
CIS 330
C/C++ and Unix
Red-Black Tree



Binary Search 
Tree (BST)

Search Tree

● Data structure that support many dynamic-set operations 
(i.e., change over time), including

● Search, minimum, maximum, predecessor, successor, 
insert, and delete

Binary Search Tree - Search tree where each node has two children 
(except for the leaves)

● Items can be looked up, as they are stored in sorted form (by 
key)

Complexity

● Log N - if complete
● N - if a linear chain with n nodes



Binary Search Tree with

● Size 9
● Height 3
● Root at 8

Each node contains

● Key
● Left, right, parent node pointers (nil/null if missing)

Property

● Let x be a node in a BST - 
● if y is a node in the left subtree, then key[y] <= key[x]
● if y is a node in the right subtree, then key[x] <= key[y]

Property of a 
BST



Red-Black 
Tree

BST with extra bit of information in each node - its color - RED or BLACK

By constraining the way nodes can be colored on any path from the root 
to a leaf, red-black trees ensure that no such path is more than twice as 
long as any other (i.e., it is approximately balanced)

Property

1. Every node is either RED or BLACK
2. The root is BLACK
3. Every leaf (a NIL) is BLACK (we’ll see what this means in a bit)
4. If a node is RED, then both its children are BLACK
5. For each node, all paths from the node to descendent leaves 

contain the same number of BLACK nodes



Every leaf is NIL

Every NIL (or nullptr in C++) is replaced with an actual Node* 

We call this the sentinel

● Sentinel is of type Node* (or RBTNode*)
● Sentinel color is BLACK
● Other fields (i.e., parent, left, right, and key) are arbitrary (and 

usually not important)
● Represented as nil[T] in CLRS

Red-Black 
Tree

Red Black



There is a single sentinel and all pointers that used to 
point to NIL/nullptr in BST now points to this sentinel



For example

Node* get_min(Node* in, Node* nilptr = nullptr);

Node* BST::get_min(Node* in, Node nilptr)
{
    Node* cur = in;
    while(cur->get_left() != nilptr) {
        cur = cur->get_left();
    }
    return cur;
}

get_min(in, sentinel)

Node* BST::get_min(Node* in)
{
    Node* cur = in;
    while(cur->get_left() != nullptr) {
        cur = cur->get_left();
    }
    return cur;
}

get_min(in)

To accommodate RBT in our BST implementation, modifications 
have been made by adding a defaulted argument nilptr 



Red-Black 
Tree

What is required for the homework

● rb-insert
● rb-insert-fixup (required to maintain RBT property)

● left-rotate, right-rotate
● rb-delete

● rb-delete-fixup (required to maintain RBT property)
● left-rotate, right-rotate



Rotation



Rotation Right rotate is similar to left-rotate (somewhat symmetrical)

Design the algorithm first, and then implement



Insert

Reuse existing code!
However, be careful here, you may need 
to do some additional things to account 
for sentinels in the skeleton code



rb-insert-fixup

Used to restore the red-black properties of the tree

Recall that

Property

1. Every node is either RED or BLACK
2. The root is BLACK
3. Every leaf is a sentinel and is BLACK (sentinel is BLACK by 

definition)
4. If a node is RED, then both its children are BLACK
5. For each node, all paths from the node to descendent leaves 

contain the same number of BLACK nodes

After regular BST insertion, which properties are violated?

1 -> every node is still RED or BLACK

3 -> Every leaf (or sentinel) is BLACK

5-> What about this one?



rb-insert-fixup

For each node, all paths from the node to descendent leaves contain 
the same number of BLACK nodes

Node x replaces the sentinel (BLACK) on the left or right

1 fewer BLACK 

1 more RED (because x is colored RED during rb-insert)

x’s children are pointing to the sentinel

1 more BLACK to left

1 more BLACK to right

Total number of BLACK remains the same

BLACK: -1 + 1 = 0 (either right or left)



rb-insert-fixup

Property

1. Every node is either RED or BLACK
2. The root is BLACK
3. Every leaf (a NIL) is BLACK (we’ll see what this means in a bit)
4. If a node is RED, then both its children are BLACK
5. For each node, all paths from the node to descendent leaves 

contain the same number of BLACK nodes

2 -> If the new node becomes the root, this is violated

● Fixed by setting the root to BLACK (since BLACK node can 
have either RED or BLACK children, no property is violated)

4-> Newly added node is RED, and if it’s added to a parent who 
happens to be RED, this is violated



Insert

The while loop maintains some invariant
at the beginning of each iteration



rb-insert-fixup

Invariant

1. Node x (input) is RED
2. If p[x] is the root, p[x] is BLACK
3. If there is a violation of the red-black properties, there is at 

most one violation, and it’s either property 2 or property 4
a. If it’s violation of 2, it occurs because x is the root (and is 

therefore, RED)
b. If it’s violation of 4, it occurs because both x and p[x] are 

RED.

3 needs to be resolved so that the algorithm can terminate

During the algorithm iteration, either

1. x moves up the tree, or
2. some rotation is performed and the loop terminates



Insert

Second part takes care of when 
p[x] is a right child (of p[p[x]])

First conditional takes care of when 
p[x] is a left child (of p[p[x]]



Insert

y is the sibling of p[x] 
(or x’s uncle)

Case 1 - if both parent 
and uncle are RED



Case 1 

x’s uncle y is RED

p[p[x]] has to be BLACK (otherwise it wouldn’t have been a legal 
RBT in the first place)

Color p[x] and y BLACK, and p[p[x]] as RED, fixing the problem 
locally

Move x up the tree by two levels to p[p[x]], and repeat the while 
loop with p[p[x]] as the new input x

Insert



Insert

Is invariance at the beginning of the while loop maintained?

1. new x is RED (since that’s what we did)
2. if p[x] is the root, p[x] is BLACK (since we haven’t touched this, 

node, it should be BLACK if it is the root)
3. If new x is the root at the start of the next iteration, there was 

only 1 violation of property 4 and it has been fixed and the 
only violation to consider is property 2.

If new x is NOT the root at the start of the next iteration, then 
we have not created a violation of property 2. If p[new x] is 
RED, we now created a violation to property 4, otherwise 
there is no violation to property 4

→ Therefore, there is at most 1 violation, either violation of 
property 2 or property 4



Insert

Case 2 - x’s uncle y is BLACK and x is a right child

Case 3 - x’s uncle y is BLACK and x is a left child

Left rotation transforms case 2 to case 3

Color change + right rotate fixes the problem



Insert

Case 1 - if both parent 
and uncle are RED

Case 2 - if uncle is 
BLACK and you are a 
right child

Case 3 - you are 
the left child



That was the easy part

Let’s move on to delete



Delete
Similar to insert

Requires a small modification to deletes (BST) and a fixup 
code to re-”balance” the tree



Delete

1 if left[z] = nil[T] or right[z] = nil[T]
2      then y ← z
3      else y ← TREE-SUCCESSOR(z)
4 if left[y] ≠ nil[T]    
5     then x ← left[y]
6     else x ← right[y]
7 p[x] ← p[y]
8 if p[y] = nil[T]
9    then root[T] ← x
10    else if y = left[p[y]]
11            then left[p[y]] ← x
12            else right[p[y]] ← x
13 if y ≠ z
14     then key[z] ← key[y]
15          If y has other fields, copy them, too.
16 if color[y] = BLACK
17     then RB-DELETE-FIXUP (T,x)
18 return y

NIL/nullptr replaced by nil[T]

BST delete:
if(x != NIL) 
    p[x] <- p[y]
If x is the sentinel, it is used to 
temporarily store p[y]

The BST assignment  required 
“splicing” the nodes instead 
of copying the data - the 
“key” data for Node class was 
made private so that you 
couldn’t replace existing data 
in Nodes

Red-black tree fixup on x (not z)

RB-DELETE (T, z)

If y is RED, fixup is not necessary, as 
red-black properties still hold when 
y is spliced out 



Delete

If the spliced out node, y, is BLACK, three problems may arise

1. if y had been the root, and a RED child of y becomes the new 
root, we have violated property 2 (i.e., root is BLACK)

2. if both x and p[y] (which is now p[x]) were RED, then we have 
violated property 4 (if a node is RED, both its children are 
BLACK)

3. y’s removal causes any path that had previously contained y to 
have one fewer BLACK node and violates property 5 (all paths 
from a node to descendant leaves contains the same number 
of BLACK nodes)

What can we do?

● Say that node x has an “extra” BLACK - i.e., increase the count 
of BLACK nodes by 1 whenever it encounters x

● This fixes the violation to property 5.
● Additionally, assume that x can be either BLACK-BLACK, or 

RED-BLACK (both options add an extra BLACK to x)



Delete

RB-DELETE-FIXUP

Property 2 and 4 are easy to handle (similar in idea to what we did in 
insert)

By trying to fix property 5, we made a node RED-BLACK or 
BLACK-BLACK, we broke property 1

fixup moves the extra BLACK up the tree until

● x points to a RED-BLACK node, in which case we make it 
BLACK, or

● x points to the root, in which case the extra BLACK is simply 
removed, or

● suitable rotation and recoloring can be performed 

Remember that the node x passed to fixup is one of two nodes

● The node that was y’s sole child before y was spliced out (if y 
had a child that was not the sentinel/NIL)

● Sentinel nil[T] (if y had no children)



Delete

Within the while loop, x is 
always a non-root and a 
double-BLACK  node



Delete

Determine if x is a left child

Same algorithm applies if 
ix is right child



Delete

Maintain a pointer (w) to 
sibling of x



Delete

In each of the four cases, # of BLACK nodes (including x’s extra 
BLACK) is preserved (to maintain property 5)

# of BLACK nodes from root (B or D) to alpha or beta is 3 (A is x and 
has two BLACKs) before and after the transformation



Case 1: x’s sibling, w, is RED

We know both of w’s children must be black (due to red-black tree’s 
property 4)

p[x] must also be black (if p[x] was RED, w could not be RED)

Therefore, we can switch the colors of w and p[x] and then perform a 
left-rotation on p[x] without violating red-black property

● p[x] becomes RED, w becomes BLACK
● left-roate:  w replaces  p[x], and p[x] becomes w’s child
● Since w is now BLACK, it can have either RED or BLACK children
● New sibling of x (which is one of w’s children prior to rotation) is 

also BLACK

Delete



Delete



Delete

Case 2: x’s sibling, w, is BLACK, and both of w’s children are BLACK

Make w RED and set x to be p[x] - this has the effect of

● We take one BLACK off both x and w
● x becomes “regular” BLACK , and w becomes RED
● To compensate for removing BLACK from x and w, add a 

BLACK to p[x] (p[x] it could original be either RED or BLACK)
● Since x and w are on different paths, adding one 

BLACK to the parent maintains the same # of BLACKS 
down either path

● p[x] is now either RED-BLACK or BLACK-BLACK
● If p[x] is BLACK-BLACK, we repeat this in the while loop by 

setting new x to be p[x], which keeps pushing the extra BLACK 
up the tree. If it’s RED-BLACK, while loop terminates

● Also, note that if Case 2 is entered through Case 1, our p[x] 
becomes RED-BLACK (because in case 1, parent of x and w 
was made RED).



Delete



Delete

Case 3: x’s sibling, w, is BLACK, left[w] is RED, right[w] is BLACK

We can switch the colors of w and its left child and then 
perform a right-rotation on w

Maintains the properties of red-black tree

This transforms Case 3 to Case 4



Delete

Case 4: x’s sibling, w, is BLACK, and w’s right child is RED

Change colors

● w gets p[x]’s color
● p[x] is made BLACK
● right[w] is made BLACK

Left-rotate on p[x]

This removes the extra BLACK on x, without violating any properties

● # of BLACK on path from root (B or D) to alpha/beta remains 2
● Same for all the others (i.e., gamma, delta, epsilon, zeta)

Forcibly terminate by setting x to root



More details http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap14.ht
m#:~:text=A%20red%2Dblack%20tree%20is,be%20either%20RED
%20or%20BLACK.


