
CIS330 Name:
Winter 2020
Midterm Exam
2/5/20, 02:00PM to 3:20PM
Time Limit: 80 Minutes

This exam contains 14 pages (including this cover page and extra sheets) and 5 questions.
Total number of points is 100, excluding extra credit. This exam is printed on both sides.

You are not allowed use any books, notes, calculators, or electronic devices of any kind. Only
exception is to post a question about the exam itself on Piazza. Write your answers
carefully and legibly. Remember, partial answers are better than no answers.

Feel free to skip around and go back to an earlier question later. You may find it helpful
to skim over the entire exam first and start with the easier ones, then move on to the
more difficult ones. Remember to distribute your time appropriately among the questions.

There is an extra credit question at the end - do not miss it!
Good luck!

Grade Table (for instructor use only)

Question Points Score

1 8

2 6

3 26

4 20

5 40

Total: 100

CIS330 Midterm Exam - Page 2 of 14 2/5/20, 02:00PM to 3:20PM

1 The C Language

1. (8 points) Answer the following short-answer questions. (8 minutes)

(a) (4 points) Given the following macros defined using the #define directive, and its
usage within the main function, write the exact code that will be produced
after textual replacement has been done by the compiler’s pre-processor.

For example, given #define PI 3.1, then the statement int x = PI * PI; will
become int x = 3.1 * 3.1; after pre-processing for textual replacement.

#define PI 3.1

#define calcCircleArea(r) (PI * (r) * (r))

#define calcCylinderArea(r,h) (calcCircleArea(r) * h)

int main()

{

double i = calcCylinderArea(3.0,5.0 + 1);}

}

(b) (2 points) What is stored in the variable A after the following has been executed
(on a modern 64-bit architecture)? Please provide your answer in hexadecimal.
int* A = 0x8000;

A += 5;

(c) (2 points) Given the following C code snippet, what would be printed (assuming it
compiles)?

int main(int argc, char **argv)

{

argc++;

for(int i = 1; i < argc; i++) {

printf("%s ", argv[i - 1]);

}

return 0;

}

./a.out Doctor Who?

CIS330 Midterm Exam - Page 3 of 14 2/5/20, 02:00PM to 3:20PM

2. (6 points) For the following questions, choose the corret answer. (7 minutes)

(a) (3 points) Given the following piece of code:

int i = 3; int j = 5; int k = 1;

k = (++i) + (j++);

What would be displayed if you were to execute the appropriate instructions to

print (i++) (++j) (k++)

print i j k

A. 3 5 8
5 7 9

B. 5 6 10
5 7 10

C. 4 7 9
5 7 10

D. 4 7 9
5 7 9

E. None of the above.

(b) (3 points) Which of the following is not a correct method for printing the ith ele-
ment (where i starts from 1, and not 0 - e.g., 1st element of A would be in A[0]) of
an array A, defined as

int* A = (int*) malloc(sizeof(int) * 10)

A. int* B = A; printf("%d\n", B[i - 1]);

B. int* B = &(A[i - 2]); printf("%d\n", B[1]);

C. int* B = A + i - 1; printf("%d\n", *B);

D. int* B = (&A)[0]; printf("%d\n", B[i - 1]);

E. All of the above are correct.

CIS330 Midterm Exam - Page 4 of 14 2/5/20, 02:00PM to 3:20PM

2 Coding in C Part 1

3. (26 points) Given a 2-D array of integers (e.g., int** arr) with m rows and m columns,
implement a function that swaps arr[i][j] with arr[j][i] in-place. (20 minutes)

Use the function definition:
void swap arr(int** mat, int m);

Normally, a new 2-D array is created first (e.g., int** output arr) and elements from
the input array is moved to the output array one element at a time (i.e., output arr[j][i]

= arr[i][j]).

In this function, you CANNOT create a new array, and everything has to
be done using the given input array (you are allowed to use a temporary
variable to do a swap).

CIS330 Midterm Exam - Page 5 of 14 2/5/20, 02:00PM to 3:20PM

4. (20 points) Given the following pieces of code, implement init 2d() and free 2d()

functions that allocates and frees a 2-D array of int pointers of size first dim ×
second dim. Make sure to include the function name and its arguments in your code.
(15 minutes)

int main()

{

const int first_dim = 10;

const int second_dim = 20;

// address_array is a 2-D array of int pointers (i.e., addresses)

int ***address_array = NULL;

init_2d(&address_array, first_dim, second_dim);

// Do some stuff here with the 2-D array

free_2d(address_array, first_dim);

return 0;

}

(a) (10 points) Implement init 2d address array() (8 minutes)

CIS330 Midterm Exam - Page 6 of 14 2/5/20, 02:00PM to 3:20PM

(b) (10 points) Implement free 2d address array() (7 minutes)

CIS330 Midterm Exam - Page 7 of 14 2/5/20, 02:00PM to 3:20PM

3 Coding in C Part 2

5. (40 points) Given the following code that implements a 3-D Cartesian co-ordinate: (30
minutes)

typedef struct cart_coord {

int x; // x co-ordinate for this point

int y; // y co-ordinate for this point

int z; // z co-ordinate for this point

double mass; // mass for this point

double force; // force exerted on this point

} coord_t;

and the following main and initialization functions:

void generate_points(int** x, int** y, int** z, double** m, int n)

{

int* tmp_x = (int*) malloc(sizeof(int) * n); assert(tmp_x);

int* tmp_y = (int*) malloc(sizeof(int) * n); assert(tmp_y);

int* tmp_z = (int*) malloc(sizeof(int) * n); assert(tmp_z);

double* tmp_m = (double*) malloc(sizeof(double) * n); assert(tmp_m);

for(int i = 0; i < n; i++) {

tmp_x[i] = rand() % 1000;

tmp_y[i] = rand() % 1000;

tmp_z[i] = rand() % 1000;

tmp_m[i] = 1000000 * ((1.0 * rand()) / RAND_MAX);

}

*x = tmp_x;

*y = tmp_y;

*z = tmp_z;

*m = tmp_m;

}

CIS330 Midterm Exam - Page 8 of 14 2/5/20, 02:00PM to 3:20PM

double G = 6.67e-11;

int main(int argc, char** argv)

{

int num_points = atoi(argv[1]);

int* x_coord;

int* y_coord;

int* z_coord;

double* mass;

generate_points(&x_coord, &y_coord, &z_coord, &mass, num_points);

coord_t** space;

init_space(&space, x_coord, y_coord, z_coord, mass, num_points);

n_body(space, num_points);

free_space(space, num_points);

free(x_coord);

free(y_coord);

free(z_coord);

free(mass);

return 0;

}

where x coord[i], y coord[i], z coord[i], and mass[i] stores the x, y, z co-ordinates
and mass for point i.

CIS330 Midterm Exam - Page 9 of 14 2/5/20, 02:00PM to 3:20PM

(a) (10 points) Implement the init space function that does the following. (10 min-
utes)

• Allocate memory for an array of pointers to coord t, where the number of
elements in this array is num points.

• For each element of this array, allocate memory for one point (i.e., one coord t).

• Copy the ith x coord, y coord, z coord, and mass to ith element in this array.

• Initialize the force on each point to 0 (i.e., member force in struct cart coord).

• Store this array in variable space (defined in the main function).

• Make sure to include the function header/definition, including all arguments.

CIS330 Midterm Exam - Page 10 of 14 2/5/20, 02:00PM to 3:20PM

Intentionally left blank

CIS330 Midterm Exam - Page 11 of 14 2/5/20, 02:00PM to 3:20PM

(b) (10 points) Implement the function that calculates and returns the distance be-
tween two points in this space. (7 minutes)

The function definition should be:

double distance(cart_coord_t* a, cart_coord_t* b);

Remember that the distance between two points with co-ordinates (x1, y1, z1) and
(x2, y2, z2) is given by distance =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. Also, the

square root function is defined as double sqrt(double arg) in C.

CIS330 Midterm Exam - Page 12 of 14 2/5/20, 02:00PM to 3:20PM

(c) (10 points) Implement the function that calculates and returns the force between
two points in space. (7 minutes)

The function definition should be:

double calc_force(coord_t* a, coord_t* b);

The force between points i and j is calculated by

Fij = G
mi∗mj

r2ij

where mi and mj are the masses of point i and point j, respectively, rij is the
distance between the two points, and G is the gravitational constant (declared
globally as 6.67e-11 in the code above). Use the distance function from part (b)
of this question above. Note that there is no shortcut for calculating the square of
a number in C (i.e., you can’t do x**2 to calculate x2 as you can do in Python).

CIS330 Midterm Exam - Page 13 of 14 2/5/20, 02:00PM to 3:20PM

(d) (10 points) In physics, the n-body problem is the problem of predicting the individ-
ual motions of a group of celestial objects interacting with each other gravitationally.

Implement the n body function shown in the main function above. (6 minutes)

The function does the following:

• For each point (i.e., body) i in space, calculate the force (i.e., gravitational
force) between i and every other point j (i.e., excluding i).

• For each force calculated between i and j, accumulate it to i’s force member.

• Do this for every point in space.

• Use the calc force function implemented above in part (c).

CIS330 Midterm Exam - Page 14 of 14 2/5/20, 02:00PM to 3:20PM

Extra Credit 1 [5] For the given sparse matrix, list the required data structures (i.e.,
arrays) for the compressed sparse row (CSR) format, and fill it with the correct values. You
do not need to write code - just draw the required arrays and fill them out. You may use
either 0-indexing or 1-indexing (but be consistent)

0 1 2 0 0

3 0 1 0 0

0 0 0 0 0

1 1 0 0 6

0 0 1 9 0

