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Executive Summary 

 

 
Current processor trends of integrating more cores with wider SIMD units, along with a deeper and 
complex memory hierarchy, have made it increasingly more challenging to extract performance from 
applications. It is believed by some that traditional approaches to programming do not apply to these 
modern processors and hence radical new languages must be discovered. In this paper, we question 
this thinking and offer evidence in support of traditional programming methods and the performance-
vs-programming effort effectiveness of common multi-core processors and upcoming manycore 
architectures in delivering significant speedup, and close-to optimal performance for commonly used 
parallel computing workloads. 
 
We first quantify the extent of the “Ninja gap”, which is the performance gap between naively 
written C/C++ code that is parallelism unaware (often serial) and best-optimized code on modern 
multi-/many-core processors. Using a set of representative throughput computing benchmarks, we 
show that there is an average Ninja gap of 24X (up to 53X) for a recent 6-coreWestmere CPU, and 
that this gap if left unaddressed will inevitably increase. We show how a set of well-known 
algorithmic changes coupled with advancements in modern compiler technology can bring down the 
Ninja gap to an average of just 1.3X. These changes typically require low programming effort, as 
compared to the very high effort in producing Ninja code. We also discuss hardware support for 
programmability that can reduce the impact of these changes and even further increase programmer 
productivity. We show equally encouraging results for the upcoming Intel Many Integrated Core (MIC) 
architecture which has more cores and wider SIMD. We thus demonstrate that we can contain the 
otherwise uncontrolled growth of the Ninja gap and offer a more stable and predictable performance 
growth  over future architectures, offering strong evidence that radical language changes are not 
required. 
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1. INTRODUCTION 
Performance scaling across processor generations has previously relied on increasing clock frequency. 
Programmers could ride this trend and did not have to make significant code changes for improved 
code performance. However, clock frequency scaling has hit the power wall [31], and the free lunch 
for programmers is over. 
 

There have been many recent publications [43, 41, 13, 2, 27, 32] that show 10-100X performance 
improvements for real-world applications through adopting highly optimized platform-specific parallel 
implementations, proving that a large Ninja gap exists. This typically requires high programming effort 
and may have to be re-optimized for each processor generation. However, these papers do not 
comment on the effort involved in these optimizations. In this paper, we aim at quantifying the extent 
of the Ninja gap, analyzing the causes of the gap and investigating how much of the gap can be 
bridged with low effort using traditional C/C++ programming languages1.  
 
We first quantify the extent of the Ninja gap. We use a set of real-world applications that require high 
throughput (and inherently have a large amount of parallelism to exploit). We choose throughput 
applications because they form an increasingly important class of applications [12] and because they 
offer the most opportunity for exploiting architectural resources - leading to large Ninja gaps if naive 
code does not take advantage of these resources. Figure 1 shows this gap for our benchmarks on 
three CPU platforms: a 2.4 GHz 2-core E6600 Conroe, a 3.33 GHz 4-core Core i7 975 Nehalem and a 
3.33 GHz 6-core Core i7 X980 Westmere. The figure shows that there is up to a 53X gap between 
naive C/C++ code and best-optimized code for a recent 6-core Westmere CPU. The figure also shows 
that this gap has been increasing across processor generations - the gap is 5-20X on a 2-core Conroe 
system (average of 7X) to 20-53X on Westmere (average of 25X). This gap has been increasing in 
spite of the fact that micro-architectural improvements has reduced the need and impact of 
performing various optimizations. 
 
We next analyze the sources of the large performance gap. There are a number of reasons why naive 
code performs badly. First, the code may not be parallelized, and compilers do not automatically 
identify parallel regions. This means that the increasing core count is not utilized in the naive code, 
while the optimized code takes full advantage of it. Second, the code may not be vectorized, leading 
to under-utilization of the increasing SIMD widths. While auto-vectorization has been studied for a 
long time, there are many difficult issues such as dependency analysis, memory alias analysis and 
control flow analysis which prevent the compiler from vectorizing outer loops, loops with gathers 
(irregular memory accesses) and even innermost loops where dependency and alias analysis fails. A 
third reason for large performance gaps may be that the code is bound by memory bandwidth - this 
may occur, for instance, if the code is not blocked for cache hierarchies - resulting in cache misses. 
 
Recent compiler technologies have made significant progress in enabling parallelization and 
vectorization with relatively low programmer effort. Parallelization can be achieved using OpenMP 
pragmas that only involve annotation of the loop that is to be parallelized. For vectorization, recent 
compilers such as the 2011 ComposerXE version of ICC have introduced the use of a pragma for the 
programmer to force loop vectorization by circumventing the need to do dependency and alias 
analysis. This pragma currently only works on innermost loops, but other compiler technologies such 
as CEAN [22] have been introduced to enable the programmer to vectorize outer loops. Using the 
pragmas available in recent ICC compilers, we show that this gap reduces to an average of 2.95X for 
Westmere. The remaining gap is either a result of bandwidth bottlenecks in the code or the fact that 
the code gets only partially vectorized due to irregular memory accesses. While the improvement in  

                                                 
1  Since measures of ease of programming such as programming time or lines of code are largely subjective, we show 
code snippets with the code changes required to achieve performance 
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response time for a single data element. These include workloads from the areas of High Performance 
Computing, Financial Services, EDA, Image Processing, Computational Medicine, Databases, etc [10]. 
Throughput computing applications have plenty of data- and thread-level parallelism, and have been 
identified as one of the most important classes of future applications [3, 4, 10], with compute and 
memory characteristics  influencing the design of current and upcoming multi-/many-core processors 
[15]. Furthermore, they offer the most opportunity for exploiting architectural resources – leading to 
large Ninja gaps if naive code does not take advantage of the increasing computational resources. We 
formulated a representative set of benchmarks (described below) that cover this wide range of 
application domains of throughput computing. 

 

1. NBody:  NBody computations are used in many scientific applications, including the fields of 
astrophysics [1] and statistical learning algorithms [19]. For given N bodies, the basic computation is 
an O(N2) algorithm that has two loops over the bodies, and computes pair-wise interactions between 
them. The resulting forces for each body are added up and stored into an output array. 

2. BackProjection:  Backprojection is a commonly used kernel in performing cone-beam image 
reconstruction of CT projection values [25]. The input consists of a set of 2D images that are ”back-
projected” onto a 3D volume in order to construct the 3D grid of density values. As far as the 
computation is concerned, for each input image (and the corresponding projection direction), each 3D 
grid point is projected onto the 2D image, and the density from the neighboring 2X2 pixels is linearly 
interpolated and accumulated to the voxel’s density. 

3. 7-Point Stencil:  Stencil computation is used for a wide range of scientific disciplines [13]. The 
computation involves multiple sweeps over a spatial input 3D grid of points, where each sweep 
computes the weighted sum of each grid point and its +/-X, +/-Y and +/-Z neighbors (total of 7 grid 
points), and stores the computed value to the corresponding grid point in the output grid. 

4. Lattice Boltzmann Method (LBM):   LBM is a class of computational fluid dynamics capable of 
modeling complex flow problems [42]. It simulates the evolution of particle distribution functions over 
a 3D lattice over many time-steps. For each time-step, at each grid point, the computation performed 
involves directional density values for the grid point and its face (6) and edge (12) neighbors (also 
referred to as D3Q19). 

5. LIBOR Monte Carlo:  The LIBOR market model is used to price a portfolio of swaptions [8]. It models 
a set of forward rates as a log-normal distribution. A typical Monte Carlo approach would generate 
many random samples for this distribution and compute the derivative price using a large number of 
paths, where computation of paths are independent from each other. 

6. Complex 1D Convolution:  This is widely used in application areas like image processing, radar 
tracking, etc. This application performs a 1D convolution on complex 1D images with a large complex 
filter. 

7. BlackScholes:  The Black-Scholes model provides a partial differential equation (PDE) for the 
evolution of an option price. For European options, where the option can only be exercised on 
maturity, there is a closed form expression for the solution of the PDE [5]. This involves a number of 
math operations such as the computation of a Cumulative Normal Distribution Function (CNDF) 
exponentiation, logarithm, square-root and division operations. 

8. Tree Search:  In-memory tree structured index search is a commonly used operation in commercial  
databases, like Oracle TimesTen [36]. This application involves multiple parallel searches over a tree 
with different queries, with each query tracing a path through the tree depending on the results of 
comparison of the query to the node value at each tree level. 
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In this section, we take each of the benchmarks described in Section 2, and attempt to bridge the 
Ninja gap starting with naively written code with low programming effort. 

 

Platform: We measured the performance on a 3.3GHz 6-core Intel Core i7 X980 (Westmere). The peak 
compute power is 158 GFlops and the peak bandwidth is 30 GBps. The Core i7 processor cores 
feature an out-of-order super-scalar micro-architecture, with 2-way Simultaneous Multi-Threading 
(SMT). In addition to scalar units, it also has 4-wide SIMD units that support a wide range of SIMD 
instructions. Each core has an individual 32KB L1 cache and a 256KB L2 cache. All six cores share an 
12MB last-level cache (LLC). Our system has 12 GB RAM and runs SuSE Enterprise Linux version 11. 
We use the latest commercially available Intel C++ Composer XE for Linux compiler (version 
2011.1.108). 

 

Methodology: For each benchmark, we attempt to first get good single thread performance through 
exploiting instruction and data level parallelism. In an attempt to fully exploit the available data level 
parallelism, we measure the SIMD scaling we obtain for each benchmark by running the code with 
auto-vectorization enabled and disabled (using the -no-vec flag) in the compiler. If SIMD scaling is not 
close to peak (we expect close 4X scaling with single precision data on SSE), we analyze the 
generated code to identify architectural bottlenecks. We then obtain thread level parallelism by 
adding OpenMP pragmas to parallelize the benchmark and evaluate thread scaling - again evaluating 
bottlenecks to scaling. After evaluating bottlenecks to core and SIMD scaling, we make any necessary 
algorithmic changes to overcome these bottlenecks. 

 

Compiler pragmas and flags used: We use OpenMP for thread-level parallelism, and use the auto-
vectorizer or recent technologies such as CEAN for data parallelism. The compiler directives we add to 
the code and command line are the following: 

•   ILP optimizations: We use the #pragma unroll directive just before an innermost loop that 
needs to be unrolled, and an #pragma unroll_and_jam primitive outside an outer loop that needs to be 
unrolled. Both accept an optional parameter which is the number of times the loop is to be unrolled. 

•   Inner loop vectorization: If auto-vectorization fails due to assumed memory alias or  
dependence analysis, the programmer can force vectorization using #pragma simd. This is a recent 
feature introduced in the Intel Composer XE compiler. The use of the pragma is an indication that the 
programmer asserts that the loop is safe to vectorize. 

•   Outer loop vectorization: Auto-vectorization and the simd pragma do not currently work 
with outer loops on ICC. However, they do provide technology such as CEAN (C Extensions for Array 
Notations) to allow the programmer to express outer loop vectorization. An example of a CEAN kernel 
is shown in Figure 7(b). Technology that will allow outer loop vectorization using the #pragma simd 
directive is work-in-progress, and is expected to complement current extensions in the future. 

•   Parallelization: We use the OpenMP #pragma omp to parallelize loops. We typically use this 
over an outer for loop using a #pragma omp parallel for construct. 

 

3.1 NBODY 

We implement a NBody algorithm [1], performing computation over 1 million bodies. The computation 
consists of about 20 floating point operations (flops) per body-body interaction, spent in computing 
the distance between each pair of bodies, and in computing the corresponding local potentials using a  
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Figure 2 shows that we get poor SIMD scaling of 1.2X from auto-vectorization. Moreover, parallel 
scaling is also only around 1.8X. This is because the code is bandwidth-bound, requiring 1.6 bytes/flop 
of bandwidth. Most of this bandwidth comes because of gathers from external memory in the code - 
the code projects multiple contiguous 3D points in SIMD lanes, but the projected points in the 2D 
image are not contiguous. Reading the 2x2 surrounding pixels thus requires gather operations. 

We perform blocking over the 3D volume to reduce bandwidth (called 3D blocking in Figure 2). Due to 
spatial locality, the image working set also reduces accordingly. This results in the code becoming 
compute bound. However, due to the gathers which cannot be vectorized on the CPU, SIMD scaling 
only improved by an additional 1.6X (total 1.8X). We obtained additional 4.4X thread scaling (total 
7.9X), showing the benefits of SMT. The resulting performance is only 1.1X off the best-optimized 
code. 

 

3.3 7-Point 3D Stencil 

7-Point Stencil iterates over a 3D grid of points, and for each point (4 bytes), performs around 8 flops 
of computation. For grid sizes larger than the size of the cache, the resultant b/w requirement is 
around 0.5 bytes/flop, which is much larger than that available on the current architectures. The 
following performance analysis is done for a 3D dataset of dimension 512x512x512 grid points. 

 

Figure 2 shows that we get a poor SIMD scaling of around 1.8X from auto-vectorization. This is due to 
the fact that the implementation is bandwidth bound, and is not able to exploit the available vector 
processing flops. The bandwidth bound nature of the application is further exemplified by the low 
thread-level scaling of around 2.1X on 6-cores. In order to improve the scaling and exploit the 
increasing computational resources, we perform both spatial and temporal blocking to improve the 
performance. 

 

In order to perform spatial blocking, we block in the XY dimension, and iterate over the complete 
range of Z values (referred to as 2.5D blocking [32]). We compute the blocking dimensions in X and Y 
directions such that three of the blocked XY planes are expected to fit in the LLC. Since the original 
3D stencil performs the stencil computation for multiple time-steps, we can further perform temporal 
blocking to perform multiple time-steps (3.5D blocking [32]), and further increase the computational 
efficiency. 

 

The resultant code performs four time-steps simultaneously, and improves the DLP by a further 1.7X 
to achieve a net SIMD scaling of around 3.1X. It is important to note that although the code vectorizes 
well, the SIMD scaling is lower than 4X due to the overhead of repeated computation at the boundary 
elements of each blocked XY sub-plane, which increases the net computation as compared to an 
unblocked stencil computation. This results in a slightly reduced SIMD scaling. Note that this reduction 
is expected to be stable with increasing SIMD widths, and is thus a one-time reduction in performance. 
The thread-level scaling is further boosted by around 2.5X, to achieve a net core-scaling of around 
5.3X. Our net performance is within 10.3% of the best-optimized code. 

 

3.4 Lattice Boltzmann Method (LBM) 
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the outer loop has completely independent iterations (contingent on parallel random generation) and 
is a good candidate for vectorization. However, outer loop vectorization is inhibited by data structures 
stored in a AOS format (in particular, the results of path computations). This requires gathers and 
scatters resulting in poor SIMD scaling. The code achieves a good parallel scaling of 7.1X; this number 
being greater than 6 indicates that the use of SMT threads provided additional benefits over just core 
scaling. 

 

To solve the vectorization issue, we performed an algorithmic change to convert the memory layout 
from AOS to SOA. We use the CEAN technology available in ICC to express outer loop vectorization. 
The LIBOR CEAN example is straightforward to code and is shown in Figure 7(b). Performing the 
algorithmic change and using CEAN allowed the outer loop to vectorize and provides additional 2.5X 
SIMD scaling, a total of about 3.8X scaling. We found that this performance is similar to the best-
optimized code. 

 

3.6 Complex 1D Convolution 

We perform a 1D complex convolution on an image with 12.8 million points, and a kernel size of 8K 
complex floating point numbers. The code consists of two loops: one outer loop iterating over the 
pixels, and one inner loop iterating over the kernel values. The data is stored in an AOS format, with 
each pixel storing the real and complex values together. 

 

Figure 3 shows the performance achieved (the first bar) by the unrolling enabled by the compiler, 
which results in around 1.4X scaling. The auto-vectorizer only achieves a scaling of around 1.1X since 
the the compiler vectorizes by computing the convolution for four consecutive pixels, and this 
involves gather operations owing to the AOS storage of the input data. The TLP achieved is around 
5.8X. In order to improve the performance, we perform a rearrangement of data from AOS to SOA 
format, and store the real values for all pixels together, followed by the imaginary values for all the 
pixels. A similar scheme is adopted for the kernel. As a result, the compiler produces efficient SSE 
code, and the resultant code scales up by a further 2.9X. Our overall performance is about 1.6X 
slower than the best-optimized numbers. This is because the best-optimized code is able to block 
some of the kernel weights in SSE registers and avoids reloading them, while the compiler does not 
perform this optimization. 

 

3.7 BlackScholes 

BlackScholes computes the call and put options together. Each option is priced using a sequence of 
operations involving computing the inverse CNDF, followed by math operations involving exp, log, sqrt 
and division operations. The total computation performed is around 200 ops (including the math ops), 
while the bandwidth is around 36 bytes. The data for each option is stored contiguously.  

 

Figure 3 shows a SIMD speedup of around 1.1X using the autovectorization. The low scaling is 
primarily due to the AOS layout, which results in gather operations (that are performed using scalar 
ops on CPUs). The TLP scaling is around 7.2X, which includes around 1.2X SMT scaling, and near linear 
core-scaling. In order to exploit the vector compute flops, we performed an algorithmic change, and 
changed the data layout from AOS to SOA. For the resultant code, the auto-vectorizer generated 
SVML (short vector math library) code, that resulted in an increase of SIMD scaling of 2.7X (total 3.0X). 
The resultant code is within 1.1X of the best performing code. 
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being around 12 bytes. The performance analysis is done for sorting an input array with 256M 
elements. 

 

Figure 4(a) shows that we only get a 1.2X scaling from autovectorization. This is largely due to gather 
operations for merging four pairs of lists. Parallel scaling is also only around 4.1X because the last few 
merge phases being bandwidth bound, and not scaling linearly with number of cores. In order to 
improve performance, we perform the following two algorithmic changes. 

 

Firstly, in order to improve the DLP scaling, we implement merging of lists using a merging network 
[12], that merges two sorted sub-lists of size S (SIMD width) into a sorted sub-list of size 2S using a 
series of min/max and interleave operations (code snippet is shown in Section 4.1). Each merging 
phase is decomposed into a series of such sub-list merge operations. This code sequence is vectorized 
by the current ICC compiler to produce an efficient SSE code. Furthermore, the number of 
comparisons is also reduced by around 4X, and the resultant vector code speeds up by around 2.3X. 
Secondly, in order to reduce the bandwidth requirements, we perform multiple merge phases 
together. Essentially, instead of merging two lists, we combine three merge phases, and merge eight 
lists into a single sorted list. This reduces the bandwidth requirement, and makes the merge phases 
compute bound. The parallel scaling of the resultant code further speeds up by 1.9X. The resultant 
performance is within 1.3X of the best-optimized code. 

 

3.10 2D Convolution 

We perform convolution of a 2K X 2K image with a 5 X 5 kernel. Both the image and kernel consists 
of 4-byte floating point values. The convolution code consists of four loops. The two outer loops 
iterate over the input pixels (X and Y directions), while the two inner loops iterate over the kernel (X 
and Y directions). 

 

Figure 4(b) shows that we obtained a benefit of 1.2X through loop unrolling. The most efficient way 
to exploit SIMD is to perform the stencil computation on 4 consecutive pixels, with each performing a 
load operation and a multiply-add with the appropriate kernel value. This implies performing a 
vectorization for the outer X loop, something that the current compiler does not perform. We instead 
implemented the two inner loops using the CEAN technology available in ICC. That enabled 
vectorization of the outer X loop, and produced SIMD code that scaled 3.8X with SIMD width. The 
thread-level parallelism was around 6.2X. Our net performance was within 1.3X of the best-optimized 
code. 

 

3.11 Volume Rendering 

The VR rendering code iterates over various rays, and traverses a volume for each ray. During this 
traversal, the density and color are accumulated for each ray till a pre-defined threshold value of the 
opacity is reached, or the ray intersects all the voxels in its path. These early exit conditions make the 
code control intensive. 

 

As shown in Figure 4(b), we achieve a TLP scaling of around 8.7X, which includes a SMT scaling of 
1.5X, and a near-linear core-scaling of 5.8X. As for SIMD scaling, earlier compiler versions did not 
vectorize the code due to various control-intensive statements. However, recent compilers do, in fact, 
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vectorize the code using mask values for each branch instruction, and using proper masks to execute 
both execution paths for each branch. Since CPUs do not have masks, this is emulated using 128-bit 
SSE registers. The Ninja code also performs similar optimizations. There is only a small difference of 
1.3X between Ninja code and compiled code. 

 

3.12 Summary 

In this section, we looked at each benchmark, and were able to narrow the Ninja gap to within 1.1 - 
1.6X by applying necessary algorithmic changes coupled with the latest compiler technology. 

 

4. ANALYSIS AND SUMMARY 

In this section, we generalize our findings in the previous section and identify the steps to be taken to 
bridge the Ninja performance gap with low programmer effort. The key steps to be taken are to first 
perform a set of well-known and simple algorithmic optimizations to overcome scaling bottlenecks 
either in the architecture or in the compiler, and secondly to use the latest compiler technology with 
regards to vectorization and parallelization. We will now summarize our findings with respect to the 
gains we achieve in each of these steps. We also show using representative code snippets that the 
changes required in exploiting latest compiler features are small and that they can be done with low 
programming effort. 

 

4.1  Algorithmic Changes 

We first describe a set of well-known algorithmic techniques that are necessary to avoid vectorization 
issues and memory bandwidth bottlenecks in compiler generated code. Incorrect algorithmic choices 
and data layouts in naive code can lead to Ninja gaps that will only grow larger with recent hardware 
trends of increasing SIMD width and decreasing bandwidth-to-compute ratios. It is thus critical to 
perform optimizations like blocking data structures to fit in the cache hierarchy, layout data 
structures to avoid gathers and scatters, or rethink the algorithm to allow for data parallel 
computation. While such changes do require some programmer effort, they can be utilized across 
multiple platforms (including GPUs) and multiple generations of each platform, and are a critical 
component of keeping the Ninja gap small and stable over future architectures. Figure 5 shows the 
performance improvements due to various algorithmic optimizations. We describe these optimizations 
below. 
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Figure 6: Code snippets showing algorithmic changes for (a) blocking in NBody and (b) SIMD-friendly 
MergeSort algorithm. 
 

In terms of performance improvement, Figure 5 shows that blocking results in an average of 1.6X (up 
to 4.3X for LBM and 7-point stencil) performance improvement. This benefit will grow as bandwidth-
to-compute ratios continually decrease. 

 

SIMD-friendly algorithms: In some cases, the naive algorithm cannot easily be vectorized either due to 
back-to-back dependencies between loop iterations or due to the heavy use of gathers and scatters 
in the code. A different algorithm that is more SIMD friendly may then need to be chosen. In some 
cases, dependencies between loop iterations can be resolved using cross-lane SIMD operations such 
as shuffle, maskmov or related operations. For instance, MergeSort involves a sequence of min, max 
and shuffle instructions. Using this code sequence results in a 2.5X speedup over scalar code. The 
inner loop of the code is shown in Figure 6(b). The code on the left shows the traditional MergeSort 
algorithm, where only two elements are merged at a time and the minimum written out. There are 
back-to-back dependencies due to the array increment operations, and hence the code cannot 
vectorize. Moreover, the code also heavily suffers from branch misprediction. The figure on the right 
shows code for a SIMD-friendly merging network [12], which merges two sequences of SIMD-width S 
sized elements using a sequence of min, max and interleave operations. This code auto-vectorizes 
with each highlighted line corresponding to one SIMD instruction. Moreover, branch mispredictions 
now occur every S number of elements. However, this code does have to do more computation (by a 
constant factor of log(S)), but still yields a gain of 2.3X for 4-wide SIMD. 

 

Since these algorithmic changes involve tradeoff between total computation and SIMD-friendliness, 
the decision to use them must be consciously taken by the programmer. Such changes do require 
effort on the part of the programmer - however, they will pay off over multiple platforms and 
generations of them. 

 

Summary: Using well-known algorithmic techniques, we get an average of 2.4X performance gain on 
6-core Westmere. Moreover, as the number of cores and SIMD widths increase, and with reducing 
bandwidth-to-compute ratios, gains due to algorithmic changes will further increase. 
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Figure 7: Code snippets showing compiler techniques for (a) Parallelization and inner loop 
vectorization in complex 1D convolution and (b) Outer loop vectorization in LIBOR. Note that the code 
changes required are small and can be achieved with low programmer effort. 
 

4.2  Compiler Technology 

Once algorithmic changes have been taken care of, we show the impact of utilizing the parallelization 
and vectorization technology present in recent compilers in bridging the Ninja gap. 

 

4.2.1 Parallelization 

We parallelize our benchmarks using OpenMP pragmas typically over the outermost loop. OpenMP 
offers a portable solution that allows for specifying the number of threads to be launched, thread 
affinities to cores, specification of thread private and shared variables, as well as scheduling policies. 
Since throughput benchmarks offer a significant amount of thread-level parallelism that are typically 
present as an outer for loop, we generally use a omp parallel for pragma. One example is shown in 
Figure 7(a) for complex 1D convolution. In most cases, we obtain linear scaling with the number of 
cores after performing algorithmic optimizations to eliminate memory bandwidth bottlenecks. The use 
of SMT threads can help hide latency in the code - hence we sometimes obtain more than 6X scaling 
on our 6-core system. 

 

4.2.2 Vectorization 

SSE versus AVX: Figure 8(a) shows the benefit from inner and outer loop auto-vectorization for our 
benchmarks on our Westmere system, once proper algorithmic changes are made. We also compare it 
to the SIMD scaling for the manual best-optimized code. In terms of future scalability, we also show 
SIMD scaling on AVX (8-wide SIMD) in Figure 8(b) using a 4-core 3.4 GHz Core i7-2600K Sandybridge 
system. We use the same ICC compiler for this study, and only change compilation flags to -xAVX from 
-xSSE4.2. 

 

In terms of overall performance, we obtain on average about 2.75X SIMD scaling using compiled code, 
which is within 10% of the 2.9X scaling using best-optimized code on 4-wide SSE. With 8-wide AVX, 
we obtain 4.9X and 5.5X scaling (again very close to each other) using compiled and best-optimized 
code. Tree Search accounts for most of the difference between compiled and best-optimized code. In 
tree search, after we perform algorithmic changes, we can perform SIMD comparisons over tree 
nodes at multiple tree levels, transfer the obtained bitvector register into a general purpose register, 
and use it to compute the next child index. This sequence of operations is currently not generated by  
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reflect the vectorization, as well as to compute results for multiple (equal to the simd width) loop 
iterations in parallel using arrays. Note that the programmer declares arrays of size S, the simd width 
for intermediate values, and the X[a:b] index notation stands for accessing b elements of array X 
starting with index a (X[:] is a shortcut that accesses the entire array X). It is usually straightforward 
to change scalar code to CEAN code. This change results in high SIMD speedups of 3.6X on 4-wide SSE 
and 7.5X on AVX. Outer loop vectorization also benefits 2D convolution, where the inner loop does 
not have sufficient iterations (two nested loops of 5 iterations each) to have SIMD benefits. 
Vectorizing over the outer loop results in near-linear overall SIMD scaling. The third example is 
Volume Rendering, where the outer ray loop is vectorized using masks to handle control flow. These 
masks are emulated using registers for CPUs. 

 

4.2.3 Fast Math 

Applications such as NBody, and financial benchmarks (e.g, LIBOR and BlackScholes) are math-
intensive, and use a variety of operations such as sqrt, rsqrt, divide, cos, sin, exp, etc. In many cases, 
the programmer has information about the final precision of the results of such computations, and 
may be willing to trade-off performance for accuracy. The compiler does not have knowledge of the 
precision requirements, and hence this needs to be achieved using compiler flags. The current ICC 
compiler however allows for user-defined flags such as -fimf-precision to control precision. The use of 
such flags enables the generation of the correct precision code in NBody. 

 

4.2.4 Hardware Gather Support 

Our Tree Search application requires gather operations for vectorization of the independent loop over 
queries. The auto-vectorizer emulates these gathers using scalar loads on SSE and AVX due to the 
absence of gather hardware support. While it is possible to perform algorithmic changes using SIMD 
blocking to vectorize the traversal of a single query, the SIMD benefit is inherently limited to a 
logarithmic factor of SIMD width (see [28] for details). 

 

However, future architectures such as the Intel MIC architecture [41] as well as the future Intel 
Haswell architecture [24] have announced support in hardware for gathers. As such, the SIMD 
blocking algorithmic change is not required for MIC, and there is negligible difference between SIMD 
blocking code and code with gathers. In fact, the gap between compiled code and best-optimized code 
for Tree Search on MIC is small. The addition of such hardware, along with compiler support to use the 
new instructions, thus has the benefit of reducing the Ninja gap. 
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can bridge the gap to just 1.4X. Production compilers have recently started to support parallelization 
and vectorization technology that have been published in compiler research. Examples of such 
technology include OpenMP [10] for parallelization available in recent GCC and ICC compilers, as well 
as auto-vectorization technology [33], dealing with alignment constraints [17] and outer loop 
vectorization [34]. These technologies have been made available using straightforward pragmas and 
technology like CEAN [23], a part of the CilkPlus [22] technology in the recent ICC ComposerXE 
compiler release. 

 

However, naively written code may not scale with number of cores or SIMD width even with compiler 
support since they are bottlenecked by architectural features such as memory bandwidth, presence 
of gathers/scatters or because the fundamental algorithm cannot be vectorized due to tight 
dependencies. In such cases, algorithmic changes such as blocking, SOA conversion and SIMD-friendly 
algorithms are required. There have been various techniques proposed to address these algorithmic 
changes, either using compiler assisted optimization [27], using cache-oblivious algorithms [6] or 
specialized languages like Sequoia [21]. Such changes usually require programmer intervention and 
programmer effort, but they can be used across a number of architectures and generations. For 
instance, a number of papers have shown the impact of similar algorithmic optimizations on GPUs in 
CUDA [18, 38]. Further, a number of papers have made similar changes to CPUs and GPUs and shown 
benefit to both [32, 39]. 

 

While our work focuses on traditional programming models, there have been radical programming 
model changes proposed to bridge the gap. Recent suggestions include Bamboo [47] for an object 
oriented many-core programming approach, GPGPU approaches for parallelism management [46], the 
Berkeley View project [3] and OpenCL for programming heterogeneous systems. Our work makes a 
case that for a set of important real-world throughput applications, it is not necessary to adopt such 
models. There have also been library oriented approaches proposed such as Threading Building Blocks 
(TBB), Intel Math kernel Library, Microsoft Parallel Patterns Library (PPL), Intel Performance Primitives 
etc. We believe these are orthogonal and used in conjunction with traditional models. 

 

There is also a body of literature in adopting auto-tuning as an approach to bridging the Ninja gap for 
selected applications [43,14]. Autotuning results can be significantly worse than the best-optimized 
code. For example, 7-point stencil computation is a specific application from our benchmark list for 
which auto-tuning results have been shown [14]. Our best-optimized code is about 1.5X better in 
performance than the auto-tuned code [32]. Since our Ninja gap for stencil is only 1.1X, our compiled 
code performs around 1.3X better than auto-tuned code. We expect our compiled results to be in 
general competitive with auto-tuned results, while offering the advantages of using standard tool-
chains that can ease portability across processor generations. 

 

Finally, there has been recent work that attempts to analyze the Ninja gap both for GPUs [7] and 
CPUs [30]. These works either focus narrowly on a single benchmark or do not use highly optimized 
code as a target to bridge the Ninja gap. For example, the benchmarks analyzed by Luk et al. [30] are 
2-10X slower than our optimized performance numbers. 

 

8. Conclusions 

In this work, we showed that there is a large Ninja performance gap of 24X for a set of real-world 
throughput computing benchmarks for a recent multi-processor. This gap, if left unaddressed will 
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inevitably increase. We showed how a set of well-known algorithmic techniques coupled with 
advancements in modern compiler technology can bring down the Ninja gap to an average of just 
1.3X. These changes only require low programming effort as compared to the very high effort in 
Ninja code. 
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