[p[x]] \leftarrow BLACK$ 19 $color[right[w]] \leftarrow BLACK$ > Case 4 > Case 4 20 LEFT-ROTATE(T, p[x])21 ▷ Case 4 $x \leftarrow root[T]$ 22 else (same as then clause with "right" and "left" exchanged)

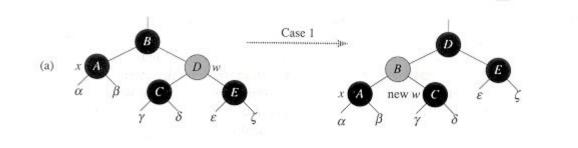
Delete

23 $color[x] \leftarrow black$

RB-DELETE-FIXUP(T, x)

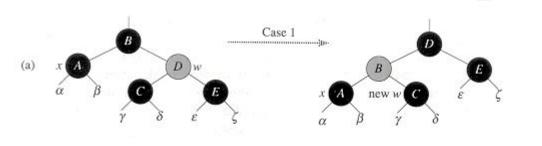
Determine if x is a left child while $x \neq root[T]$ and color[x] = BLACKdo if x = left[p[x]]2 3 then $w \leftarrow right[p[x]]$ if color[w] = REDthen $color[w] \leftarrow BLACK$ 5 ▷ Case 1 $color[p[x]] \leftarrow RED$ ▷ Case 1 6 7 LEFT-ROTATE(T, p[x])▷ Case 1 8 $w \leftarrow right[p[x]]$ ▷ Case 1 9 if color[left[w]] = BLACK and color[right[w]] = BLACK10 then $color[w] \leftarrow RED$ ▷ Case 2 11 ▷ Case 2 $x \leftarrow p[x]$ 12 else if color[right[w]] = BLACK13 then $color[left[w]] \leftarrow BLACK$ ▷ Case 3 > Case 3 14 $color[w] \leftarrow RED$ 15 RIGHT-ROTATE(T, w)▷ Case 3 16 $w \leftarrow right[p[x]]$ ▷ Case 3 17 $color[w] \leftarrow color[p[x]]$ > Case 4 18 > Case 4 $color[p[x]] \leftarrow BLACK$ 19 $color[right[w]] \leftarrow BLACK$ > Case 4 > Case 4 20 LEFT-ROTATE(T, p[x])21 $x \leftarrow root[T]$ > Case 4 22 else (same as then clause with "right" and "left" exchanged) 23 $color[x] \leftarrow BLACK$ Same algorithm applies if ix is right child

Delete


RB-Delete-Fixup(T, x)

1	while $x \neq root[T]$ and $color[x] = BLACK$	
2	do if $x = left[p[x]]$	Maintain a pointer (w) to
2 3	then $w \leftarrow right[p[x]] \leftarrow$	sibling of x
4	if $color[w] = \text{Red}$	5
5 6 7 8	then $color[w] \leftarrow BLACK$	⊳ Case 1
6	$color[p[x]] \leftarrow red$	⊳ Case 1
7	Left-Rotate $(T, p[x])$	⊳ Case 1
8	$w \leftarrow right[p[x]]$	⊳ Case 1
9	if $color[left[w]] = BLACK$ and $color[right]$	ht[w]] = BLACK
10	then $color[w] \leftarrow \text{RED}$	⊳ Case 2
11	$x \leftarrow p[x]$	⊳ Case 2
12	else if $color[right[w]] = BLACK$	
13	then $color[left[w]] \leftarrow BLACK$	⊳ Case 3
14	$color[w] \leftarrow RED$	⊳ Case 3
15	Right-Rotate(T, w)	⊳ Case 3
16	$w \leftarrow right[p[x]]$	⊳ Case 3
17	$color[w] \leftarrow color[p[x]]$	⊳ Case 4
18	$color[p[x]] \leftarrow black$	⊳ Case 4
19	$color[right[w]] \leftarrow BLACK$	⊳ Case 4
20	LEFT-ROTATE $(T, p[x])$	⊳ Case 4
21	$x \leftarrow root[T]$	⊳ Case 4
22	else (same as then clause	
	with "right" and "left" exchanged)	
23	$color[x] \leftarrow BLACK$	

23 $color[x] \leftarrow black$


Delete

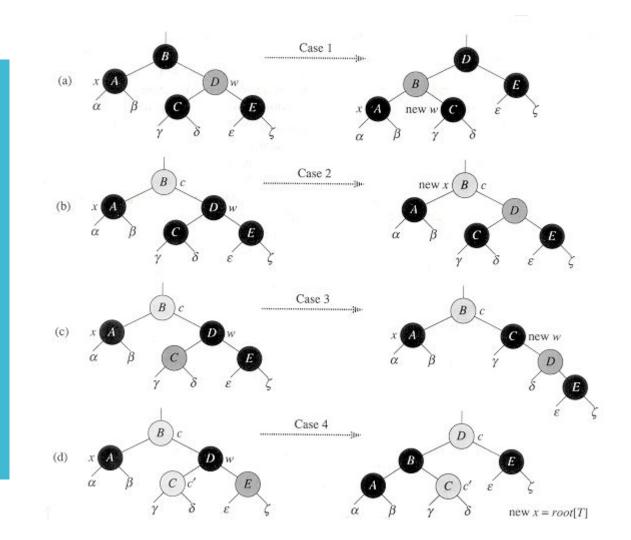
In each of the four cases, # of BLACK nodes (including x's extra BLACK) is preserved (to maintain property 5)

of BLACK nodes from root (B or D) to alpha or beta is 3 (A is x and has two BLACKs) before and after the transformation

Case 1: x's sibling, w, is RED

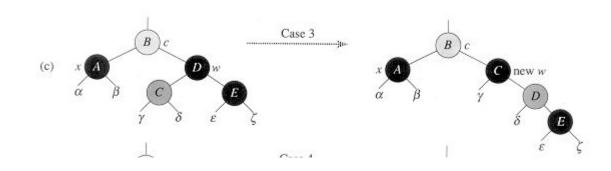
We know both of w's children must be black (due to red-black tree's property 4)

p[x] must also be black (if p[x] was RED, w could not be RED)


Therefore, we can switch the colors of w and p[x] and then perform a left-rotation on p[x] without violating red-black property

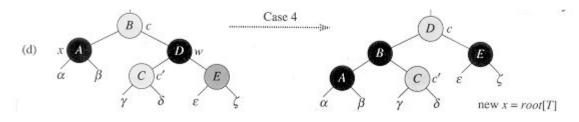
- p[x] becomes RED, w becomes BLACK
- left-roate: w replaces p[x], and p[x] becomes w's child
- Since w is now BLACK, it can have either RED or BLACK children
- New sibling of x (which is one of w's children prior to rotation) is also BLACK

1	while $x \neq root[T]$ and $color[x] = BLACK$	
2	do if $x = left[p[x]]$	
3	then $w \leftarrow right[p[x]]$	
4	if $color[w] = \text{Red}$	
5	then $color[w] \leftarrow BLACK$	⊳ Case 1
	$color[p[x]] \leftarrow red$	⊳ Case 1
6 7 8	Left-Rotate $(T, p[x])$	⊳ Case 1
8	$w \leftarrow right[p[x]]$	⊳ Case 1
9	if $color[left[w]] = BLACK$ and $color[right]$	l[w]] = BLAC
10	then $color[w] \leftarrow \text{RED}$	⊳ Case 2
11	$x \leftarrow p[x]$	⊳ Case 2
12	else if $color[right[w]] = BLACK$	
13	then $color[left[w]] \leftarrow BLACK$	⊳ Case 3
14	$color[w] \leftarrow RED$	⊳ Case 3
15	Right-Rotate(T, w)	⊳ Case 3
16	$w \leftarrow right[p[x]]$	⊳ Case 3
17	$color[w] \leftarrow color[p[x]]$	⊳ Case 4
18	$color[p[x]] \leftarrow black$	⊳ Case 4
19	$color[right[w]] \leftarrow BLACK$	⊳ Case 4
20	Left-Rotate $(T, p[x])$	⊳ Case 4
21	$x \leftarrow root[T]$	⊳ Case 4
22	else (same as then clause	
	with "right" and "left" exchanged)	
23	$color[x] \leftarrow black$	


Case 2: x's sibling, w, is BLACK, and both of w's children are BLACK Make w RED and set x to be p[x] - this has the effect of

- We take one BLACK off both x and w
- x becomes "regular" BLACK , and w becomes RED
- To compensate for removing BLACK from x and w, add a BLACK to p[x] (p[x] it could original be either RED or BLACK)
 - Since x and w are on different paths, adding one BLACK to the parent maintains the same # of BLACKS down either path
 - p[x] is now either RED-BLACK or BLACK-BLACK
- If p[x] is BLACK-BLACK, we repeat this in the while loop by setting new x to be p[x], which keeps pushing the extra BLACK up the tree. If it's RED-BLACK, while loop terminates
- Also, note that if Case 2 is entered through Case 1, our p[x] becomes RED-BLACK (because in case 1, parent of x and w was made RED).

Case 3: x's sibling, w, is BLACK, left[w] is RED, right[w] is BLACK


We can switch the colors of w and its left child and then perform a right-rotation on w

Maintains the properties of red-black tree

This transforms Case 3 to Case 4

Case 4: x's sibling, w, is BLACK, and w's right child is RED

Change colors

- w gets p[x]'s color
- p[x] is made BLACK
- right[w] is made BLACK

Left-rotate on p[x]

This removes the extra BLACK on x, without violating any properties

- # of BLACK on path from root (B or D) to alpha/beta remains 2
- Same for all the others (i.e., gamma, delta, epsilon, zeta)

Forcibly terminate by setting x to root

More details

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap14.ht m#:~:text=A%20red%2Dblack%20tree%20is,be%20either%20RED %200r%20BLACK.