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Abstract. In this paper, we present a
parallel implementation of the revised sim-
plex method using two parallel process-
ing methods; a multi-core method us-
ing OpenMP, and a GPU method using
CUDA. To this end, we develop a robust
implementation of revised simplex with
support for pluggable backends using op-
erations from different architectures, be it
single-core, multi-core or GPU. We com-
pare the speedup of our parallel implemen-
tations against a serial implementation
of the same operations, and a cuBLAS-
accelerated implementation, and present
microbenchmarks for the various opera-
tion primitives required by revised sim-
plex. We test our code using Linear Pro-
gramming problem definitions from the
Netlib repository and show that our im-
plementations improve the runtime per-
formance of medium and large scale prob-
lems, with increasing performance benefit
for larger problems. We also see that for
the largest problems, the cuBLAS imple-
mentation is 19 × faster than our CUDA
kernels, solving a problem in 13 s that
took 212 s for our CUDA kernel, and more
than one hour for our single-threaded im-
plementation.

1 Introduction

Linear Programming (LP) is a widely used tool
for solving optimization problems. Some common
use cases include scheduling, supply chain manage-
ment, production planning, network flow, and op-
erations research in general. It is commonly ap-
plied in different research domains, including net-
worked systems. Originally developed in the 1800s,
it has blossomed with the development of comput-
ing, as faster computers, larger memory capacity,
and multi-processing have enabled LP to be applied
to larger and larger problems. For instance, Google
and Microsoft, both rely on linear programming as
the core component of their traffic engineering sys-
tems, which continuously serve content to billions of
people daily [17,18].

The simplex method for linear programming is
one of the most commonly deployed optimization

algorithms. Although it has worst-case exponential
time complexity (for the number of constraints),
simplex often finds an optimal solution on poly-
nomial time [29]. Although polynomial-time algo-
rithms are more attractive than exponential, they
can still prove to be intractable for large problems.

Parallel to the growth of problem size and
complexity, computer architectures have advanced
as well. Multi-core processors are now ubiquitous
in commodity and high-performance computers.
Graphics processors, with thousands of cores, are
pervasive as well. The paradigm shift towards many-
core architectures compels developers to rewrite old
single-core algorithms for these new multi-core sys-
tems if they expect their programs to speed up year
after year and to solve larger and more complex
problems.

Given that linear programs, although powerful,
have their limits of computational tractability, and
that more focus must be given to the parallel pro-
gramming paradigm to make the best use of the com-
putational resources available today, we aim to de-
velop parallel programming implementations of the
revised simplex method, thereby solving optimiza-
tion problems more efficiently on modern computing
systems.

In particular, we explore two avenues of paral-
lelization: multi-core, and GPU. We relate our ex-
perience with writing these algorithms in this paper
and highlight the performance boosts that we ob-
served in the single-core (serial) version of the al-
gorithm as well as the multi-core (OpenMP) and
GPU (CUDA) implementations. We also compare
our CUDA implementation with a high-performance
library, cuBLAS. The key result we present is that
problem size has a critical effect on the ability of par-
allelization to achieve better performance, regardless
of the chosen avenue of parallelization. In general,
we note that problems with hundreds of variables
and constraints are able to benefit from parallel im-
plementations, while smaller problems are more ef-
ficient to solve using serial code.

The remainder of this report is organized as fol-
lows: In §2 we discuss the simplex and revised sim-
plex algorithms; in § 3 we discuss our implemen-
tation of those algorithms and our generic backend
interface. § 4 details the performance results of our



OpenMP and CUDA backends on microbenchmarks
and selected Netlib problems. § 5 touches on related
work. Finally, we give concluding remarks in § 6.
Aside: In our original project proposal, we planned
to develop parallel implementations of an Integer
Programming optimization solver. Through deeper
study, we realized that LP optimization solvers were
required at the core of most common algorithms for
the IP problem. Due to time constraints, we decided
to focus the current effort instead on developing an
LP implementation. Our current implementation is
highly flexible and performant on large problems and
lays the groundwork for future IP and Mixed-IP op-
timization.

2 Background

An LP optimization problem consists of three main
parts: (1) the objective functions, expressed as a lin-
ear combination of a set of variables; (2) the opti-
mization sense of the objective function, expressed
as minimize or maximize; and (3) a set of constraints
on the variables. Often, LP problems arise in prac-
tice with tens to hundreds of variables and com-
plex, heterogeneous sets of constraints. For exam-
ple, Gardner et al. [14] cast an audit staff planning
problem as an LP with 153 constraints, including
95 equalities, 16 less-thans, and 42 greater-thans,
on 308 variables. To simplify the task of specify-
ing LPs, the common MPS format [2, 3] allows the
specification of equalities and inequalities over the
variables, as well as bounds on each individual vari-
able and ranges in which to apply the given equal-
ities and/or inequalities. LP solvers can easily con-
vert such heterogeneous inputs into the less relaxed
forms required by LP optimization algorithms.

To simplify the mathematics, most LP optimiza-
tion algorithms assume the input is given in a con-
cise mathematical description called standard form.
Following loosely the notation of Ralphs [25], the
standard form for expressing an LP problem is as
follows:

min
x∈F

cTx (1)

s.t. F = {x ∈ Rn | Ax ≤ b , x ≥ 0 } (2)

where A ∈ Rmxn and b ∈ Rm describe the con-
straints on the variables x1, . . . , xn and c ∈ Rn spec-
ifies the objective function. Clearly, the heteroge-
neous types of constraints found in the wild can eas-
ily be transformed into standard form by replacing
equalities with two inequality constraints, negating
greater-than constraints, and possibly negating the

objective function. In the last cast, the computed
optimal objective value must also be negated be-
fore reporting. A final caveat is that unbounded x
values must be replaced with a difference between
two, new positive variables. While these transfor-
mations are mathematically simple, they can result
in a significant expansion of constraints and vari-
ables. For example, the audit staff planning LP men-
tioned above actually has twice as many constraints
in standard form. Finally, transformations are re-
quired to remove redundant or pairwise linearly de-
pendent constraints or variables as will become ap-
parent in section 2.1.

In addition to standard form, several other key
terms have developed to facilitate the discussion of
LP optimization algorithms. A setting of x which
satisfies x ∈ F is known as a feasible solution and
a setting of x which minimizes cTx is known as an
optimal solution. The goal of an LP optimization al-
gorithm is then to find the optimal solution given
the objective function and constraints. Additionally,
LP optimization algorithms must be able to identify
two conditions where such an optimal solution does
not exist. First, it could be the case that the objec-
tive functions can be decreased without bound, in
which case the LP is said to be unbounded. Finally,
the constraints could be given such that no feasible
solution exists (e.g., x ≥ 3 and x ≤ 2) in which case,
the LP is said to be infeasible.

Most performant LP optimization solutions are
built on Dantzig’s original simplex method [11]. At
a high level, this method identifies that any optimal
solution will fall on the edge of the n-dimensional
polyhedron defined by F . The method iteratively
explores the convex hull of F , going from point to
point, until the optimal solution is found. The com-
plexity of this algorithm is typically measured in
the number of iterations taken for a given problem
as a function of problem dimensionality. While the
worst-case time complexity of the simplex method is
known to be exponential, for a wide range of practi-
cal optimization problems, it executes in near-linear
time [26]. Probabilistic analysis [7,27] demonstrates
the average case time complexity is, in fact, linear.
Several other theoretic results support the simplex
method’s utility when the dimension is fixed [12,23].

Another key feature of Dantzig’s method is its
ready interpretation in terms of common linear al-
gebra operations, often known as the revised sim-
plex method. The textbook formulation of the orig-
inal simplex method is given in terms of updates
to constraints and the objective function. In each
iteration, these equations are rearranged such that
particular basic variables are isolated in terms of the



other nonbasic variables. This naive form requires
updating each coefficient (each entry in A) in each
iteration which leads to slow memory-bound imple-
mentations in practice. The key insight behind the
revised simplex method is that the coefficients of the
basic variables at any iteration form a basis for the
right-hand-side of the constraints (i.e., b). The iter-
ative selection of basic variables, then, can be made
by simply replacing columns of this basis and com-
puting its inverse. These operations are much more
efficient on modern computer architectures due to
their higher arithmetic intensity. We use the word
simplex to refer to the revised simplex method, and
not Dantzig’s original algorithm in the remainder of
this paper.

2.1 The Revised Simplex Method

To execute the revised simplex method, the LP must
first be converted from standard form to slack form.
This essentially converts all the inequalities to equal-
ities by adding non-negative “slack” variables si such
that

n∑
j=1

aijxj + si = bi , ∀i ∈ {1, . . . ,m}.

For simplicity of notation, the following discussion
assumes the LP has already been converted into
slack form by replacing A with AI, where I is the
m-element identity matrix, and n with m + n. The
feasible region F then also becomes {x ∈ Rn | Ax =
b , x ≥ 0 }. Since n > m and we assume the columns
of A are pairwise linear independent, this system of
equalities clearly has infinite solutions.

As in the original simplex method, the revised
simplex method considers a sequence of solutions to
this system of equalities, moving from less optimal
to more optimal solutions based on a set of heuris-
tics. To limit the infinite solution space, the revised
simplex method only considers basic solutions. A ba-
sic solution is formed by extracting a basis from the
columns of A and setting the variables that corre-
spond to the other, nonbasic columns to zero. The
system can then be solved for the values of the ba-
sic variables by inversion and the value of the ob-
jective function can be determined. These solutions
correspond to points of the n-dimensional polyhe-
dron considered in the geometric interpretation of
the simplex method.

Due to the nonnegativity constraint on the xis
and the fact than the bis may still be negative, basic
solutions do not always correspond to feasible so-
lutions. Therefore, implementations of the simplex

method must proceed in two phases: first to find a
basic feasible solution, then to refine the basic feasi-
ble solution into an optimal solution. The mechanism
traditionally used to accomplish this is to introduce
m new nonnegative artificial variables with negative
coefficients in the constraint matrix A (e.g., augment
A with −I). The phase one objective function then
minimizes the sum of these artificial variables. If the
sum can be driven to 0, then a basic feasible solution
has been found. Otherwise, the LP is determined to
be infeasible. While the mathematical correctness of
this technique follows easily, the introduction of new
variables again increases the problem complexity.

Phase One Algorithm: The current work lever-
ages more recent theoretical developments which
provide an artificial-free method for finding the ba-
sic feasible solution [20]. As the name suggests, this
method does not require any additional variables be-
yond the slack form. The key insight is that only
the rows of A where the corresponding entry in b
are negative need to be considered in the phase one
objective function. The same semantics around ar-
tificial variables apply to these constraints: if they
can all be driven to zero, a basic feasible solution
has been found, otherwise, the LP is infeasible.

Algorithm 1 shows pseudocode for the phase-one
simplex method. We adopt the convention that AS
represents the columns of matrix A specified by the
index set S and cS represents the entries of vector
c specified by the index set S. In this notation, β
represents the basic solution gathered by setting all
nonbasic variables to 0 and the columns of α hold
the coefficients of the nonbasic variables with respect
to the current choice of basis B, sometimes referred
to as the tableau of A. The key steps are in lines 12
and 13. In line 12, the nonbasic variable with max-
imal impact on the phase one objective function is
chosen to be pivoted into the basis only taking into
account the constraints that violate solution feasi-
bility (where bi < 0). Next, in line 13, a column is
chosen to be removed from the basis using a varia-
tion of the classic minimum ratio test. In particular,
columns are only removed when the basic solution is
zero if the corresponding tableau entry is positive.

Phase Two Algorithm: The second phase of the
revised simplex method, as shown in algorithm 2,
starts from a basic feasible solution and iteratively
refines the value of the original objective function by
pivoting basic and nonbasic variables. Each iteration
chooses a nonbasic variable to enter the basis with
maximal cost improvement as computed in line 2.
If none of the nonbasic variables can improve the
cost, the current basic solution is optimal and the
algorithm terminates. The proof of this is well known



Algorithm 1 Revised Simplex Method Phase 1

Require: A, b,m, n
1: A← [AI] . Augment A with slack variables
2: B ← {n+ 1, . . . , n+m+ 1} , B ← AB . Choose

initial basis
3: R← {1, . . . , n} . Remaining variables are nonbasic
4: β ← B−1b , α← B−1AR
5: if all βi ≥ 0 then
6: continue to phase two . Found basic feasible

solution
7: end if
8: wj ←

∑
i αi,j s.t. βi < 0 ∀j ∈ R

9: if all wj ≥ 0 then
10: return . LP is unfeasible
11: end if
12: q ← argmin{wj}
13: p← argmin{βi/αi,q | (βi < 0 and αi,q < 0) or (βi ≥

0 and αi,q > 0)}
14: Pivot q into B and p into R, update B ← AB
15: goto line 4

and outside the scope of this work (see, e.g., chapter
29 of [9]).

Next, in line 7, this phase calculates the coeffi-
cients of the selected column with respect to the
current choice of basis. These coefficients show how
much increasing the qth variable will decrease the
variables in the current basis. If increasing the qth
variable actually increases the current basic vari-
ables, i.e., its coefficients are all nonpositive, the LP
is unbounded. Otherwise, in line 11, the algorithm
chooses the basic variable which reaches zero first (as
the qth nonbasic variable is increased) to pivot out
of the basis. As in the phase-one algorithm, the last
steps (lines 12 and 13) update the basic and nonbasic
variables with a minimum number of operations.

Parallel Implementation: In addition to the sim-
plicity of update operations, the revised simplex al-
gorithm also lends itself somewhat to parallelization.
The iterations of the algorithms must be executed
in sequence with data synchronization between each
iteration. However, the individual operations that
must be executed in a single iteration mirror com-
mon linear algebra functions which have well-known
parallel implementations. In particular several prior
efforts explore revised simplex implementation on
multi-core [5, 22] and GPU [6, 13, 28] systems. The
key challenges through these efforts are in finding
efficient techniques for data movement and synchro-
nization between operations. Additionally, the re-
vised simplex method is highly sensitive to the nu-
meric stability of each operation. In particular, the
reordering of operations inherent in many parallel
reduction implementations (e.g., for the min opera-

Algorithm 2 Revised Simplex Method Phase 2

Require: A, b, c,m, n,B . Assuming ABx = b has a
solution where all xi ≥ 0

1: β ← B−1b , z ← cTBβ , π
T ← cTBB

−1

2: w ← cR − πTAR . Compute the cost improvement
for nonbasic variables

3: if all wj ≥ 0 then
4: return . No wj can improve the cost so the

current basic solution is optimal
5: end if
6: q ← argmin{wj}
7: α·,q ← B−1A·,q . Calculate the qth column of the

tableau
8: if all αi,q ≤ 0 then
9: return . The cost can be reduced indefinitely

by increasing xq
10: end if
11: θ ← min{βi/αi,q | αi,q > 0}, choose p s.t. θ =

βp/αp,q

12: Pivot q into B and p into R, update B by replacing
the p-th column with A·,q, and update βp ← θ, βi ←
βi − θαi,q for i 6= p

13: z ← z − θwq . Update the current objective
function value

14: goto line 1

tions), can have a significant impact on the ability
of the algorithm to terminate properly.

3 Implementation

In order to support diverse parallel implementations
on a common algorithm, we developed an abstract
interface for the required data structures and op-
erations. In §3.1 we describe some of the particu-
lar choices made in breaking up the algorithms de-
scribed in §2 and §3.2 we describe technical details
of our implementation including references to source
files of interest.

3.1 Motivation

Many of the steps required by the revised simplex
algorithm translate directly into common linear al-
gebra operations, however, some steps involve more
complex conditional and reduction logic. Our ab-
stract interface reflects this diversity of operations.
Rather than attempting to create a general linear
algebra solution, we chose to implement only those
operations required by the revised simplex algo-
rithms. We additionally identified several key opera-
tions that can benefit from parallel implementation
but do not fit neatly into traditional linear algebra
formulations. As discussed below, these operations



correspond to lines 8 and 13 of algorithm 1 and line
11 of algorithm 2. We also implemented a combined
min and argmin operation which returns the min-
imum element and its index as required at several
points in both phases.

colsum ltz: This operation, required by line 8 of
algorithm 1, computes the sum of the columns of
the given matrix, including only the rows where an
auxiliary vector (in this case β) is less than zero. We
could have implemented this operation by extracting
the rows of A corresponding to the nonzero entries
in β, transposing the resulting matrix, and using a
matrix-vector multiplication with the all-ones vec-
tor. However, we anticipated the overheads of two
extra function calls as well as the temporary stor-
age and data movement would incur significant over-
head. Moreover, this operation lends itself well to im-
plementation as a single parallel pass over the data
as each thread can inspect the value of βi for their
particular element independently before embarking
on the reduction operation between threads. For ex-
ample, in the CUDA implementation, this operation
is implemented as a single kernel invocation.

phase1 min ratio: This operation, required by
line 13 of algorithm 1, simultaneously computes an
element-wise division between two vectors and finds
the minimum element of the result. The trick is that
only elements where βi and αi,q are less than zero
or elements where βi is greater than or equal to zero
and αi,q is greater than zero should be considered
for the minimum. At first glance, it may seem like
all elements where the quotient is nonnegative could
be considered for the minimum, in which case this
could be implemented as three operations: divide,
remove negative values, and compute the minimum.
However, this would wrongly include elements where
βi is zero but αi,q is less than zero. These difficul-
ties along with the fact that these combined opera-
tions are easily parallelizable lead us to implement
phase1 min ratio as a single operation. In particu-
lar, threads can perform the division and contribute
to the minimum reduction only if the predicate on α
and β is met for each particular element. This also
reduces the number of expensive division operations
performed and may lead to increased performance
in hyper-scalar architectures.

phase2 min ration: This operation, required by
line 11 or algorithm 2, is closely related to the phase
one minimum ratio test described above. However,
only entries where αi,q is strictly greater than zero
should be considered. While this could be achieved
by extracting the positive elements of α·,q, extract-
ing the corresponding elements of β, performing
the element-wise division, and taking the minimum,

we again reasoned that the overheads, especially in
terms of extra copies, would merit the development
of a single operation. It might also be conceivable
to implement a generic predicated divide and mini-
mum operation which could be shared between both
phase’s minimum ratio tests, but we felt the over-
heads of designing and implementing a generic pred-
icate expression language were too great compared
with the lesser burden of maintaining two similar
operations across different backends.

Another advantage of encapsulating the minimum
ratio test for both phases in a single operation is that
multiple variants of the artificial-free phase 1 and
phase 2 revised simplex methods can be explored
with minimal modification. Typically these variants
differ only in the heuristics for how to choose the
entering and leaving variables which can be (partly)
controlled through the minimum ratio test. We hope
to explore these different possibilities in future work.

3.2 Implementation Details

As mentioned previously, our implementation strat-
egy follows strict encapsulation of the operations
and data structures required for the revised simplex
method (see the specification in include/la.h).
These operations and data structures are imple-
mented and compiled in independently-linked ob-
ject files allowing for independence between li-
braries. For example, if the proprietary CUDA li-
braries are not installed on a particular system,
the rest of the code may still be used out of the
box. The core revised simplex method is imple-
mented in the Revised Simplex() procedure (see
src/revised simplex.c) and makes no assump-
tions about the underlying data types or implemen-
tations, beyond what is defined in the specification.
We also developed simple unit tests for sanity (see
src/la test.c) and a more performance-oriented
benchmarking system (see src/benchmark.c) which
both rely on this generic interface to apply common
tests to each backend developed.

Backends are implemented in single C source files
and follow the naming convention src/la *, where
the * represents the name of the backend (e.g., the
OpenMP implementation is in src/la omp.c). Each
backend implementation populates a structure of
function pointers through the * set ops() proce-
dure. While the use of function pointers may have
some negative performance implications, we contend
that the number of operations issued by the generic
revised simplex code is small compared to the num-
ber of operations issues by each backend implemen-
tation, hence partially amortizing the cost of these



pointers. In our case, the flexibility to easily develop
and test new implementations wins out over the
marginal performance benefits of a more tightly in-
tegrated implementation structure. For example, the
CUBLAS backend was developed in several hours by
simple modifications to a copy of the CUDA back-
end.

In addition to the core revised simplex abstrac-
tion and implementation, we also developed code to
read the common MPS file format for describing LP
problems [2, 3] (see src/read mps.c). MPS allows
for sparse representation of constraints and the ob-
jective function using a key-value based approach,
but also allows for heterogeneous constraint types
and several auxiliary specifications as mentioned in
section 2. For simplicity, and due to time constraints,
we chose to only implement the core features re-
quired to read several of the Netlib test problems [4]
(see section 4.2). In particular, we left the implemen-
tation of the RANGES and BOUNDS sections of MPS
for future work as these sections are no more than
different ways of augmenting the main constraints.
Therefore they raise no new mathematical or algo-
rithmic issues. Our MPS implementation executes
several simple sanity checks on the incoming LPs to
eliminate any all-zero rows and columns, to trans-
form equalities into two inequalities, to homogenize
the directions of constraints, and to standardize the
direction of the objective function. All of the afore-
mentioned pre-processing routines proved useful in
reading one or more of the Netlib problems.

4 Results

We seek to understand the performance characteris-
tics of our OpenMP and CUDA implementations of
the revised simplex method in comparison with a se-
rial base-line. To this end, we executed as a suite of
microbenchmarks, which exercise the primitives used
by the revised simplex algorithm. These microbench-
marks include data-movement operations, i.e., get
and set, as well as critical linear algebra operations,
e.g., matrix inverse, dot product, and matrix mul-
tiplication, and the specialized operations described
in §3. Then, we present the performance of our im-
plementations on a curated set of LP optimization
problems from the Netlib [4] repository.

The three main objectives of our analysis are:

– To measure the performance of the parallel im-
plementations of the operations used in the sim-
plex algorithm (§4.1).

– To measure the performance of our multi-
threaded revised simplex algorithm on a well-
known set of test problems (§4.2).

– To measure the performance of our GPU re-
vised simplex algorithm against an implemen-
tation utilizing the highly optimized cuBLAS li-
brary (§4.3)

4.1 Microbenchmarks

As noted in section 3, we chose to implement the re-
vised simplex method in such a way that it can use
an arbitrary set of implementations, serial or paral-
lel. Thus, our parallel implementations of the algo-
rithm are made by parallelizing the respective oper-
ations required by revised simplex. In this section,
we present the performance of these operations in
isolation on a custom-built benchmarking suit. Our
benchmark suit creates an arbitrary set of input data
for the set of operations, and accepts several param-
eters including the number of iterations in which to
run each operation and the input data set size.
Operations: The operations that we target for our
microbenchmarks can be divided into memory man-
agement routines and compute routines. The set of
operations for memory management is:

matrix_get_col()

matrix_set_col()

vec_get()

vec_set()

matrix_extract_vec()

vec_extract_vec()

Of these matrix extract vec() returns a new ma-
trix formed with the columns of the old matrix indi-
cated by the given vector. The vec extract vec()

operation has a similar semantic on vectors. These
operations are required in both phases of the revised
simplex method to extract the current basis matrix
B = AB, the residual matrix AR, and the entries of
the cost function cB. Note that while we implement
more getters and setters as part of our abstract in-
terface, they are not called from the main revised
simplex loop and we, therefore, do not judge their
performance to be directly relevant.

The compute routines are:

vec_min()

vec_subtract()

vec_dot_prod()

vec_matrix_mult()

scalar_vec_mult()

matrix_matrix_mult()

matrix_inverse()

matrix_vec_mult()

matrix_colsum_ltz()

phase1_min_ratio()

phase2_min_ratio()



As discussed in §3.1, the last three of these compute
routines are combined operations defined specifically
to satisfy different steps of the revised simplex al-
gorithm. The other compute routines are common
linear algebra operations as the names suggest.

Architecture: We collect the following results while
running our code on Talapas, the University of Ore-
gon’s supercomputer1. The operating system is Red
Hat Enterprise Linux, version 7.6. We use one node
on the gpu partition, with a dual-socket Intel(R)
Xeon(R) CPU E5-2690 v4 with with 14 cores per
socket, for a total of 28 independent threads run-
ning at 2.60 GHz each. The GPU is a Tesla K80, with
24 GB of memory. The programs serial and OpenMP
programs are written in C, and the CUDA kernels
are written in CUDA/C++. We use the gcc/g++
7.3.0 and NVCC 9.2 for CUDA/C++.

Evaluation Parameters: For these microbench-
marks, we evaluate our implementations with ran-
domly generated n-vectors and n-square matrices,
where n = 500. The values in each cell are double
precision floating points between -100 and 100. For
each benchmark, we run 10 iterations, where new
sets of random numbers are used in each iteration.
The number of iterations is limited due to the time
required by the serial baseline, which can extend up-
wards of a few minutes for operations such as matrix
inverse. Although the number of iterations is low, the
variance in time for each set of benchmarks is also
low, as seen by the box an whisker plots.

OpenMP: Figure 1 shows the speedup for the
test set of operations between our OpenMP imple-
mentation and the serial baseline. We observe the
best performance boost for the matrix inverse op-
eration, where the average serial time is 5.5 sec-
onds and the average parallel time is 0.3 sec-
onds, approximately 18 × faster. Other operations,
such as matrix extract vec and matrix vec mult

have more modest performance benefits, below
10 ×. Some operations, including col sum ltz, and
phase1/phase2 min ratio have no performance
change because they are not parallelized. We at-
tempted to parallelize these functions, however, the
operations required custom reduction operations
whose implementation was still giving race condi-
tions at the time of submission. Some operations,
such as matrix get col appear to have a wider vari-
ance because the absolute time for these operations
was on the order of 10−6 s to 10−5 s.

Cuda: Figure 2 shows the performance increase
for the CUDA implementation of our microbench-
marks. As we can see, we have greatly in-

1 https://hpcf.uoregon.edu/content/talapas

creased performance with respect to the serial
code, with operations such as matrix set col,
matrix inverse, vec dot prod, matrix vec mult

and matrix matrix mult all performing 10 to 100 ×
faster than the serial version. Other random-access
memory operations are drastically slower with
CUDA. For example, vec get and vec set, which
read or write a randomly chosen element in an array,
are more than 100 × slower against the serial code.
Other Vector operations are also slower with respect
to the serial operations such as scalar vec mult,
and vec dot prod. This is likely because the size of
the arrays, 500 elements, is not large enough to show
the performance boost in the GPU.
cuBLAS: Our CUDA implementations are admit-
tedly not highly optimized and likely have room for
improvement. In order to gauge our code’s poten-
tial for improvement, we investigate how our code
compares with a highly-optimized state-of-the-art
linear-programming library, cuBLAS [1]. Figure 3
shows the results using the same microbenchmarks
considered in this section. Here, we see that perfor-
mance gains are pushed even further with cuBLAS,
upwards of 100 times faster. Note that, because
cuBLAS only supports the common BLAS linear
algebra operations, some methods in the cuBLAS
backend, such as phase1/phase2 min ratio test,
fall back on our CUDA kernels. Thus the perfor-
mance of these is, as expected, the same as our
CUDA implementation. Surprisingly enough, the
vector operations all took a performance hit from the
cuBLAS operations as well. However, this is again,
likely due to the relatively small size of the vec-
tors. We leave extending these microbenchmarks to
a comparison between parallel implementations over
larger problems sizes for future work.

4.2 LP Evaluation

To understand the impact of our three different
backends on the performance of the revised simplex
algorithm, we solve a selected set of LP problems
from the Netlib problem set [4]. Our selection of
problems is limited by our minimal implementation
of the MPS format (see §3.2) and the fact that sev-
eral of the Netlib problems contain tricky conditions
which cause our revised simplex implementation to
cycle. Table 1 shows our selection and the charac-
teristics of these problems.

Our serial and OpenMP implementations are able
to solve each of the problems listed in table 1. With
the exception of the last two problems in the table,
we run each solver on each one 30 times. In the case
of SHIP04S and SHIP04L, we only run the solver 3

https://hpcf.uoregon.edu/content/talapas


Fig. 1. OpenMP Operation Speedup vs Serial, log10 scale

Fig. 2. CUDA Operation Speedup vs Serial. log10 scale



Fig. 3. CuBLAS Operation Speedup vs Serial, log10 scale

Name Rows Columns Non-Zeros

ADLITTLE 57 97 465
AFIRO 28 32 88
BLEND 75 83 521
ISRAEL 175 142 2358
LOTFI 154 308 1086
SC105 106 103 281
SC205 206 203 552
SC50A 51 48 131
SHARE2B 97 79 730
SC50B 51 48 119
SCAGR7 130 140 553
SHIP04S 403 1458 5810
SHIP04L 403 2118 8450

Table 1. NETLIB Test Problems and Their Sizes.

times, and only with CUDA and cuBLAS back-ends.
This is because even our CUDA back-end took sev-
eral minutes to complete these problems. A single
test of the serial backend on SHIP04S ran for over
an hour before terminating. In the following results,
we report absolute time and speed up based on the
time taken by all iterations of the main revised sim-
plex loop, not accounting for the time spent setting
up variables and moving data. This decision is moti-
vated in part by our original impetus to employ this
LP optimization as part of a larger IP optimization,
in which case, the data would already be in place.

Figure 4 shows the absolute time taken to com-
plete each of the linear programs for our serial,
OpenMP, and CUDA backends. In this figure, we

see that for small problems, the serial implemen-
tation outperforms both parallel implementations.
However, as the size of the problem increases, the
parallel algorithms increase in efficiency and are able
to outpace the serial version, which grows dramat-
ically in runtime. This is consistent with our prior
experience using off-the-shelf LP optimization tools
which may take hours to solve problems beyond a
certain size.

To further illustrate the effect of problem size, fig-
ure 5 shows the speedup of our OpenMP and CUDA
backends against the serial version. We see that the
best speedup from CUDA is on SCAGR7, a prob-
lem with 130 constraints and 140 variables, where
it gives a solution 3.5 × faster than the serial ver-
sion. The best problem for OpenMP is SC205, with
206 constraints in 203 variables, where it performs
∼ 2.2 × faster than serial, and surprisingly also out-
performs CUDA. These results demonstrate that,
while problem size is a good indicator for the po-
tential for parallel implementations to achieve speed
up, it is not the only indicator—other factors, such
as numeric precision and memory latency, also play
a key role in the revised simplex method’s ability to
arrive quickly at the optimal solution.

4.3 Comparison with cuBLAS

After evaluating how our implementations perform
with respect to each other, we step beyond and see
how our CUDA kernels compare with the state-of-
the-art cuBLAS linear algebra library, when aimed
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at solving LP problems. Figure 6 shows the time
taken to complete several of the LPs from table 1.
We see that for larger problems, the performance
gap between our CUDA implementation, and the
cuBLAS kernels grows. Figure 7 shows the speedup
for cuBLAS. We can see that cuBLAS is generally
2 to 5 × faster. For the two largest problems the
gap was more pronounced. Our CUDA back-end fin-
ishes SHIP04S in ∼212 s, while cuBLAS completes
in only 13 s, giving a speedup of more than 16 ×. For
SHIPO4L, the speedup is ∼ 19 ×. While we do not
have thorough knowledge of the particular optimiza-
tions leveraged in the cuBLAS library, we suspect
these differences are caused in part by better use of
the GPU cache hierarchy and better thread block
and grid dimensioning. Additionally, the cuBLAS
uses an LU-decomposition method to implement the
matrix inverse operation while our CUDA imple-
mentation uses a parallelized form of Gauss-Jordan
elimination.

It should be noted that several LPs are not
shown in figures 6 and 7. Among those missing from
the cuBLAS evaluation are ADLITTLE, BLEND,
LOTFI, and SHARE2B. This is a result of the fact
that the cuBLAS back-end was unable to solve these
problems with out cycling, in some cases before an
optimal solution was reached. Due to the stronger
optimizations employed in cuBLAS and the alterna-
tive matrix inversion method, we suspect this issue
is a result of numeric instability. This observation
is supported by the fact that these same problems
were troublesome in our early tests of the original
serial backend and required rounding near-zero val-
ues to zero in the matrix inversion operations and
elsewhere.

5 Related Work

The utility of linear programming for solving com-
plex optimization problems across disciplines has
lead to a considerable development of theoretical
and practical literature on the topic. Significant ef-
fort has gone towards developing efficient sequential
algorithms under various constraints [8, 12, 23], as
well as parallel algorithms [5,22,25] and GPU-based
implementations [6, 13,28].

The OpenMP work in this paper is related most
closely to that of Ploskas et al. [24], who present
an OpenMP implementation of the revised simplex
algorithm. In their work, they focus on achieving
speedup via more efficient basis inversion techniques.
Among those are the product form of the inverse
(PFI), and Modification of the Product From of the
Inverse (MPFI). They show a speedup of 1.79 to

1.44 over the serial version using PFI or MPFI re-
spectively.

The work of Gahrousei et al. [13] also implements
the revised simplex method on a GPU system. This
effort evaluates their implementation on randomly-
generated dense problems as well as Netlib. They
claim a speed up of 25 × for randomly generated
problems, and 65 × for the Netlib problems.

The revised simplex method studied here is also
closely related to Integer and Mixed-Integer Linear
Programming (MILP) optimization. MILP is a more
computationally expensive process, which runs sim-
plex multiple times in order to find integer solutions
when such constraints are given in a problem for-
mulation. MILP was first addressed in the literature
through methods based on linear programming [16]
but more recently tree-search methods have proven
to be more performant and precise [10,19,21,25]. Of
these search methods, the branch and bound proce-
dure has developed a large body of parallel optimiza-
tions and several GPU-specific implementations are
documented [15,30].

6 Conclusion

In this paper, we described our parallel implemen-
tations of the revised simplex method for solving
Linear Programming optimization problems. Our
methodology was to write a set of core operations
required by revised simplex, and then write a C pro-
gram with an interface to use any arbitrary back-
end set of operations, be they single-threaded, multi-
core, or GPU. We wrote OpenMP and CUDA back-
ends for the operators and evaluated their perfor-
mance against the serial code. We also presented
microbenchmarks for the performance of these in-
dividual operations on different architectures. In
addition to our OpenMP and CUDA implementa-
tions, we also evaluated these microbenchmarks for
cuBLAS, the state of the art linear-algebra back-
end for NVIDIA GPUs. We found that, our CUDA
and OpenMP implementations were capable of out-
performing all but the smallest problems that we
evaluated from Netlib, and that our OpenMP and
CUDA implementations of the revised simplex were
approximately 2 to 4 × faster than the serial version
given large enough problem sizes.
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