

Technical Report

Intel Labs

Changkyu Kim *,
Nadathur Satish *,
Jatin Chhugani *,
Hideki Saito †,
Rakesh Krishnaiyer †,
Mikhail Smelyanskiy *,
Milind Girkar †,
Pradeep Dubey *

* Parallel Computing Lab.
† Intel Compiler Lab

Closing the Ninja
Performance Gap
through Traditional
Programming and
Compiler Technology

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

Executive Summary

Current processor trends of integrating more cores with wider SIMD units, along with a deeper and
complex memory hierarchy, have made it increasingly more challenging to extract performance from
applications. It is believed by some that traditional approaches to programming do not apply to these
modern processors and hence radical new languages must be discovered. In this paper, we question
this thinking and offer evidence in support of traditional programming methods and the performance-
vs-programming effort effectiveness of common multi-core processors and upcoming manycore
architectures in delivering significant speedup, and close-to optimal performance for commonly used
parallel computing workloads.

We first quantify the extent of the “Ninja gap”, which is the performance gap between naively
written C/C++ code that is parallelism unaware (often serial) and best-optimized code on modern
multi-/many-core processors. Using a set of representative throughput computing benchmarks, we
show that there is an average Ninja gap of 24X (up to 53X) for a recent 6-coreWestmere CPU, and
that this gap if left unaddressed will inevitably increase. We show how a set of well-known
algorithmic changes coupled with advancements in modern compiler technology can bring down the
Ninja gap to an average of just 1.3X. These changes typically require low programming effort, as
compared to the very high effort in producing Ninja code. We also discuss hardware support for
programmability that can reduce the impact of these changes and even further increase programmer
productivity. We show equally encouraging results for the upcoming Intel Many Integrated Core (MIC)
architecture which has more cores and wider SIMD. We thus demonstrate that we can contain the
otherwise uncontrolled growth of the Ninja gap and offer a more stable and predictable performance
growth over future architectures, offering strong evidence that radical language changes are not
required.

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

1. INTRODUCTION
Performance scaling across processor generations has previously relied on increasing clock frequency.
Programmers could ride this trend and did not have to make significant code changes for improved
code performance. However, clock frequency scaling has hit the power wall [31], and the free lunch
for programmers is over.

There have been many recent publications [43, 41, 13, 2, 27, 32] that show 10-100X performance
improvements for real-world applications through adopting highly optimized platform-specific parallel
implementations, proving that a large Ninja gap exists. This typically requires high programming effort
and may have to be re-optimized for each processor generation. However, these papers do not
comment on the effort involved in these optimizations. In this paper, we aim at quantifying the extent
of the Ninja gap, analyzing the causes of the gap and investigating how much of the gap can be
bridged with low effort using traditional C/C++ programming languages1.

We first quantify the extent of the Ninja gap. We use a set of real-world applications that require high
throughput (and inherently have a large amount of parallelism to exploit). We choose throughput
applications because they form an increasingly important class of applications [12] and because they
offer the most opportunity for exploiting architectural resources - leading to large Ninja gaps if naive
code does not take advantage of these resources. Figure 1 shows this gap for our benchmarks on
three CPU platforms: a 2.4 GHz 2-core E6600 Conroe, a 3.33 GHz 4-core Core i7 975 Nehalem and a
3.33 GHz 6-core Core i7 X980 Westmere. The figure shows that there is up to a 53X gap between
naive C/C++ code and best-optimized code for a recent 6-core Westmere CPU. The figure also shows
that this gap has been increasing across processor generations - the gap is 5-20X on a 2-core Conroe
system (average of 7X) to 20-53X on Westmere (average of 25X). This gap has been increasing in
spite of the fact that micro-architectural improvements has reduced the need and impact of
performing various optimizations.

We next analyze the sources of the large performance gap. There are a number of reasons why naive
code performs badly. First, the code may not be parallelized, and compilers do not automatically
identify parallel regions. This means that the increasing core count is not utilized in the naive code,
while the optimized code takes full advantage of it. Second, the code may not be vectorized, leading
to under-utilization of the increasing SIMD widths. While auto-vectorization has been studied for a
long time, there are many difficult issues such as dependency analysis, memory alias analysis and
control flow analysis which prevent the compiler from vectorizing outer loops, loops with gathers
(irregular memory accesses) and even innermost loops where dependency and alias analysis fails. A
third reason for large performance gaps may be that the code is bound by memory bandwidth - this
may occur, for instance, if the code is not blocked for cache hierarchies - resulting in cache misses.

Recent compiler technologies have made significant progress in enabling parallelization and
vectorization with relatively low programmer effort. Parallelization can be achieved using OpenMP
pragmas that only involve annotation of the loop that is to be parallelized. For vectorization, recent
compilers such as the 2011 ComposerXE version of ICC have introduced the use of a pragma for the
programmer to force loop vectorization by circumventing the need to do dependency and alias
analysis. This pragma currently only works on innermost loops, but other compiler technologies such
as CEAN [22] have been introduced to enable the programmer to vectorize outer loops. Using the
pragmas available in recent ICC compilers, we show that this gap reduces to an average of 2.95X for
Westmere. The remaining gap is either a result of bandwidth bottlenecks in the code or the fact that
the code gets only partially vectorized due to irregular memory accesses. While the improvement in

1 Since measures of ease of programming such as programming time or lines of code are largely subjective, we show
code snippets with the code changes required to achieve performance

Technic

Figure
core C

the ga
SIMD w
interv

We ide
friend
class o
the m
gathe
bandw
to con
Arrays
across
in som
iterati
discus
impac

We sh
1.3X b
effort
compu
SIMD w
perfor
exper
that t
progra
progra
compi
proces

2. BE

For ou
compu
amoun

cal Report

e 1: Growing p
Conroe (CNR),

ap is significan
widths and de

vention in the

entify and sug
dly data layout
of algorithmic
emory bandw
r/scatter oper

width usage, a
nvert data stru
s (SOA) repres
s the array ele

me cases, the c
ions, and in th
ss hardware su
t of these algo

how that after
between best
t, this effort is
uting platform
width and slow
rmance gap w
riments for the
he Ninja gap is
ammability ea
ammability res
ler technology
ssing using tra

ENCHMARK

ur study, we c
uting applicati
nt of time, and

 Closing

performance g
4-core Nehale

nt, the gap wil
ecreasing band
form of algori

ggest three cr
ts and in some
 changes invo

width pressure
rations. Such i
s well as limit
uctures writte
sentation. This
ements, and he
code cannot b
ose cases a di
upport for pro
orithmic chang

r performing a
-optimized and

s amortized ac
ms such as GPU
wly increasing

will remain acro
e new Intel MI
s almost the s
sier for at leas
sults for MIC. T
y is an importa
aditional progr

DESCRIPTIO

hoose a repre
ons. Throughp
d require a fas

 the Ninja Perform

ap between N
em (NHM) and

l however inev
dwidth-to-com
thmic changes

itical algorithm
e cases, choos
lves blocking t
. Another clas
rregular memo
 the scope of

en in an Array
s helps preven
elps the comp
e vectorized d
ifferent SIMD

ogrammability,
ges.

algorithmic cha
d compiler-gen
ross different

Us. Since the u
g bandwidth ha
oss future arch
C architecture

same (1.2X). In
st one benchm
Thus the comb
ant step towa
ramming.

ON

esentative set
put workloads
st response tim

mance Gap throug

Naive serial C/C
 6-coreWestm

vitably increas
mpute ratios. T
s is then requi

mic changes: b
ing an alterna
the data struc
s of changes i
ory operations
compiler vecto
 of Structures
nt gathers wh
piler vectorize
due to back-to
friendly algor
, that can furt

anges, we hav
nerated code.
t processor ge
underlying har
ave been opti
hitectures. We
e [40], the firs
n fact, the add
mark. We belie
bination of alg
rds enabling p

 of benchmark
s deal with pro
me for all the

gh Traditional Pro

C++ code and
mere (WSM) sys

se on future a
To overcome t
ired.

blocking for ca
tive SIMD-frie

ctures to fit in
nvolves elimin
s can both inc
orization. A co
 (AOS) represe
en accessing o
 loops that ite
o-back depend
ithm may nee

ther improve p

ve an average
 Although this

enerations and
dware trends
mized for, a sm

e demonstrate
st x86 based m
dition of hardw
eve this is the
gorithmic chan
programmers t

ks from the su
ocessing large
data processe

ogramming and Co

 best-optimize
stems.

architectures w
this gap, progr

ches, bandwid
endly algorithm
 the cache, th
nating the use
crease latency
ommon data la
entation to a S
one field of th

erate over the
dencies betwe
ed to be chose
productivity by

 performance
s requires som
d also across d
 towards incre
mall and predi
e this by repea
manycore plat
ware gather su

first paper to
nges coupled w
to ride the tre

uite of through
 amounts of d
ed as opposed

ompiler Technolog

ed code on a 2

with growing
rammer

dth/SIMD
m. An importan
us reducing

e of memory
y and
ayout change
Structure of

he structure
 array. Finally,
en loop
n. We also
y reducing the

 gap of only
me programme
different
easing cores,
ictable
ating our
tform. We show
upport makes
 show

with modern
end of parallel

hput
data in a given
d to the

gy

2-

nt

is

,

e

er

w

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

response time for a single data element. These include workloads from the areas of High Performance
Computing, Financial Services, EDA, Image Processing, Computational Medicine, Databases, etc [10].
Throughput computing applications have plenty of data- and thread-level parallelism, and have been
identified as one of the most important classes of future applications [3, 4, 10], with compute and
memory characteristics influencing the design of current and upcoming multi-/many-core processors
[15]. Furthermore, they offer the most opportunity for exploiting architectural resources – leading to
large Ninja gaps if naive code does not take advantage of the increasing computational resources. We
formulated a representative set of benchmarks (described below) that cover this wide range of
application domains of throughput computing.

1. NBody: NBody computations are used in many scientific applications, including the fields of
astrophysics [1] and statistical learning algorithms [19]. For given N bodies, the basic computation is
an O(N2) algorithm that has two loops over the bodies, and computes pair-wise interactions between
them. The resulting forces for each body are added up and stored into an output array.

2. BackProjection: Backprojection is a commonly used kernel in performing cone-beam image
reconstruction of CT projection values [25]. The input consists of a set of 2D images that are ”back-
projected” onto a 3D volume in order to construct the 3D grid of density values. As far as the
computation is concerned, for each input image (and the corresponding projection direction), each 3D
grid point is projected onto the 2D image, and the density from the neighboring 2X2 pixels is linearly
interpolated and accumulated to the voxel’s density.

3. 7-Point Stencil: Stencil computation is used for a wide range of scientific disciplines [13]. The
computation involves multiple sweeps over a spatial input 3D grid of points, where each sweep
computes the weighted sum of each grid point and its +/-X, +/-Y and +/-Z neighbors (total of 7 grid
points), and stores the computed value to the corresponding grid point in the output grid.

4. Lattice Boltzmann Method (LBM): LBM is a class of computational fluid dynamics capable of
modeling complex flow problems [42]. It simulates the evolution of particle distribution functions over
a 3D lattice over many time-steps. For each time-step, at each grid point, the computation performed
involves directional density values for the grid point and its face (6) and edge (12) neighbors (also
referred to as D3Q19).

5. LIBOR Monte Carlo: The LIBOR market model is used to price a portfolio of swaptions [8]. It models
a set of forward rates as a log-normal distribution. A typical Monte Carlo approach would generate
many random samples for this distribution and compute the derivative price using a large number of
paths, where computation of paths are independent from each other.

6. Complex 1D Convolution: This is widely used in application areas like image processing, radar
tracking, etc. This application performs a 1D convolution on complex 1D images with a large complex
filter.

7. BlackScholes: The Black-Scholes model provides a partial differential equation (PDE) for the
evolution of an option price. For European options, where the option can only be exercised on
maturity, there is a closed form expression for the solution of the PDE [5]. This involves a number of
math operations such as the computation of a Cumulative Normal Distribution Function (CNDF)
exponentiation, logarithm, square-root and division operations.

8. Tree Search: In-memory tree structured index search is a commonly used operation in commercial
databases, like Oracle TimesTen [36]. This application involves multiple parallel searches over a tree
with different queries, with each query tracing a path through the tree depending on the results of
comparison of the query to the node value at each tree level.

Technic

Table
perfor

9. Mer
an arr
sorted
first p

10. 2D
blur, e
given
neighb

11. Vo
imagin
spawn
accum
our be

2.1 N

Table
paper
perfor
to per
intrins
the be
platfo
Table
X980
execu

3. BR

2 The b
HPC,
MICC
of the

cal Report

 1: Various be
rmance on Cor

rgeSort: Merg
ray of N eleme
d lists of size t
pass). MergeSo

D 5X5 Convolu
emboss and sh
 2D image and
borhood of pix

olume Render
ng [14], graph
ns rays (perpe

mulates the de
enchmark, we

Ninja Performa

 1 provides de
. For each ben
rmance numbe
rform a fair co
sics/assembly
est reported n
orms to obtain
 1 (column 3) s
. For the rest o

uting this code

RIDGING THE

best reported n
Image process

CAI, IEEE Vis.
benchmarks.

 Closing

nchmarks and
re i7 X980.

geSort is comm
ents using logN
twice as large
ort [39] is show

ution: Convol
harpen, and is
d a 5X5 spatia
xels, where th

ing: Volume R
ics visualizatio

endicular to th
ensity, color an
 spawn rays p

nce

etails of the re
nchmark, there
ers are given 2

omparison, we
 code) each of

numbers on th
 the correspon
show the Best
of the paper, N

e on respective

E NINJA GAP

numbers are cit
ing, etc. and in
 To the best of

 the Ninja Perform

d the respectiv

monly used in
N merge passe
 as the previo
wn to be the s

ution is a com
also used with
l filter, each p

he weights are

Rendering is a
on, etc. Given
e image plane

nd opacity to c
erpendicular t

epresentative
e exists a corr
2 on different
 implemented
f the benchma
e correspondi
nding Best Op
t Optimized (N
Ninja Perform
e platforms.

P

ted from the m
nclude conferen
f our knowledg

mance Gap throug

ve datasets us

 the area of d
es over the co
us pass (start
sorting algorit

mmon image fil
h high-resolut
ixel computes

e the correspo

a commonly us
a 3D grid, and

e (orthographic
compute the f
to the X direct

dataset sizes
esponding bes
 platforms tha
 and aggressiv

arks by hand, a
ng platform. T

ptimized Perfo
Ninja) perform
ance refers to

ost recent topti
nce/journals lik

ge, there does n

gh Traditional Pro

sed, along with

atabases [11]
omplete array,
ting with sorte
thm of choice f

tering operati
tion images in
s and stores th
onding values i

sed benchmar
d a 2D image lo
c projection)) t
inal color of e
tion of the grid

 for each of th
st performing

an those used
vely optimized
and obtained c
This code was
ormance for pl
ance for all th
o the perform

ier publication
ke Super Comp
not exist any fa

ogramming and Co

h the best opt

], HPC, etc. Me
, where each p
ed lists of size
for future arc

ion used for e
EDA applicatio
he weighted s
in the filter.

k in the field o
ocation, the be
through the 3
ach pixel of th
d.

he benchmark
 code for whic
 in our study.
d (including th
comparable pe
 then execute
atforms we u

he benchmarks
ance numbers

ns in the area of
puting, VLDB
aster performin

ompiler Technolog

timized (Ninja)

ergeSort sorts
pass merges
 one for the
hitectures.

effects such as
ons. For a
sum of a 5X5

of medical
enchmark

3D grid, which
he image. For

s used in this
ch the
Hence, in orde
e use of

erformance to
ed on our
se in this pape
s on Core i7
s obtained by

f Databases,
, SIGMOD,

ng code for any

gy

)

s

er

o

er.

y

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

In this section, we take each of the benchmarks described in Section 2, and attempt to bridge the
Ninja gap starting with naively written code with low programming effort.

Platform: We measured the performance on a 3.3GHz 6-core Intel Core i7 X980 (Westmere). The peak
compute power is 158 GFlops and the peak bandwidth is 30 GBps. The Core i7 processor cores
feature an out-of-order super-scalar micro-architecture, with 2-way Simultaneous Multi-Threading
(SMT). In addition to scalar units, it also has 4-wide SIMD units that support a wide range of SIMD
instructions. Each core has an individual 32KB L1 cache and a 256KB L2 cache. All six cores share an
12MB last-level cache (LLC). Our system has 12 GB RAM and runs SuSE Enterprise Linux version 11.
We use the latest commercially available Intel C++ Composer XE for Linux compiler (version
2011.1.108).

Methodology: For each benchmark, we attempt to first get good single thread performance through
exploiting instruction and data level parallelism. In an attempt to fully exploit the available data level
parallelism, we measure the SIMD scaling we obtain for each benchmark by running the code with
auto-vectorization enabled and disabled (using the -no-vec flag) in the compiler. If SIMD scaling is not
close to peak (we expect close 4X scaling with single precision data on SSE), we analyze the
generated code to identify architectural bottlenecks. We then obtain thread level parallelism by
adding OpenMP pragmas to parallelize the benchmark and evaluate thread scaling - again evaluating
bottlenecks to scaling. After evaluating bottlenecks to core and SIMD scaling, we make any necessary
algorithmic changes to overcome these bottlenecks.

Compiler pragmas and flags used: We use OpenMP for thread-level parallelism, and use the auto-
vectorizer or recent technologies such as CEAN for data parallelism. The compiler directives we add to
the code and command line are the following:

• ILP optimizations: We use the #pragma unroll directive just before an innermost loop that
needs to be unrolled, and an #pragma unroll_and_jam primitive outside an outer loop that needs to be
unrolled. Both accept an optional parameter which is the number of times the loop is to be unrolled.

• Inner loop vectorization: If auto-vectorization fails due to assumed memory alias or
dependence analysis, the programmer can force vectorization using #pragma simd. This is a recent
feature introduced in the Intel Composer XE compiler. The use of the pragma is an indication that the
programmer asserts that the loop is safe to vectorize.

• Outer loop vectorization: Auto-vectorization and the simd pragma do not currently work
with outer loops on ICC. However, they do provide technology such as CEAN (C Extensions for Array
Notations) to allow the programmer to express outer loop vectorization. An example of a CEAN kernel
is shown in Figure 7(b). Technology that will allow outer loop vectorization using the #pragma simd
directive is work-in-progress, and is expected to complement current extensions in the future.

• Parallelization: We use the OpenMP #pragma omp to parallelize loops. We typically use this
over an outer for loop using a #pragma omp parallel for construct.

3.1 NBODY

We implement a NBody algorithm [1], performing computation over 1 million bodies. The computation
consists of about 20 floating point operations (flops) per body-body interaction, spent in computing
the distance between each pair of bodies, and in computing the corresponding local potentials using a

Technic

Figure
Paralle
LBM. T

revers
16 MB

Figure
the y-
that it
optim
Unroll
progra
paralle
bench
and th
bytes/

This m
last le
one it
allows
Sectio

Once
1.9X t
betwe

3.2 Ba

We ba
grid. B
perfor
image

cal Report

e 2: Breakdow
elism (DLP) be
The algorithm

se square-root
B - this is large

e 2 shows the
-axis since the
terate over all
izations to imp
ing gives us a
ammer interve
el scaling of 3

hmark is bandw
hus requires 0
/flop. This mea

motivates the
evel (L3) cache
erating over b
s the inner loo
on 4.1.

blocking is don
thread scaling
een compiled a

ackProjection

ack-project 50
Backprojection
rm bilinear int

e and volume. B

 Closing

wn of Ninja Per
efore and afte
 change involv

t of the distan
er than the av

 breakdown o
e impact of var
l bodies and co
prove ILP, bot
 benefit of ab
ention and pro
.1X, far lower

width bound. T
0.8 bytes/flop
ans that the b

need for our a
e (referred to a
blocks of bodie
op to reuse dat

ne, the compu
 for a total of
and best-optim

0 images of d
n requires abou
erpolation aro
Both the imag

 the Ninja Perform

rformance Gap
r algorithm ch
ves blocking.

nce. The datas
ailable cache s

f the various o
rious optimiza
omputes pote
th over the inn
out 1.4X. The

ovides a good
 than the peak

The code loads
of memory ba

benchmark can

algorithmic op
as 1-D blockin
es (fitting in ca
ta in cache. A

utation is now
 5.9X - close t
mized code.

imension 204
ut 80 ops to p

ound it. This re
ge (of size 16

mance Gap throug

p in terms of In
hanges for NBo

set itself requi
size.

optimizations.
tions is multip
ntials for each

ner and outer
 compiler auto
scaling of 3.7X
k of 6X on our
s 16 bytes of
andwidth – wh
nnot utilize all

timization of b
ng in Figure 2).
ache), and the
code snippet f

 bound by com
o our peak. W

48x2048 pixel
project each 3
equires about
MB) and volum

gh Traditional Pro

nstruction (ILP
ody, BackProje

ires 16 bytes

. Note that the
plicative. The c
h pair. We first
loops using th
o-vectorizes th
X with vector
r processor. Th
data to perfor

hile our system
 computation

blocking the d
. The inner bo

e other on bod
for NBody blo

mpute resourc
e find only a 1

ls onto a 1024
D grid point to
128 bytes of

me (4 GB) are

ogramming and Co

P), Task (TLP)
ection, 7-point

for each body

e figure uses a
code consists
t performed u
he relevant pra
he code well w

r width. We on
he reason for
rm 20 flops of

m only delivers
resources.

data structures
dy loop is split

dies within eac
ocking code is

es. We obtain
1.1X performa

4x1024x1024
o an image po
 data to load a
too large to re

ompiler Technolog

and Data Leve
t Stencil and

y, for a total of

a log scale on
of two loops
nrolling
agmas.
with no
nly obtained a
 this is that th
f computation
s 0.2

s to fit in the
t into two -

ch block. This
shown in

 an additional
ance gap

4 uniform 3D
int and

and store the
eside in cache

gy

el

f

he
n,

.

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

Figure 2 shows that we get poor SIMD scaling of 1.2X from auto-vectorization. Moreover, parallel
scaling is also only around 1.8X. This is because the code is bandwidth-bound, requiring 1.6 bytes/flop
of bandwidth. Most of this bandwidth comes because of gathers from external memory in the code -
the code projects multiple contiguous 3D points in SIMD lanes, but the projected points in the 2D
image are not contiguous. Reading the 2x2 surrounding pixels thus requires gather operations.

We perform blocking over the 3D volume to reduce bandwidth (called 3D blocking in Figure 2). Due to
spatial locality, the image working set also reduces accordingly. This results in the code becoming
compute bound. However, due to the gathers which cannot be vectorized on the CPU, SIMD scaling
only improved by an additional 1.6X (total 1.8X). We obtained additional 4.4X thread scaling (total
7.9X), showing the benefits of SMT. The resulting performance is only 1.1X off the best-optimized
code.

3.3 7-Point 3D Stencil

7-Point Stencil iterates over a 3D grid of points, and for each point (4 bytes), performs around 8 flops
of computation. For grid sizes larger than the size of the cache, the resultant b/w requirement is
around 0.5 bytes/flop, which is much larger than that available on the current architectures. The
following performance analysis is done for a 3D dataset of dimension 512x512x512 grid points.

Figure 2 shows that we get a poor SIMD scaling of around 1.8X from auto-vectorization. This is due to
the fact that the implementation is bandwidth bound, and is not able to exploit the available vector
processing flops. The bandwidth bound nature of the application is further exemplified by the low
thread-level scaling of around 2.1X on 6-cores. In order to improve the scaling and exploit the
increasing computational resources, we perform both spatial and temporal blocking to improve the
performance.

In order to perform spatial blocking, we block in the XY dimension, and iterate over the complete
range of Z values (referred to as 2.5D blocking [32]). We compute the blocking dimensions in X and Y
directions such that three of the blocked XY planes are expected to fit in the LLC. Since the original
3D stencil performs the stencil computation for multiple time-steps, we can further perform temporal
blocking to perform multiple time-steps (3.5D blocking [32]), and further increase the computational
efficiency.

The resultant code performs four time-steps simultaneously, and improves the DLP by a further 1.7X
to achieve a net SIMD scaling of around 3.1X. It is important to note that although the code vectorizes
well, the SIMD scaling is lower than 4X due to the overhead of repeated computation at the boundary
elements of each blocked XY sub-plane, which increases the net computation as compared to an
unblocked stencil computation. This results in a slightly reduced SIMD scaling. Note that this reduction
is expected to be stable with increasing SIMD widths, and is thus a one-time reduction in performance.
The thread-level scaling is further boosted by around 2.5X, to achieve a net core-scaling of around
5.3X. Our net performance is within 10.3% of the best-optimized code.

3.4 Lattice Boltzmann Method (LBM)

Technic

Figure
three

The co
case o
edge n
the 19
storin
bandw
curren
256x2

Figure
and ar
gathe
order
perfor
SIMD s
auto-v
The re
scaling
gener
final p

3.5 LIB

LIBOR
over t
thous
bytes/

Figure
cause
inner

cal Report

e 3: Breakdow
 benchmarks r

omputational
of LBM [44], th
neighbors (19
9 cells and som
g the 80 byte

width requirem
nt architecture
256x256 grid

e 2 shows that
round 2.9X co
r operations w
 to improve th
rm an AOS to
scaling to 1.65
vectorized cod
esultant threa
g is lower than
rated extra sp
performance g

BOR

R code [8] has
the forward ra
ands of indepe
/flop) and is co

e 3 shows only
 of this low SI
loop - this loop

 Closing

wn of Ninja Per
require AOS to

pattern of LBM
he computatio
 in total includ

me auxiliary da
es contiguously
ment is around
es. The follow
 points.

t our initial co
re-scaling. The

when the SIMD
he performanc
SOA conversio
5X. Secondly,
de further boo
ad-level scaling
n the correspo
ill and fill instr

gap of 1.4X.

an outer loop
ates on a singl
endent paths.
ompute bound

y a 1.5X perfo
MD scaling is t
p has back-to-

 the Ninja Perform

rformance Gap
o SOA convers

M is similar to
on for each gri
ding the cell), a
ata). The data
y. For grid size
d 0.7 bytes/flo
ing performan

de (taken from
e reason for n
Dfied code per
ce, we perform
on of the data
we perform a

osts the SIMD
g was further
onding numbe
ructions that w

 over all the p
e path. A typic
 LIBOR has ve

d.

ormance benef
that the curre
-back depende

mance Gap throug

p Libor, Comple
sion to obtain

 the stencil ke
d cell is perfor
and each grid
a is usually sto
es larger than
op, which is mu
nce analysis is

m SPEC CPU20
no SIMD scaling
rforms comput

m the following
a. The resultan
 3.5D blocking
scaling by 1.3
 increased by

ers for 7 point
were reduced

aths of the Mo
cal simulation

ery low bandw

fit from compi
ent compiler by
encies and can

gh Traditional Pro

ex 1D convolu
good SIMD sca

ernel described
rmed using a c
cell stores aro

ored in an AOS
 the size of th
uch larger tha
s done for a 3D

006) does not
g is the AOS d
tation for 4 si
g two algorith
nt auto-vector
g (similar to Se
X, to achieve
1.95X (total 5
 stencil, and w
 by the best-p

onte Carlo sim
 runs over sev

width-to-compu

iler auto-vecto
y default only
n only be parti

ogramming and Co

ution and Black
aling.

d in the previo
combination o
ound 80 bytes
S format, with
he cache, the r
n that availab
D dataset of d

t achieve any S
data layout, th
multaneous g

hmic changes.
rized code imp
ection 3.3). Th
a net scaling o

5.7X). The ove
we found that
performing cod

mulation, and a
veral tens to h
ute requireme

orization for L
 attempts to v
ially vectorize

ompiler Technolog

kScholes. All

ous section. In
of its face and
s of data (for
 each cell
resultant
ble on the
dimension

SIMD scaling,
at results in
rid cells. In
Firstly, we

proves the
e resultant
of around 2.2X

erall SIMD
the compiler

de to leave a

an inner loop
hundreds of
ents (0.02

LIBOR. The
vectorize the
d. In contrast,

gy

X.

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

the outer loop has completely independent iterations (contingent on parallel random generation) and
is a good candidate for vectorization. However, outer loop vectorization is inhibited by data structures
stored in a AOS format (in particular, the results of path computations). This requires gathers and
scatters resulting in poor SIMD scaling. The code achieves a good parallel scaling of 7.1X; this number
being greater than 6 indicates that the use of SMT threads provided additional benefits over just core
scaling.

To solve the vectorization issue, we performed an algorithmic change to convert the memory layout
from AOS to SOA. We use the CEAN technology available in ICC to express outer loop vectorization.
The LIBOR CEAN example is straightforward to code and is shown in Figure 7(b). Performing the
algorithmic change and using CEAN allowed the outer loop to vectorize and provides additional 2.5X
SIMD scaling, a total of about 3.8X scaling. We found that this performance is similar to the best-
optimized code.

3.6 Complex 1D Convolution

We perform a 1D complex convolution on an image with 12.8 million points, and a kernel size of 8K
complex floating point numbers. The code consists of two loops: one outer loop iterating over the
pixels, and one inner loop iterating over the kernel values. The data is stored in an AOS format, with
each pixel storing the real and complex values together.

Figure 3 shows the performance achieved (the first bar) by the unrolling enabled by the compiler,
which results in around 1.4X scaling. The auto-vectorizer only achieves a scaling of around 1.1X since
the the compiler vectorizes by computing the convolution for four consecutive pixels, and this
involves gather operations owing to the AOS storage of the input data. The TLP achieved is around
5.8X. In order to improve the performance, we perform a rearrangement of data from AOS to SOA
format, and store the real values for all pixels together, followed by the imaginary values for all the
pixels. A similar scheme is adopted for the kernel. As a result, the compiler produces efficient SSE
code, and the resultant code scales up by a further 2.9X. Our overall performance is about 1.6X
slower than the best-optimized numbers. This is because the best-optimized code is able to block
some of the kernel weights in SSE registers and avoids reloading them, while the compiler does not
perform this optimization.

3.7 BlackScholes

BlackScholes computes the call and put options together. Each option is priced using a sequence of
operations involving computing the inverse CNDF, followed by math operations involving exp, log, sqrt
and division operations. The total computation performed is around 200 ops (including the math ops),
while the bandwidth is around 36 bytes. The data for each option is stored contiguously.

Figure 3 shows a SIMD speedup of around 1.1X using the autovectorization. The low scaling is
primarily due to the AOS layout, which results in gather operations (that are performed using scalar
ops on CPUs). The TLP scaling is around 7.2X, which includes around 1.2X SMT scaling, and near linear
core-scaling. In order to exploit the vector compute flops, we performed an algorithmic change, and
changed the data layout from AOS to SOA. For the resultant code, the auto-vectorizer generated
SVML (short vector math library) code, that resulted in an increase of SIMD scaling of 2.7X (total 3.0X).
The resultant code is within 1.1X of the best performing code.

Technic

Figure
convo
The b

3.8 Tr

The in
agains
of the

Figure
the ve
gathe
aroun

In ord
at a ti
the co
algorit
future
this ch
progra

3.9 Me

Merge
where
lists o
and ap
dictat
merge
once t

cal Report

e 4: Breakdow
olution and VR
enchmarks in

ree Search

nput binary tre
st the a tree n
e comparison.

e 4(a) shows t
ectorizer oper
r instructions
d 7.8X (includ

er to improve
me (similar to

ode sequence
thmic change
e architectures
hange can bec
amming easier

ergeSort

eSort sorts an
e each phase m
f size one for
ppending the s
ed by the bran
e phase compl
the list sizes g

 Closing

wn of Ninja Per
R . The benchm

(b) do not req

ee is usually la
node at each le

hat the auto-v
ates on 4 que
 are required,
ing SMT) is ac

 the SIMD perf
 SIMD width b
described in [
is only require
s such as the

come unneces
r. We show mo

 input array of
merges sorted
 the first pass
smaller eleme
nch mispredict
etely reads in

grow larger tha

 the Ninja Perform

rformance Gap
marks in (a) req

uire any algor

aid out in a bre
evel, and trave

vectorizer ach
eries simultane

devolving to s
hieved.

formance, we
blocking propos
28], resulting
ed because ga
Intel MIC archi
sary. This is a
ore details in S

f N elements u
d lists of size t
). Merging two
nt to the outp
tion handling o
 the two lists
an the cache s

mance Gap throug

p for (a) Trees
quire rethinkin
rithmic change

eadth-first fas
erse down the

hieves a SIMD
eously, and sin
scalar load ope

 perform an a
sed in [28]). H
in a 1.55X ga

ather operation
itecture that h
n example wh
Section 4.2.4.

using logN me
twice as large
o lists involves
put list. The pe
of the underly
to produce th

size, with the

gh Traditional Pro

earch and Me
ng algorithms t
es.

shion, and the
e left or right c

speedup of ar
nce they all tra
erations. The t

lgorithmic cha
However, the c

p from Ninja c
ns in SSE devo
have hardwar
here hardware

erge phases ov
 as the previo
s comparing th
erformance fo
ying architectu
he output list,
bandwidth re

ogramming and Co

rgesort, and (b
to be more SIM

 input queries
child dependin

round 1.4X. Th
averse down d
thread-level s

ange, and trav
compiler did no
code. We note
olve to scalar
re support for
e support mak

ver the compl
us pass (start
he heads of th

or small lists is
ure. Furthermo
it becomes ba
quirement per

ompiler Technolog

b) for 2D
MD-friendly.

 are compared
ng on the resu

his is because
different path

scaling of

ersed 2 levels
ot generate
 that this
loads. For
 SIMD gathers
es

ete array,
ing with sorte
he two lists,
 largely
ore, since each

andwidth boun
r element

gy

d
ult

hs,

s

,

ed

h
nd

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

being around 12 bytes. The performance analysis is done for sorting an input array with 256M
elements.

Figure 4(a) shows that we only get a 1.2X scaling from autovectorization. This is largely due to gather
operations for merging four pairs of lists. Parallel scaling is also only around 4.1X because the last few
merge phases being bandwidth bound, and not scaling linearly with number of cores. In order to
improve performance, we perform the following two algorithmic changes.

Firstly, in order to improve the DLP scaling, we implement merging of lists using a merging network
[12], that merges two sorted sub-lists of size S (SIMD width) into a sorted sub-list of size 2S using a
series of min/max and interleave operations (code snippet is shown in Section 4.1). Each merging
phase is decomposed into a series of such sub-list merge operations. This code sequence is vectorized
by the current ICC compiler to produce an efficient SSE code. Furthermore, the number of
comparisons is also reduced by around 4X, and the resultant vector code speeds up by around 2.3X.
Secondly, in order to reduce the bandwidth requirements, we perform multiple merge phases
together. Essentially, instead of merging two lists, we combine three merge phases, and merge eight
lists into a single sorted list. This reduces the bandwidth requirement, and makes the merge phases
compute bound. The parallel scaling of the resultant code further speeds up by 1.9X. The resultant
performance is within 1.3X of the best-optimized code.

3.10 2D Convolution

We perform convolution of a 2K X 2K image with a 5 X 5 kernel. Both the image and kernel consists
of 4-byte floating point values. The convolution code consists of four loops. The two outer loops
iterate over the input pixels (X and Y directions), while the two inner loops iterate over the kernel (X
and Y directions).

Figure 4(b) shows that we obtained a benefit of 1.2X through loop unrolling. The most efficient way
to exploit SIMD is to perform the stencil computation on 4 consecutive pixels, with each performing a
load operation and a multiply-add with the appropriate kernel value. This implies performing a
vectorization for the outer X loop, something that the current compiler does not perform. We instead
implemented the two inner loops using the CEAN technology available in ICC. That enabled
vectorization of the outer X loop, and produced SIMD code that scaled 3.8X with SIMD width. The
thread-level parallelism was around 6.2X. Our net performance was within 1.3X of the best-optimized
code.

3.11 Volume Rendering

The VR rendering code iterates over various rays, and traverses a volume for each ray. During this
traversal, the density and color are accumulated for each ray till a pre-defined threshold value of the
opacity is reached, or the ray intersects all the voxels in its path. These early exit conditions make the
code control intensive.

As shown in Figure 4(b), we achieve a TLP scaling of around 8.7X, which includes a SMT scaling of
1.5X, and a near-linear core-scaling of 5.8X. As for SIMD scaling, earlier compiler versions did not
vectorize the code due to various control-intensive statements. However, recent compilers do, in fact,

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

vectorize the code using mask values for each branch instruction, and using proper masks to execute
both execution paths for each branch. Since CPUs do not have masks, this is emulated using 128-bit
SSE registers. The Ninja code also performs similar optimizations. There is only a small difference of
1.3X between Ninja code and compiled code.

3.12 Summary

In this section, we looked at each benchmark, and were able to narrow the Ninja gap to within 1.1 -
1.6X by applying necessary algorithmic changes coupled with the latest compiler technology.

4. ANALYSIS AND SUMMARY

In this section, we generalize our findings in the previous section and identify the steps to be taken to
bridge the Ninja performance gap with low programmer effort. The key steps to be taken are to first
perform a set of well-known and simple algorithmic optimizations to overcome scaling bottlenecks
either in the architecture or in the compiler, and secondly to use the latest compiler technology with
regards to vectorization and parallelization. We will now summarize our findings with respect to the
gains we achieve in each of these steps. We also show using representative code snippets that the
changes required in exploiting latest compiler features are small and that they can be done with low
programming effort.

4.1 Algorithmic Changes

We first describe a set of well-known algorithmic techniques that are necessary to avoid vectorization
issues and memory bandwidth bottlenecks in compiler generated code. Incorrect algorithmic choices
and data layouts in naive code can lead to Ninja gaps that will only grow larger with recent hardware
trends of increasing SIMD width and decreasing bandwidth-to-compute ratios. It is thus critical to
perform optimizations like blocking data structures to fit in the cache hierarchy, layout data
structures to avoid gathers and scatters, or rethink the algorithm to allow for data parallel
computation. While such changes do require some programmer effort, they can be utilized across
multiple platforms (including GPUs) and multiple generations of each platform, and are a critical
component of keeping the Ninja gap small and stable over future architectures. Figure 5 shows the
performance improvements due to various algorithmic optimizations. We describe these optimizations
below.

Technic

Figure
any al

AOS t
code i
repres
vecto
which
access
transf
than c
includ
avera

Blocki
a num
in the
perfor
benef
bandw

In term
For in
two lo
the en
iterati
iterati
the bl
across
cache
dimen
Merge
hierar
memo

cal Report

e 5: Benefit of
lgorithmic cha

o SOA conver
s to convert d
sentation. Kee
rization is perf
 can impact bo
ses. The prese
formation - ga
contiguous loa
ing GPUs [35]
ge of 1.4X.

ng: Blocking i
mber of applica

 application by
rmed on 1-D, 2
fit from blockin
width bottlene

ms of code cha
stance, the co

oops (body1 an
ntire set of bo
ion. The blocke
ing over bodie
ock, and inter
s multiple itera
, memory traf

nsional data st
eSort) as well
rchical rearran
ory pages as w

 Closing

f three differe
nge. The effec

sion: A commo
data structure
eping separate
formed over s
oth SIMD effic
ence of a hard
ther/scatter a

ads. Such trans
. Figure 5 sho

s a well-know
ations. The key
y ensuring tha
2-D or 3-D spa
ng over multip
ecks.

ange, blocking
ode snippet in
nd body2) iter

odies in the inn
ed code at the

es in multiple o
leaving the bo
ations of the b
ffic is brought
tructures (3D i
- more loops m
gement of the

well as cache li

 the Ninja Perform

nt algorithmic
ct of algorithm

on optimizatio
s from Array-O

e arrays for ea
structure insta
ciency as well
dware gather/s
accesses comm
sformations ar
ws that for ou

wn optimization
y idea behind b
at data remain
atial data struc
ple iterations (

g typically invo
Figure 6(a) sh

rating over all
ner loop, and m
e bottom is ob
of BLOCK, and
ody1 and body
body1 loop. If
 down by a fac
in BackProject
may need to b
e tree in order
nes.

mance Gap throug

c changes to o
mic changes is

on that helps p
Of-Structures
ach structure k
ances. AOS str
as introduce e
scatter mecha
monly need sig
re also advoca
ur benchmarks

n that can help
blocking is to e

ns in caches ac
ctures, and so
(commonly cal

olves a combin
hows an exam
 bodies. The o

must load the
btained by spli
 an inner body

y2 loops. This
BLOCK is chos
ctor of BLOCK
tion, plus temp
e split and reo
r to maximize

gh Traditional Pro

our benchmark
s cumulative.

prevent gathe
s (AOS) to Stru
keeps memory
ructures requi
extra bandwid
anism does no
gnificantly hig
ated for a vari
s, AOS to SOA

p avoid memo
exploit the inh

cross multiple
ome iterative a
led temporal b

nation of loop
mple of blocking
original code o
body2 value f
tting the body
y22 loop itera
code reuses a
sen such that

K. Such change
poral blocking
ordered. In tre
 data reuse at

ogramming and Co

ks normalized

rs and scatter
ucture-Of-Arra
y accesses co
ire gathers an
dth and latenc
ot eliminate th
gher bandwidt
iety of archite

A conversion h

ory bandwidth
herent data re
uses. Blocking

applications ca
blocking) to fu

 splitting and i
g NBody code
n the top stre
from memory
y2 loop into an
ating over elem
a set of BLOCK
 this set of va

es extend to fu
 in 7-Point ste
ee search, ther
t the granulari

ompiler Technolog

to code befor

rs in vectorize
ay (SOA)
ntiguous whe
d scatters,
y for memory
e need for thi
h and latency

ectures
elped by an

 bottlenecks in
euse available
g can be
an further
urther mitigate

nterchange.
. There are

eams through
in each
n outer loop
ments within
K body2 value
lues fits in
urther

encil, LBM and
re is
ty of both

gy

e

ed

n

s

n

e

s

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

Figure 6: Code snippets showing algorithmic changes for (a) blocking in NBody and (b) SIMD-friendly
MergeSort algorithm.

In terms of performance improvement, Figure 5 shows that blocking results in an average of 1.6X (up
to 4.3X for LBM and 7-point stencil) performance improvement. This benefit will grow as bandwidth-
to-compute ratios continually decrease.

SIMD-friendly algorithms: In some cases, the naive algorithm cannot easily be vectorized either due to
back-to-back dependencies between loop iterations or due to the heavy use of gathers and scatters
in the code. A different algorithm that is more SIMD friendly may then need to be chosen. In some
cases, dependencies between loop iterations can be resolved using cross-lane SIMD operations such
as shuffle, maskmov or related operations. For instance, MergeSort involves a sequence of min, max
and shuffle instructions. Using this code sequence results in a 2.5X speedup over scalar code. The
inner loop of the code is shown in Figure 6(b). The code on the left shows the traditional MergeSort
algorithm, where only two elements are merged at a time and the minimum written out. There are
back-to-back dependencies due to the array increment operations, and hence the code cannot
vectorize. Moreover, the code also heavily suffers from branch misprediction. The figure on the right
shows code for a SIMD-friendly merging network [12], which merges two sequences of SIMD-width S
sized elements using a sequence of min, max and interleave operations. This code auto-vectorizes
with each highlighted line corresponding to one SIMD instruction. Moreover, branch mispredictions
now occur every S number of elements. However, this code does have to do more computation (by a
constant factor of log(S)), but still yields a gain of 2.3X for 4-wide SIMD.

Since these algorithmic changes involve tradeoff between total computation and SIMD-friendliness,
the decision to use them must be consciously taken by the programmer. Such changes do require
effort on the part of the programmer - however, they will pay off over multiple platforms and
generations of them.

Summary: Using well-known algorithmic techniques, we get an average of 2.4X performance gain on
6-core Westmere. Moreover, as the number of cores and SIMD widths increase, and with reducing
bandwidth-to-compute ratios, gains due to algorithmic changes will further increase.

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

Figure 7: Code snippets showing compiler techniques for (a) Parallelization and inner loop
vectorization in complex 1D convolution and (b) Outer loop vectorization in LIBOR. Note that the code
changes required are small and can be achieved with low programmer effort.

4.2 Compiler Technology

Once algorithmic changes have been taken care of, we show the impact of utilizing the parallelization
and vectorization technology present in recent compilers in bridging the Ninja gap.

4.2.1 Parallelization

We parallelize our benchmarks using OpenMP pragmas typically over the outermost loop. OpenMP
offers a portable solution that allows for specifying the number of threads to be launched, thread
affinities to cores, specification of thread private and shared variables, as well as scheduling policies.
Since throughput benchmarks offer a significant amount of thread-level parallelism that are typically
present as an outer for loop, we generally use a omp parallel for pragma. One example is shown in
Figure 7(a) for complex 1D convolution. In most cases, we obtain linear scaling with the number of
cores after performing algorithmic optimizations to eliminate memory bandwidth bottlenecks. The use
of SMT threads can help hide latency in the code - hence we sometimes obtain more than 6X scaling
on our 6-core system.

4.2.2 Vectorization

SSE versus AVX: Figure 8(a) shows the benefit from inner and outer loop auto-vectorization for our
benchmarks on our Westmere system, once proper algorithmic changes are made. We also compare it
to the SIMD scaling for the manual best-optimized code. In terms of future scalability, we also show
SIMD scaling on AVX (8-wide SIMD) in Figure 8(b) using a 4-core 3.4 GHz Core i7-2600K Sandybridge
system. We use the same ICC compiler for this study, and only change compilation flags to -xAVX from
-xSSE4.2.

In terms of overall performance, we obtain on average about 2.75X SIMD scaling using compiled code,
which is within 10% of the 2.9X scaling using best-optimized code on 4-wide SSE. With 8-wide AVX,
we obtain 4.9X and 5.5X scaling (again very close to each other) using compiled and best-optimized
code. Tree Search accounts for most of the difference between compiled and best-optimized code. In
tree search, after we perform algorithmic changes, we can perform SIMD comparisons over tree
nodes at multiple tree levels, transfer the obtained bitvector register into a general purpose register,
and use it to compute the next child index. This sequence of operations is currently not generated by

Technic

Figure
also co

the co
opera

Our ov
excep
Sectio
at the
this in
the pr
and m
SSE an

Inner
using
alias a
to the
where
vecto

Outer
vecto
levels
have t
Regist
basic b
outer-
vecto
partia
CEAN.
over t

cal Report

e 8: Breakdow
ompare to the

ompiler. The co
tions. For curr

verall SIMD sca
ptions being M
on 4.1, we per
e expense of p
nto account, re
resence of una

must be emulat
nd 2.7X on AV

loop vectoriza
compiler auto

analysis fails. T
e compiler that
e this pragma
rization is 2.2X

 loop vectoriz
rizing at the in
, and loop con
to be converte
ter allocator is
blocks and mu
-loop vectoriza
rization. The f
lly vectorizab
. A part of the
the outer path

 Closing

wn of benefits
e best optimize

ompiler curren
rent CPUs with

aling for best-
ergeSort, Tree
formed algorit

performing mo
esulting in low
avoidable gath
ted using a se
VX for backpro

ation: Most of
ovectorization
The addition o
t the loop mus
is used in com
X for SSE and

ation: Vectoriz
nnermost loop
trol flow such
ed into conditi
s also impacte
ultiple loop lev
ation. There a
first is LIBOR, w
le. In order to
 LIBOR code w

h loop. The sca

 the Ninja Perform

from inner an
ed performan

ntly only vecto
h no gather/sc

-optimized cod
e Search and B
thmic changes

ore overall ope
wer than linear
hers and scatt
ries of sequen
ojection.

our benchmar
 or requiring t

of this pragma,
st be (and is sa

mplex 1D conv
 3.6X on AVX.

zing an outer-
p level: Inductio
h as zero-trip t
ional (or predi
d since vector
els. The Intel C
re three benc
where the inn
vectorize the

written in CEA
alar code is mo

mance Gap throug

d outer loop v
ce.

orizes over the
catter support

de is good for
BackProjection
s in MergeSort
erations per el
 speedups. Ba

ters in the cod
ntial loads/sto

rks vectorize o
he use of #pra
, where requir
afe to be) vect
olution. Our av
.

-level loop has
on variables n
test, number o
cated) execut
r variable live
ComposerXE I
hmarks where

ner loop contai
 outer (comple
N is shown in

odified to chan

gh Traditional Pro

vectorization o

e query loop, i
t, these are in

 most of our b
n. As explaine
t and Tree Sea
lement. Our SI

ackprojection d
de. Such opera
res. This limits

over the inner
agma simd wh
red, is straight
torized. Figure
verage speedu

s a unique set
need to be ana
of iterations, a
tion on multipl
ranges are no
ICC compiler in
e we gain ben
ins a back-to-b
etely independ
 Figure 7(b). H
nge the loop in

ogramming and Co

on (a) SSE and

involving gath
efficient.

benchmarks, w
ed in this sectio
arch to enable
IMD scaling nu
does not scale
ations cannot b
s SIMD scaling

r loop of the c
hen dependen
tforward - this
e 7(a) shows a
up for inner lo

 of challenges
alyzed for mul
and loop exit c
le elements in
ow larger and
ntroduced CEA
efits from out
back depende
dent) loop, we

Here vectoriza
ndex of the pa

ompiler Technolog

d (b) AVX. We

her/scatter

with the
on and in

e SIMD scaling
umbers take
e linearly due t
be vectorized

g to 1.8X on

ode, either by
nce or memory
s is a directive
an example
oop

 over
tiple loop

condition chec
 the vector.
cross multiple

AN to handle
ter-loop
nce and is onl

e currently use
tion occurs
ath loop to

gy

to

y
y
e

k

e

y
e

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

reflect the vectorization, as well as to compute results for multiple (equal to the simd width) loop
iterations in parallel using arrays. Note that the programmer declares arrays of size S, the simd width
for intermediate values, and the X[a:b] index notation stands for accessing b elements of array X
starting with index a (X[:] is a shortcut that accesses the entire array X). It is usually straightforward
to change scalar code to CEAN code. This change results in high SIMD speedups of 3.6X on 4-wide SSE
and 7.5X on AVX. Outer loop vectorization also benefits 2D convolution, where the inner loop does
not have sufficient iterations (two nested loops of 5 iterations each) to have SIMD benefits.
Vectorizing over the outer loop results in near-linear overall SIMD scaling. The third example is
Volume Rendering, where the outer ray loop is vectorized using masks to handle control flow. These
masks are emulated using registers for CPUs.

4.2.3 Fast Math

Applications such as NBody, and financial benchmarks (e.g, LIBOR and BlackScholes) are math-
intensive, and use a variety of operations such as sqrt, rsqrt, divide, cos, sin, exp, etc. In many cases,
the programmer has information about the final precision of the results of such computations, and
may be willing to trade-off performance for accuracy. The compiler does not have knowledge of the
precision requirements, and hence this needs to be achieved using compiler flags. The current ICC
compiler however allows for user-defined flags such as -fimf-precision to control precision. The use of
such flags enables the generation of the correct precision code in NBody.

4.2.4 Hardware Gather Support

Our Tree Search application requires gather operations for vectorization of the independent loop over
queries. The auto-vectorizer emulates these gathers using scalar loads on SSE and AVX due to the
absence of gather hardware support. While it is possible to perform algorithmic changes using SIMD
blocking to vectorize the traversal of a single query, the SIMD benefit is inherently limited to a
logarithmic factor of SIMD width (see [28] for details).

However, future architectures such as the Intel MIC architecture [41] as well as the future Intel
Haswell architecture [24] have announced support in hardware for gathers. As such, the SIMD
blocking algorithmic change is not required for MIC, and there is negligible difference between SIMD
blocking code and code with gathers. In fact, the gap between compiled code and best-optimized code
for Tree Search on MIC is small. The addition of such hardware, along with compiler support to use the
new instructions, thus has the benefit of reducing the Ninja gap.

Technic

Figure
algorit
norma

5. Su

Figure
before
We as
direct
betwe
prima
efficie
Sectio
1.5X g
bench
additio
these

Impac

In ord
exper
develo
archit
GFlops

Figure
ICC co
(slight
gaps c
gathe
best-o
similar

cal Report

e 9: Relative p
thmic change,
alized to the c

ummary

e 9 shows the
e and after alg
ssume that the
ives we descr
een compiled c
rily because o
ency due to su
on 4.1, this gap
gap) are Tree
hmarks show 1
onal spill/fill in
 are hard prob

t of Future Ar

er to see whe
riments on the
opment platfo
ecture with 4
s and the peak

e 10 shows th
ompilers for ea
tly smaller) tha
comes from Tr
r support on M

optimized code
r performance

 Closing

erformance b
 and the comp
ompiled code

 relative perfo
gorithm chang
e programmer
ribed in previo
code and best
f the compiled

ub-optimal me
p shrinks to an
Search where

1.1-1.4X Ninja
nstructions, ex
blems where t

rchitectures:

ether the Ninja
e upcoming Int
orm with 32-co
-way SMT and
k bandwidth b

e Ninja perfor
ach platform, t
an the Ninja g
ree Search. As
MIC, and the co
e – as opposed
e gaps on MIC

 the Ninja Perform

etween the be
piler-generate
after algorithm

ormance of be
ges (numbers a
r has put in the
us sections. T
-optimized cod
d code being b
mory layout. A
n average of 1
e the compiler
 gaps, primaril

xtra loads and
he compiler re

a gap will be lo
tel MIC archite
ores running a
d a 16-wide SI
between the G

rmance gap fo
the average N
ap for CPUs. T
s described in
ompiled code t
d to about 1.6
and CPU.

mance Gap throug

est-optimized
d code before
mic change.

est-optimized c
are relative to
e effort to int
he figure show
de before we

bound by mem
After we perfo
1.4X. The only
 vectorizes the
ly due to extra
 stores instea
elies on heuris

ow even on fu
cture. We use

at 1.2 GHz. Eac
MD unit. The p

GDDR5 memor

or MIC as well a
inja gap for M

The main diffe
Section 4, Tre
that uses gath

6X for CPU cod

gh Traditional Pro

 code, the com
e algorithmic c

code versus c
o compiled cod
troduce the pr
ws that there
 perform algor

mory bandwidt
orm algorithm

y benchmark w
e outer loop w
a instructions
d to reusing c

stics.

uture platform
e the Intel Knig
ch core featur
peak computa
ry and the cop

as for Westme
IC is only 1.2X

erence betwee
ee Search bene
hers is close in
de. The rest of

ogramming and Co

mpiler-generat
hange. Perfor

ompiler gener
de after algorit
ragmas and co
 is a 3.5X ave
rithmic change
th or due to lo

mic changes de
with a significa
with gathers. T
 being genera

certain values

ms, we perform
ghts Ferry sof
res an in-order
ation throughp
processor is 11

ere (SSE). Usin
X, which is alm
en the two pe
efits from the
n performance
f the benchma

ompiler Technolog

ted code after
rmance is

rated code
thmic change)

ompiler
rage gap
es. This gap is
w SIMD

escribed in
ant (more than
The rest of the
ted due to
in registers -

med the same
ftware
r micro-

put is 1200
15 GB/sec.

ng the latest
most the same

rformance
e hardware
e (1.1X) to the
arks show

gy

r

).

n
e

e

Technic

Figure
and C

The re
remai
width
memo
archit
decrea
growt

Hardw

While
SIMD-
furthe
makes
suppo
such a
blocki
cache
This h
can ha

Anoth
for ap
opera
tradin

cal Report

e 10: Gap betw
PU architecture

emaining Ninja
ns small and s
 on MIC. This i

ory bandwidth
ectures will be
asing bandwid
th over future

ware Support F

 we believe th
friendly algori

er improve pro
s SIMD-friendl

ort for the oth
as 3-D stacked
ng. For AOS to
 lines involved

has high latenc
ave high throu

her area where
pplications whe
tions. Fast ma

ng off precision

 Closing

ween best-optim
es.

a gap between
stable across M
s because our
 bottlenecks i
e able to explo
dth-to-comput
 architectures

For Programm

hat the algorith
ithms are well
ogrammer pro
y algorithms f
er algorithmic
d memory such
o SOA convers
d in the data s
cy for the first
ughput and low

e hardware su
ere accuracy c
ath hardware c
n for performa

 the Ninja Perform

mized and com

n best-optimiz
MIC and CPUs,
r algorithmic o
n the code. On
oit higher core
te ratios. This
s.

mability:

hmic changes
l-known, futur
ductivity. We

for Tree Searc
c changes. For
h as Hybrid Me
sion, we are lo
tructure conv
t conversion, b
w latency.

upport can hel
can be reduced
can either help
ance.

mance Gap throug

mpiler-generated

zed and compil
 in spite of the
ptimizations f

nce these issu
es and SIMD w
will result in s

we proposed
re hardware ch
have already d

ch unnecessary
 blocking, the
emory Cube [9

ooking at smal
version into a c
but subsequen

p programmab
d, the compile
p the program

gh Traditional Pro

d code after alg

led code after
e much larger
focused on res
ues have been
width without
stable and pre

 - blocking, AO
hanges can re
discussed how
y; we now dis
development
9, 45] can help
l Level-0 like A
cache and per
nt conversions

bility is fast m
er and/or prog
mmer or simplif

ogramming and Co

gorithmic chan

r algorithmic c
 number of co
solving vector
 taken care of
being bottlene
dictable perfo

OS to SOA conv
educe their im
w gather supp
scuss potentia
 of memory te
p reduce the i
AOS caches th
rform the conv
s only access t

math operation
rammer emula
fy the compile

ompiler Technolog

nges for MIC

hanges
res and SIMD

rization and
f, future
ecked by the

ormance

version and
pact, and

port on MIC
l hardware

echnologies
mpact of cach

hat load the
version there.
the cache and

ns. Currently,
ate these
er’s job in

gy

he

d

Technic

Figure

6. Dis

The a
archit
optim
impac
applie

Althou
progra
conve
GPUs
into th
benef

Figure
perfor
is beca
have a

7. Re

There
over p
releva
class o
perfor
progra

In this
bridge
with a

cal Report

e 11: Benefit of

scussion

lgorithmic opt
ectures includ
izations that a
t of the same

ed to our bench

ugh GPUs hav
amming guide

erting data str
also require b
he shared mem
fits the GPU th

e 11 shows th
rmance gain fr
ause GPUs ha
a large impact

elated Work

have a numbe
previous work
ant hardware a
of throughput
rmance gap ex
amming effort

s work, we ana
e the gap using
a set of simple

 Closing

f the algorithmi

timizations tha
ding GPUs. A n
are needed to
 algorithmic op
hmarks. We us

e hardware to
 [35]) state th
uctures from A

blocking optimi
mory (or cache
hat has a wide

e overall gain
rom algorithm
ve more SMs a

t on performan

er of papers pu
k using careful
architecture f

t applications o
xists between
t involved or h

alyze the sour
g low program

e and well-kno

 the Ninja Perform

ic changes des

at we describe
umber of prev
 obtain best p
ptimizations t
se the recent

o handle gathe
he need to avo
AOS to SOA, f
izations, which
es) of the GPU

er SIMD width

s from perform
mic optimizatio

and larger SIM
nce.

blished in a va
ly tuned code
eatures and a
on CPU and GP
n best-optimize
how to bridge

rces of the Nin
mmer effort. W

wn algorithmi

mance Gap throug

scribed in Figur

ed in Section 4
vious publicati
erformance o
hat we describ
NVIDIA C2050

ers/scatters, G
oid uncoalesce
or reducing m
h here refers t
U. Finally, the u
than current C

ming algorithm
ns is 3.8X - hig

MD width, and

riety of fields t
 [44, 42, 14, 2

a platform-spe
PUs. While the
ed and naively
the Ninja perf

nja gap and us
We show that b
ic techniques t

gh Traditional Pro

re 6 on the NV

4.1 are applica
ions [18, 38, 3
n GPUs. In this
bed in Section
0 Tesla GPU fo

GPU best codin
ed global mem

memory latency
to the transfe
use of SIMD-fr
CPUs.

mic changes on
gher than the
hence sub-opt

hat show 10-
2, 28, 32]. Lee
ecific software
ese works mak
y written code
formance gap.

se traditional p
by combining
to overcome a

ogramming and Co

IDIA Tesla C20

able to a variet
35] have elabo
s section, we s
n 4.1 on GPU p
or this study.

ng practices (e
mory accesses

y and bandwid
er and manage
riendly algorit

n the GPU. Th
e 2.5X we gain
timal algorithm

100X perform
e et al. [29] sum
e optimization
ke it evident th
e, they do not
.

programming m
modern comp
architectural b

ompiler Technolog

050 GPU.

ty of
orated on
show the
performance a

e.g. the CUDA
– including
dth usage.
ement of data
hms greatly

e average
n on CPUs. This
mic choices

mance gains
mmarized
 guide for a
hat a large
 describe the

models to
iler technolog

bottlenecks, w

gy

as

C

s

y
we

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

can bridge the gap to just 1.4X. Production compilers have recently started to support parallelization
and vectorization technology that have been published in compiler research. Examples of such
technology include OpenMP [10] for parallelization available in recent GCC and ICC compilers, as well
as auto-vectorization technology [33], dealing with alignment constraints [17] and outer loop
vectorization [34]. These technologies have been made available using straightforward pragmas and
technology like CEAN [23], a part of the CilkPlus [22] technology in the recent ICC ComposerXE
compiler release.

However, naively written code may not scale with number of cores or SIMD width even with compiler
support since they are bottlenecked by architectural features such as memory bandwidth, presence
of gathers/scatters or because the fundamental algorithm cannot be vectorized due to tight
dependencies. In such cases, algorithmic changes such as blocking, SOA conversion and SIMD-friendly
algorithms are required. There have been various techniques proposed to address these algorithmic
changes, either using compiler assisted optimization [27], using cache-oblivious algorithms [6] or
specialized languages like Sequoia [21]. Such changes usually require programmer intervention and
programmer effort, but they can be used across a number of architectures and generations. For
instance, a number of papers have shown the impact of similar algorithmic optimizations on GPUs in
CUDA [18, 38]. Further, a number of papers have made similar changes to CPUs and GPUs and shown
benefit to both [32, 39].

While our work focuses on traditional programming models, there have been radical programming
model changes proposed to bridge the gap. Recent suggestions include Bamboo [47] for an object
oriented many-core programming approach, GPGPU approaches for parallelism management [46], the
Berkeley View project [3] and OpenCL for programming heterogeneous systems. Our work makes a
case that for a set of important real-world throughput applications, it is not necessary to adopt such
models. There have also been library oriented approaches proposed such as Threading Building Blocks
(TBB), Intel Math kernel Library, Microsoft Parallel Patterns Library (PPL), Intel Performance Primitives
etc. We believe these are orthogonal and used in conjunction with traditional models.

There is also a body of literature in adopting auto-tuning as an approach to bridging the Ninja gap for
selected applications [43,14]. Autotuning results can be significantly worse than the best-optimized
code. For example, 7-point stencil computation is a specific application from our benchmark list for
which auto-tuning results have been shown [14]. Our best-optimized code is about 1.5X better in
performance than the auto-tuned code [32]. Since our Ninja gap for stencil is only 1.1X, our compiled
code performs around 1.3X better than auto-tuned code. We expect our compiled results to be in
general competitive with auto-tuned results, while offering the advantages of using standard tool-
chains that can ease portability across processor generations.

Finally, there has been recent work that attempts to analyze the Ninja gap both for GPUs [7] and
CPUs [30]. These works either focus narrowly on a single benchmark or do not use highly optimized
code as a target to bridge the Ninja gap. For example, the benchmarks analyzed by Luk et al. [30] are
2-10X slower than our optimized performance numbers.

8. Conclusions

In this work, we showed that there is a large Ninja performance gap of 24X for a set of real-world
throughput computing benchmarks for a recent multi-processor. This gap, if left unaddressed will

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

inevitably increase. We showed how a set of well-known algorithmic techniques coupled with
advancements in modern compiler technology can bring down the Ninja gap to an average of just
1.3X. These changes only require low programming effort as compared to the very high effort in
Ninja code.

9. References

 [1] S. J. Aarseth. Gravitational N-body Simulations Tools and Algorithms. 2003.

[2] N. Arora, A. Shringarpure, and R. W. Vuduc. Direct N-body Kernels for Multicore Platforms. In ICPP,
pages 379–387, 2009.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of parallel computing research: A view
from berkeley. Technical Report UCB/EECS-183, 2006.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: characterization and
architectural implications. In PACT, pages 72–81, 2008.

[5] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political Economy,
81(3):637–654, 1973.

[6] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious algorithms. In SPAA,
pages 189–199, 2010.

[7] R. Bordawekar, U. Bondhugula, and R. Rao. Can CPUs Match GPUs on Performance with
Productivity?: Experiences with Optimizing a FLOP-intensive Application on CPUs and GPU. IBM
Research Report, RC25033, August 2010.

[8] A. Brace, D. Gatarek, and M. Musiela. The Market Model of Interest Rate Dynamics. Mathematical
Finance, 7(2):127–155, 1997.

[9] B. Casper. Reinventing DRAM with the Hybrid Memory Cube.
blogs.intel.com/research/2011/09/hmc.php, 2010. Research@Intel.

[10] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel Programming in
OpenMP, 2010.

[11] Y. K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar, et al. Convergence of recognition,
mining, and synthesis workloads and its implications. Proceedings of the IEEE, 96(5):790–807, 2008.

[12] J. Chhugani, A. D. Nguyen, et al. Efficient implementation of sorting on multi-core simd cpu
architecture. PVLDB, 1(2):1313–1324, 2008.

[13] W. J. Dally. The End of Denial Architecture and the Rise of Throughput Computing. Keynote
speech at Desgin Automation Conference, 2010.

[14] K. Datta. Auto-tuning Stencil Codes for Cache-Based Multicore Platforms. PhD thesis, EECS
Department, University of California, Berkeley, Dec 2009.

[15] R. A. Drebin, L. C. Carpenter, and P. Hanrahan. Volume rendering. In SIGGRAPH, pages 65–74,
1988.

[16] P. Dubey. A Platform 2015 Workload Model: Recognition, Mining and Synthesis Moves Computers
to the Era of Tera. Intel, 2005.

[17] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd architectures with alignment
constraints. In PLDI, pages 82–93, 2004.

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

[18] F. Feinbube, P. Troger, and A. Polze. Joint Forces: From Multithreaded Programming to GPU
Computing. IEEE Softw., 28:51–57, January 2011.

[19] M. B. Giles. Monte carlo evaluation of sensitivities in computational finance. Technical report,
Oxford University Computing Laboratory, 2007.

[20] A. G. Gray and A. W. Moore. ‘N-Body’ Problems in Statistical Learning. In NIPS, pages 521–527,
2000.

[21] M. Houston, J.-Y. Park, M. Ren, T. Knight, K. Fatahalian, A. Aiken, W. Dally, and P. Hanrahan. A
portable runtime interface for multi-level memory hierarchies. In PPoPP, pages 143–152, 2008.

[22] Intel. A Quick, Easy and Reliable Way to Improve Threaded Performance: Intel Cilk Plus, 2010.

[23] Intel. Using Parallelism: (CEAN) C/C++ Extension for Array Notation, 2010.

[24] Intel. Intel Advanced Vector Extensions Programming Reference. White paper, June 2011.

[25] L. Ismail and D. Guerchi. Performance Evaluation of Convolution on the Cell Broadband Engine
Processor. IEEE PDS, 22(2):337–351, 2011.

[26] M. Kachelrieb, M. Knaup, and O. Bockenbach. Hyperfast perspective cone-beam backprojection.
IEEE Nuclear Science, pages 1679–1683, 2006.

[27] M. Kandemir, T. Yemliha, S. Muralidhara, S. Srikantaiah, M. Irwin, et al. Cache topology aware
computation mapping for multicores. In PLDI, 2010.

[28] C. Kim, J. Chhugani, N. Satish, et al. FAST: Fast Architecture Sensitive Tree search on modern CPUs
and GPUs. In SIGMOD, pages 339–350, 2010.

[29] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyanskiy, S.
Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU. ISCA, pages 451–460, 2010.

[30] C.-K. Luk, R. Newton, et al. A synergetic approach to throughput computing on x86-based
multicore desktops. IEEE Software, 28:39–50, 2011.

[31] T. N. Mudge. Power: A first-class architectural design constraint. IEEE Computer, 34(4):52–58,
2001.

[32] A. Nguyen, N. Satish, et al. 3.5-D Blocking Optimization for Stencil Computations on Modern CPUs
and GPUs. In SC10, pages 1–13, 2010.

[33] D. Nuzman and R. Henderson. Multi-platform auto-vectorization. In CGO, pages 281–294, 2006.

[34] D. Nuzman and A. Zaks. Outer-loop vectorization: revisited for short simd architectures. In PACT,
pages 2–11, 2008.

[35] Nvidia. CUDA C Best Practices Guide 3.2, 2010.

[36] Oracle. Oracle TimesTen In-Memory Database Technical FAQ, 2007.

[37] V. Podlozhnyuk. Black-Scholes option pricing. Nvidia, 2007.

[38] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. mei W. Hwu. Optimization
principles and application performance evaluation of a multithreaded GPU using CUDA. In PPoPP,
pages 73–82, 2008.

[39] N. Satish, C. Kim, J. Chhugani, et al. Fast sort on CPUs and GPUs: a case for bandwidth oblivious
SIMD sort. In SIGMOD, pages 351–362, 2010.

Technical Report Closing the Ninja Performance Gap through Traditional Programming and Compiler Technology

[40] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake, J. Sugerman,
R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee: A Many-Core x86 Architecture
for Visual Computing. SIGGRAPH, 27(3), 2008.

[41] K. B. Skaugen. HPC Technology-Scale-Up and Scale-Out. lecture2go.uni-
hamburg.de/konferenzen/-/k/10940. ISC10 Keynote.

[42] M. Smelyanskiy, D. Holmes, et al. Mapping High-Fidelity Volume Rendering for Medical Imaging to
CPU, GPU and Many-Core Architectures. IEEE Trans. Vis. Comput. Graph., 15(6):1563–1570, 2009.

[43] M. C. Sukop and D. T. Thorne, Jr. Lattice Boltzmann Modeling: An Introduction for Geoscientists
and Engineers. 2006.

[44] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. A. Yelick. Optimization of a lattice boltzmann
computation on state-of-the-art multicore platforms. J.Parallel Distrib. Comput., 69(9):762–777, 2009.

[45] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee. An optimized 3d-stacked memory
architecture by exploiting excessive, high-density tsv bandwidth. In HPCA, pages 1–12, 2010.

[46] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for memory optimization and parallelism
management. In PLDI, pages 86–97, 2010.

[47] J. Zhou and B. Demsky. Bamboo: a data-centric, object-oriented approach to many-core software.
In PLDI, pages 388–399, 2010.

