
CIS330 Name:
Spring 2022
Midterm Exam
4/20/22, 10AM to 11:20AM
Time Limit: 80 Minutes

This exam contains 14 pages (including this cover page and extra sheets) and 6 questions.
Total number of points is 100, excluding extra credit.

You are not allowed use any books, notes, calculators, or electronic devices of any kind.
Write your answers carefully and legibly. Remember, a partial answer is better than
no answer.

Feel free to skip around and go back to an earlier question later. You may find it helpful to
skim over the entire exam first and start with the easier ones, then move on to the more
difficult ones. Remember to distribute your time appropriately among the questions.

If you are only submitting the answers, please do not forget to write your name on the top
of the first page.

There is an extra credit question at the end - do not miss it!
Good luck!

Grade Table (for instructor use only)

Question Points Score

1 8

2 12

3 20

4 15

5 30

6 15

Total: 100

CIS330 Midterm Exam - Page 2 of 14 4/20/22, 10AM to 11:20AM

1 The C Language

1. (8 points) (7 minutes) Select the correction answers for the following multiple-choice
questions.

(a) (2 points) (1 minute) What would be the output of the following piece of C code?

int i = 5;

int j = 3;

int k = (j - i) ? ++i: j++;

printf("k is now %d\n", k);

A. k is now 5

B. k is now 3

C. k is now 6

D. k is now 4

E. k is now -2

F. None of the above.

(b) (4 points) (4 minutes) Given the following piece of code, what will be printed?

int i[] = {5, 4, 3};

int* ip = &i[2];

int* jp = &i[1];

int* kp = &i[0];

printf("%d %d %d\n", *(ip--), *(++jp), *(kp+=2));

printf("%d %d %d\n", ++(*ip), *(jp--), ++(*kp));

printf("%d %d %d\n", *(--ip), ++(*jp), (*kp)++);

A. 3 3 3 B. 3 3 3
5 3 4 4 4 4
5 6 4 6 4 4

C. 3 3 5 D. 3 3 5
4 4 4 5 3 4
5 6 4 6 4 4

CIS330 Midterm Exam - Page 3 of 14 4/20/22, 10AM to 11:20AM

(c) (2 points) (2 minutes) Given the following code, which of the following is not a
correct method for printing A[i].

int* A = (int*) malloc(sizeof(int) * array_length);

A. int* B = A; printf("%d\n", B[i]);

B. int* B = &(A[i - 2]); printf("%d\n", B[2]);

C. int* B = A + i ; printf("%d\n", *B);

D. int** B = &A; printf("%d\n", B[0][i]);

E. All of the above are correct.

2. (12 points) (12 minutes) Answer the following short-answer questions.

(a) (6 points) (6 minutes) At least how many bytes are allocated in the heap memory
for the following piece of code and its execution? You may get partial credit if you
include the calculation.

#define MAX_NAME_LENGTH 100

#define MAX_NUM_COURSES 50

struct my_struct {

int id;

char* name;

int* grade;

};

int main(int argc, char** argv)

{

int num_students = atoi(argv[1]);

struct my_struct* my_arr;

my_arr = (struct my_struct*) malloc(sizeof(struct my_struct) * num_students);

for(int i = 0; i < num_students; i++) {

my_arr[i].name = (char*) malloc(sizeof(char) * MAX_NAME_LENGTH);

my_arr[i].grade = (int*) malloc(sizeof(int) * MAX_NUM_COURSES);

}

return 0;

}

./a.out 10

CIS330 Midterm Exam - Page 4 of 14 4/20/22, 10AM to 11:20AM

(b) (2 points) (2 minutes) Given the following piece of code, what will be printed?

#define calcCircleArea(r) 3 * r * r

#define calcVolume(r,h) calcCircleArea(r) * (h)

int main()

{

int r1 = 3;

int r2 = 4;

int h = 2;

float volume = calcVolume((r1 + r2), h);

printf("Volume is %f\n", volume);

return 0;

}

(c) (4 points) (4 minutes) Describe the four components of gcc. Include a brief de-
scription of what each component does.

CIS330 Midterm Exam - Page 5 of 14 4/20/22, 10AM to 11:20AM

2 Coding in C Part 1

3. (20 points) (15 minutes) Given a 2-D array of integers (e.g., int** arr) with m rows
and m columns, implement a function that rotates the array by 90 degrees clockwise.

For example, for the given 3 × 3 matrix

1 2 3
4 5 6
7 8 9

Its 90 degrees clockwise rotation would be

7 4 1
8 5 2
9 6 3

Things to note:

• You must use the function definition: void rotate clock(int** mat, int m);

• The rotated array must be stored in int** mat.

• You may use additional storage (i.e., a temporary array) to do the rotation

• However, make sure your function does not create memory leaks. For this ques-
tion, you must include code to free memory.

Hint: Think in terms of how rows are “moved.”

CIS330 Midterm Exam - Page 6 of 14 4/20/22, 10AM to 11:20AM

Intentionally left blank

CIS330 Midterm Exam - Page 7 of 14 4/20/22, 10AM to 11:20AM

4. (15 points) (10 minutes) Given the following pieces of code, implement init 2d() and
free 2d() functions that allocates and frees a 2-D array of “int”. (10 minutes)

int main()

{

int first_dim = 10;

int second_dim = 20;

int** my_array = NULL;

init_2d(&my_array, first_dim, second_dim);

// Do some stuff here with the 2-D array

// ...

free_2d(my_array, first_dim, second_dim);

return 0;

}

(a) (10 points) (7 minutes) Implement the init 2d function. Include the function def-
inition as well. Even if some parameters are redundant, still include them to be
consistent with how it is used in the main function.

CIS330 Midterm Exam - Page 8 of 14 4/20/22, 10AM to 11:20AM

(b) (5 points) (3 minutes) Implement the free 2d function. Make sure to free memory
allocated to “name”. Include the function definition as well. Even if some parame-
ters are redundant, still include them to be consistent with how it was used in the
main function.

CIS330 Midterm Exam - Page 9 of 14 4/20/22, 10AM to 11:20AM

3 Coding in C Part 2

5. (30 points) (20 minutes) An image is a 2-D array of pixels (or picture elements) and for
a black-and-white image, a pixel value ranges from 0 to 255. Given the following code
that implements an image:

typedef unsigned char pixel;

int main(int argc, char** argv)

{

int rows = 30;

int cols = 40;

pixel** image = NULL;

init_image(&image, rows, cols); // allocates memory & initializes to 0s

load_image(image, rows, cols); // load an image

print_image(image, rows, cols); // print the image

blur_image(image, rows, cols); // blur the image

print_image(image, rows, cols); // print the image to see if blurred correctly

return 0;

}

(a) (8 points) (5 minutes) Implement the init image() function that allocates mem-
ory for a 2-D array of pixel and initializes all elements in the 2-D array to 0.
Include the function definition and make sure the input parameters match what is
shown in the main() function.

CIS330 Midterm Exam - Page 10 of 14 4/20/22, 10AM to 11:20AM

(b) (22 points) (15 minutes) Blurring an image can be done by going through each
pixel in the image and replacing the pixel value with an average of pixel values of
itself and its immediate north, east, west, and south neighbors. For example, given
the following 4 × 4 image:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Blurring the image should produce the following new image:

2 3 4 5
5 6 7 7
9 10 11 11
12 13 14 14

For the pixel in position (2,1) (highlighted in light gray), the blurred pixel in the
new image is calculated by:

(10 (itself) + 6 (north) + 11 (east) + 9 (west) + 14 (south)) / 5 = 10

For the pixel in position (0,0) (highlighted in dark gray), the blurred pixel in the
new image is calculated by:

(1 (itself) + 2 (east) + 5 (south)) / 3 = 2

Implement the blur image() function that does this. Include the function defi-
nition and make sure the input parameters match what is shown in the main()

function. Do not worry about memory leaks in this function.

(HINT: You may need to allocate a temporary 2-D array of pixels to do this
correctly. You may call the init image() function from 5.a above to do this.)

CIS330 Midterm Exam - Page 11 of 14 4/20/22, 10AM to 11:20AM

Intentionally left blank

CIS330 Midterm Exam - Page 12 of 14 4/20/22, 10AM to 11:20AM

6. (15 points) (10 minutes) Given an array of integers, we want to calculate its prefix-sum.
However, instead of calculating one large prefix-sum from the entire array, we wish to
do multiple prefix-sums over different segments of the array.

That is, given an array of integers A and another array F consisting of 1s and 0s to
indicate the beginning of each segment (1 indicates the beginning of a segment), we
want to calculate the prefix-sums array C as shown below.

1 2 3 4 5 6 A

1 0 0 1 0 1 F

1 3 6 4 9 6 C

_______ ____ _

1 2 3 segment

Notice that a prefix-sum is calculate for each segment.

For example, for segment 1,

• C[0] = A[0] = 1

• C[1] = A[0] + A[1] = 3

• C[2] = A[0] + A[1] + A[2] = 6

For segment 2,

• C[3] = A[3] = 4

• C[4] = A[3] + A[4] = 9

Things to note:

• The algorithm must be in-place (i.e., only one integer swap variable is allowed).

• Assume that the first element of array F will always be 1 to indicate the beginning
of the first segment (i.e., F[0] = 1)

• Use the function definition void segmented scan(int* A, int* F, int m), where
m is the number of elements in the arrays A and F. The result must be stored in A.

CIS330 Midterm Exam - Page 13 of 14 4/20/22, 10AM to 11:20AM

Intentionally left blank

CIS330 Midterm Exam - Page 14 of 14 4/20/22, 10AM to 11:20AM

Extra Credit (5 points) Describe two advantages of dynamic library over static library
(i.e., archive).

