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ABSTRACT
Due to the growing complexity and massive amount of
parameters required for modern convolution neural net-
works, computing convolutions in network layers is time-
consuming and considered a bottleneck for both the training
and testing process. Consequently, there is plentiful ongo-
ing research that aims to speed up these computations. In
this work, we investigate and implement three algorithms
that are widely used to compute convolutional layers. By im-
plementing the serial implementations as our baselines, we
were able to achieve speedups for all algorithms using shared
memory multiprocessing and parallel computing APIs such
as OpenMP and CUDA. To validate our implementations, we
structured experiments that mimic an actual convolutional
layer. We identify interesting characteristics and trends be-
tween different algorithms.

This work benefited from access to the University of Oregon
high performance computer, Talapas.

1 INTRODUCTION
Recent advances in machine learning are dominated by deep
neural networks (DNN). Especially for computer vision tasks,
ranging from image classification to image synthesis, convo-
lutional deep neural network architectures are the de-facto
standard. The convolutional layers ability to capture local-
ized features within the input data without over-expanding
the parameter space is considered as a significant improve-
ment than its previous counterpart, the fully connected layer.

Convolutional layers coupled with deep neural network ar-
chitecture, allows the model to “understand” complicated
representations within the input image as the depth of the
network deepens, and constitutes as a key building block for
the success of deep convolutional neural network models
even to this day. However, the recent advances in convolu-
tional neural network did not come free of price. As complex-
ity of network architectures grew exponentially the amount
of computation required has also grown in parallel. Although
these augmentations were somewhat manageable by similar

improvements of modern SIMD architectures, most impor-
tantly, graphical processing units (GPU), the computation
of CNNs are still a considerable bottleneck for training and
testing CNNs. From our preliminary survey it was surprising
to perceive the lack of standardized approaches to convo-
lution computations. We were intrigued to discover that
improving the overall speed and efficiency was still an ac-
tively researched problem. [4, 10, 12, 13]

For this project, we have implemented convolution computa-
tions using three different algorithms that are widely used in
practice: direct convolution algorithm, the fast fourier trans-
form (FFT) algorithm and the Winograd algorithm. We use
our serial implementations as the baseline for comparison
and derive speedups that we observed when implemented
using OpenMP and CUDA. [1, 2]

In the following sections, we introduce basic properties of
convolution and the characteristics of each algorithm. We
provide extensive detail regarding the design and implemen-
tation of our serial, OpenMP, CUDA algorithms, as well as
our experimental design. Finally, we illustrate our experi-
ments and present our results followed by our analysis.

1.1 Convolution
Convolution is an operation that returns a function j as the
result of combining functions two input functions f and д.
Intuitively, convolution can be understood as the amount of
“overlap” between two functions f , д as д is "shifted" over the
domain of f . The result of convolving two functions is then
an integral representing this property. Convolution can be
understood both linearly and circularly; linear convolution
extends the integral over the complete domain of the function
while circular convolution extends the integral over a fixed-
period at an arbitrary location.

1.1.1 Discrete Convolution. Several computing applications,
including applications of CNNs, image processing, and signal
processing, employ a method of convolving discrete series.
Discrete convolution of two one-dimensional series f and д,
involves summing the product of their overlapping indices
as д is "shifted" over f , this form follows:
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(f ∗ д)[n] =
M∑

i=−M

f [i] ∗ д[n + i]

In the context of CNNs—as well as general image process-
ing, discrete convolution is adapted for multidimensional
discrete series often taking the form of visual imagery. In
two dimensions this can be visualized for two 2D signals d ,
f by "sweeping" f over d in steps and summing the product
of every overlapping pair of elements at every step. Algo-
rithm 1 illustrates two-dimensional discrete convolution of
two series A,B with dimensions X ,Y and U ,V respectively
where a final series C with dimensions, X ,Y is the result of
convolving the two series.

Algorithm 1 2D Discrete Convolution: given three matrices
A, B, and C , of sizes X × Y ,U ×V , and X × Y respectively.

for x = 0 to X do
for y = 0 to Y do
for u = 0 toU do

for v = 0 to V do
Cx ,y += dx+u−U /2,y+v−V /2 ∗ fu ,v

end for
end for

end for
end for

Direct convolution remains a fairly computationally expen-
sive task. For two discrete 1D series a, b with sizes x , y
respectively, the algorithmic complexity of convolving them
is O(xy). However, for two discrete 2D matrices A, B with
dimensions X ,Y and U ,V respectively, the algorithmic com-
plexity of convolving them is O(XYUV ).

1.2 Fast Fourier Transform
Circular discrete convolution (i.e. concerning periodic func-
tions) can be accomplished by applying the convolution theo-
rem. The convolution theorem follows for discrete periodic
functions f , д:

F [f ∗ д] = F [f ] · F [д]

where F denotes a complex Fourier transformation, "∗" de-
notes convolution, and "·" denotes point-wise multiplication.
[14] From this the inverse Fourier transformation, F −1 is
applied and yields the form:

f ∗ д = F −1[F [f ] · F [д]]

The Fourier transformation is a method of transposing
a function between its domain and its domain in frequency.

In other words, the transform when applied to a function f
produces a function F [f ] such that F [f ](x) is the frequency
of the value x in f .

There exist several algorithmic implementations of the Fourier
transform, many of which are referred to as fast Fourier trans-
formations (FFT.) These methods, when applied with the con-
volution theorem, typically lead to methods of convolution
with algorithmic complexity better than direct convolution
(O(n2m2).)

1.2.1 Cooley–Tukey. There exist several unique FFT algo-
rithms; the exploration and refinement of improved FFT
methods remains an active area of research. However, the
Cooley–Tukey algorithm is among themost well knownmeth-
ods. The Cooley–Tukey algorithm is a divide-and-conquer
technique that computes the discrete fourier transformation
(DFT) of a discrete series by first computing the DFT of two
interleaved subsections of the series. [5] A given result of
DFT Xk from a series X of size N can be founds as follows:

Xk =

N /2−1∑
m=0

x2me
−
2πi
N

(2m)k
+

N /2−1∑
m=0

x2m+1e
−
2πi
N

(2m+1)k

wherem = n/2. [5] This operation bifurcates the original
series into interleaved even-odd indexed subsections. The
DFT is computed recursively for each subsection. The term
following the summation is often referred to as a root of
unity, that is, a term when raised to a positive integer n, is 1.
This technique yields an algorithmic complexity of O(nloдn)
for a 1D discrete series.

1.2.2 Applications & Constraints. Discrete convolution im-
plemented using the convolution theorem (FFT convolution)
has inherent algorithmic properties that reveal application
areas distinct from direct convolution. FFT convolution is
characteristically circular; circular convolution requires the
two series be stable and periodic. In practice, circular convo-
lution is invoked on non-periodic images and from this there
exists methods determining "safe regions" within a circular
convolution where the result can be presumed accurate. This
property permits non-periodic images to be zero-padded,
incurring some computational overhead while allowing for
accurate results using circular methods.

FFT convolution uniquely requires that the two series being
convolved are the same dimensions. This requirement had
lead to several different techniques to accomplish the task of
convolving discrete series of unequal dimensions; techniques
include zero-padding from different sides of the series, evenly
padding the series, up-scaling the series, among others. [8]
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Further, the Cooley–Tukey algorithm requires that size of
the series be a power of two.

One dimensional FFT convolution for two series of length n
has an algorithmic complexity of O(nloдn) when implement-
ing Cooley–Tukey. However, the Cooley–Tukey algorithm
can be applied to accomplish multidimensional FFT convolu-
tion. To accomplish this, we take advantage of the separabil-
ity property of DFT. That is, to accomplish multidimensional
DFT, it is enough to take the DFT of every dimensional row/-
column. This is illustrated by Algorithm 2. This method for
2D discrete convolution yields an algorithmic complexity
of O(n2loдn) to convolve two square n × n matrices. While
this complexity is certainly better than the equivalent O(n4)
complexity of direct convolution, it suits a different applica-
tion area. For example, when the two input matrices diverge
in size, useful work decreases while work remains constant.
Further, extra work is required to upscale the input matrices
and downscale the output.

Algorithm 2 2D FFT Convolution: given three matrices, D,
F , and R, all of which have the dimension N × N .

for row of D do
dft(row)

end for
for column of D do
dft(column)

end for
for row of F do
dft(row)

end for
for column of F do

dft(column)
end for
for i in size do
Ri = Di × Fi

end for
for i in size do
Ri = conj(Ri )

end for
for row of R do

dft(row)
end for
for column of R do
dft(column)

end for
for i in N do
Ri = conj(Ri )

end for

1.3 Winograd Algorithm
Similar to the FFT algorithm, the Winograd algorithm intro-
duces a set of pre-transforms and post-transforms to reduce
the number of multiplications of the actual convolution com-
putation. It is based on the minimal filtering algorithm first
proposed by Winograd [15]. The key concept behind the
Winograd algorithm is that by applying certain transforma-
tions, the identical computation can be performed with a
lesser number of computations.

To illustrate this characteristic, we give an example for the
convolution of two 1d sequences. Let’s say that we are try-
ing to convolve two sequences [d0,d1,d2,d3] and [f0, f1, f2].
The convolution results of these two sequences are [d0 f0 +
d1 f1 +d2 f2,d1 f0 +d2 f1 +d3 f2]. Note that among the various
“modes” of convolutions, for this example we illustrate the
“valid” mode where no extra padding is being added to any
of the sequences. This convolution computation requires
in total, 6 multiplications. The Winograd algorithm, how-
ever, reduces the number of multiplications by introducing
following transforms:

Y = AT [(Gf ) ◦ (BTd)]

where Y is the output, f and d are respectively the input
sequences and ◦ is the element-wise product. AT , G and BT
are transformation matrices where each have matrix form
as following:

AT =

[
1 1 1 0
0 1 −1 −1

]
G =


1 0 0
1
2

1
2

1
21

2 − 1
2

1
2

0 0 1


BT =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 .

Gf is


f0

1
2 (f0 + f1 + f2)
1
2 (f0 − f1 + f2)

f2

 and B
Td is


d0 − d2
d1 + d2
−d1 + d2
d1 − d3


Since each by-product Gf and BTd have 4 operands, the

actual convolution of the two input sequences requires 4
multiplications instead of 6. Note that for this example, we
provided an example for where the input sequences were
each of length 4 and 3, and the output length was 2. These
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set of transformations are specific to this exact case and for
different lengths of input sequences a different set of trans-
formations need to be induced. These transform matrices
can induced using the Chinese Remainder Theorem [6].

Theoretically, the larger the input sequences, the more num-
ber of multiplications can be reduced. However, the required
transformations AT , G and BT also increase quadratically
in size. Because applying transformations is a form of ma-
trix multiplication, the computation cost for applying these
transformation soon outweigh the benefits of the reduction
in multiplications for larger input sequences.

2 METHODOLOGIES
We sought to explore the properties of the three methods
of convolution discussed for their available performance
improvements through two different parallelization tech-
niques. Namely, the three algorithms were parallelized using
OpenMP and CUDA.[1, 2] This section details the methods
we derived to optimize these operations and to test their
performance.

2.1 Algorithmic Design
The design and implementation of algorithms is critical
to their speed in performance, both in serial and in par-
allel. Each method of convolution that we explored exposed
unique properties that we were able to take advantage of
in-order to achieve performance speedups.

Every 2D convolution operation we created follows the func-
tion signature void convolve_2d(convolve_2d_t *op)
where
convolve_2d_t is defined as follows:

/* convolution_types.h */

...

typedef struct {

float *data,

*filter;

size_t data_size_x,

data_size_y,

filter_size_x,

filter_size_y;

float *result;

} convolve_2d_t;

where data is a pointer to an array with data_size_x ×

data_size_y floating point values, filter is a pointer to an
array with filter_size_x × filter_size_y floating point
values, and result is a pointer to an arraywith data_size_x
× data_size_y floating point values. Contiguous allocation
in this way may improve the performance with regard to

memory operations, however the topic is far too dynamic
to make broad conclusions. We chose to align our memory
this way with the goal of incurring fewer paging lookups,
however we consider this simply "best practice."

2.1.1 Direct Convolution. Direct linear convolution as we
have implemented follows very closely toAlgorithm 1. Our
initial implementation involved four nested for loops, one
for each dimension of each matrix. Improving upon this de-
sign, we unrolled two of the for loops, resulting in only two
nested for loops. This was a natural first step due to the
memory layout we had already selected. In fact, the final
design we selected iterates over the entirety of data, then
filter in the inner loop. To accomplish this we calculate
the indices of the arrays representing two-dimensional ma-
trices of the current indices in each for loop. From here we
validate the indices with a conditional before adding it to
a rolling sum that appended to the result at the end of the
inner-loop.

To parallelize this implementation in OpenMP we settled
on applying a #pragma parallel for to the outer loop. [2]
For two matrices of size n × n,m ×m this implementation
means that each thread works one cell of the result matrix in
parallel. Attempts were made to parallelize the OpenMP ver-
sion further with nested parallelism, but these designs were
not effective for the task. [2] Under conditions when filter
was small it did not benefit the design to create more threads.

We parallelized our CUDA implementation with the same
approach; initially we sought to divide the operation’s work
such that one result cell of the result matrix would be com-
puted by one CUDA thread. We explored computing the
result matrix in part, using atomic operations to sum the
value, but found that this complicated the design and did not
lead to immediate performance improvements. We chose to
statically define a CUDA block size and to divide it by the
size of result to determine the number of blocks needed.

2.1.2 FFT Convolution. We implemented FFT convolution
following the convolution theorem. We began by implement-
ing radix-2 Cooley-Tukey DFT. Our initial implementation
was computed recursively and allocated a temporary array
of size N × loдN for an array of length N . We modified this
design later by computing it iteratively instead and only al-
locating an array of size 2N , swapping pointers with each
loop iteration. While this reduced the spacial complexity, it
made this portion of the algorithm more difficult to paral-
lelize without modifying the design. A notable optimization
we accomplished was a "blanket" unrolling of the interleaved
DFT operation. Instead of having a two for loops, one to
iterate through the number of DFTs in the current layer and
another to compute inside on the individual DFTs, we were
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able to to unroll this loop. In total, we were able accomplish
DFT using two for loops, one for the radix-2 decimation
(O(loдn)) and another for every element in the array (O(n).)

Here, it is necessary to clarify that FFT covolution inter-
nally requires complex arithmetic. We used the C99 standard
library complex type specifier and its associated functions
defined by complex.h. However, because the inputs and
outputs are float arrays without a complex type specifier
we incur some penalty when converting to and from float
complex. This is included in our performance measurements
of this implementation. From here, we follow the form of
Algorithm 2 when implementing FFT convolution.

To parallelize our implementation in OpenMP we first at-
tempted to parallelize the DFT operation. [2] We explored
parallelizing the inner-loop contributing to O(n) algorithmic
complexity, but we found more success applying parallelism
to the loop making the individual DFT calls itself. We at-
tribute this to fewer context-switches and better saturation
of work.

2.1.3 Winograd Algorithm. To apply the Winograd algo-
rithm so that it can perform a generic convolution operation
for 2D images, we need to consider the following: First, we
need to expand the algorithm to be applicable for 2D se-
quences. This can be done by nesting the 1D algorithm. The
resulting computation is as follows:

Y = AT [(Gf GT ) ◦ (BTdB)]A.

As previously mentioned in Section 1.3, it doesn’t make
practical sense to apply these transforms for cases where
f and d are both large. However, when at least one input
sequence has a small size (n ≤ 3) the Winograd algorithm
becomes applicable. In the single dimensional convolution
operation point of view, the length of the filter determines
the length of the receptive field on the input. That is to say,
even when the input is a arbitrarily larger size, by slicing it
into smaller pieces that match the receptive field of the filter,
we are able to apply this algorithm.

For implementation, it is therefore necessary to slice the
input sequence into smaller subblocks. The size of the sub-
blocks is dependant upon the specific variation of the Wino-
grad algorithm. For our project, we use filter size 3 × 3 and
subblock size 4 × 4. Similar to the example shown in Sec-
tion 1.3, this operation results in a output of size 2 × 2. The
same variation was used in [10], where it first introduced
the Winograd algorithm for convolutional computations in
CNNs.

Slicing the input into 4 × 4 subblocks introduced a couple of

implemental issues. One of which was that for every 4 × 4
subblock, the output produced a 2 × 2 block. Implementing
this straightforwardly would result in the output being half
the size of the input. To avoid this issue, we sliced the sub-
block so that it would overlap the neighboring subblock by
a index of 1 on all sides. Because the output block was of
size 2× 2, the corresponding input subblock would be a 4× 4
block that surrounded the 2 × 2 block with 1 elements of
padding on the top, bottom, left and right. This allowed the
output to have an identical size as the input. The other issue
was caused by this overlapping scheme. On the edges of the
input, the subblocks to be parsed were out of index. In this
case, we filled the out of index regions as zeros so that it can
still be of size 4 × 4. Based on this subblocking scheme we
were able to deterministically split the input with sizeH ×W
into ⌈H/2⌉ × ⌈W /2⌉ subblocks.

The following step is to apply the Winograd transformation
to the data subblocks and the filter,Gf GT , BTdB respectively.
This maps each operands to 4 × 4 matrices which is then
used for element-wise multiplication Gf GT ◦ BTdB. It is in-
teresting to note that even up to this point, the actual mixing
of data and filter is not occurring. This allows all operations
up to this point to be executed without any race conditions.

Once the element-wise multiplication Gf GT ◦ BTdB is exe-
cuted, the final step is transforming the 4 × 4 by-product to
the final 2 × 2 output. This is done by multiplying the 4 × 4
matrix with a 2 × 4 AT and 4 × 2 Amatrix sequentially.

Because Winograd algorithm uses a “divide and conquer”
approach, parallelizing our implementation in OpenMP was
relatively straightforward. However, some design details
were taken into consideration. Because the prerequisite trans-
forms for the subblocks and filter were independent from the
element-wise multiplications and post-transforms, our initial
attempt was to spawn parallel regions for each step of the
process. Empirically, however, we discovered that wrapping
the entire sequence for a single subblock as a subroutine
and spawning threads for each subroutine was a superior ap-
proach. For our CUDA implementation, we initially copied all
input and filter data to the GPU and rather than implement-
ing the entire sequence into a single kernel, we implemented
each functional block as its own kernel.

2.2 Experimental Design
To effectively profile our algorithmic designs, we developed
modelled two of our our experimental groups against key
aspects of CNNs. Over the past decade, various types of con-
volutional layers were introduced and used in CNN models.
For the relatively early AlexNet type networks[9], various
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filter sizes were used ranging from 11 × 11 to 3 × 3. More
recently, ResNet was introduced where only a combination
of 3 × 3 and 1 × 1 size filters were used alongside residual
connections between layers [7].

To measure the performance applicable to CNNs, we de-
veloped two experiments modelling two distinct features of
CNNs: the Input layer-type and the Feature layer-type. We
further model performance by examining various filter sizes
in one final group.

2.2.1 Input Layer. All CNNmodels have an input layer. They
serve the purpose of feeding the raw sequences, such as im-
ages, into the model for further feature representation. In
earlier CNN architectures, larger filter sizes were used in
these layers. The idea behind it was to provide a feature
representation to the next layer that had a bigger receptive
field. In other words, it was considered to be intuitively bet-
ter when a element in the next layer was a mixture of more
signals from the input layer.

For our experiments, we simulate an input layer type compu-
tation to test our implementations performance. We use both
real images and synthetic images with the size of 256 × 256,
512× 512 and 1024× 1024 pixels. All have RGB channels. We
also vary the filter sizes from 3 × 3, 5 × 5 and 7 × 7.

2.2.2 Feature Layer. Further into a typical CNN model ar-
chitecture comes a feature layer. Traditionally, it can be also
called as the hidden layer. The structure of the feature layer is
drastically different from the input layer. While input layers
have larger height and width dimensions with small number
of channels, typical feature layers have smaller height and
width sizes and have substantially larger number of chan-
nels. For the recently prevalent ResNet models, the height
and width range between 56× 56 to 7× 7 while the channels
range from 64 to 1024.

To test how each of our implementations performed on these
type of computations, we mimicked the feature layer by fix-
ing the height and width to 16 × 16 for the input and 3 × 3
for the filter and varied the number of channels for the input
and filter from 256, 512, 1024.

2.2.3 Comprehensive Trials. The two types of convolutions
computations required in a CNN are similar in a way that
the sizes of two sequences are significantly different. For
convolution computations required in input layers, the size
of the input can be hundreds of thousands times larger than
the size of the filter. Even for feature layers, the height and
width of the feature “tensors” can be up to 30 times larger
than the size of the filter. We thought it would be worth in-
vestigating the performance of each implementations when

this was not the case.

For this purpose, we designed a comprehensive experiment
that tested each implementations performance for various
input to filter size ratios. For the experiments, the input size
was fixed to 512 × 512 while the filter size ranged from 2 × 2
to 512 × 512.

3 RESULTS
We evaluated our designs on Talapas. [3] Our code ran on one
node using the 28 available cores of the E5-2690v4 processor
one NVIDIA Tesla K80 GPU accelerator. We measured run-
time using clock-cycles determined by the TSC instruction.
The results of all of our convolution operations measured
runtime beginning with allocated and initialized memory for
the inputs and outputs and ending when the result of the op-
eration is copied back. We validate our results by comparing
the results of each operation against a baseline function. For
most operations this baseline is the direct serial implemen-
tation, however because FFT convolution is circular, results
for FFT are compared against the FFT serial implementation.

3.1 Input Layer
For input layer experiments, we used real and synthetic im-
ages with the sizes of 256 × 256, 512 × 512 and 1024 × 1024.
All have three channels that represent the RGB colors. In
actual CNN models, the weight of the filters are learned
through backpropagation [11]. For our experiments, how-
ever, we hand-coded in some simple filters to validate our
implementations. We used two types of filters: a 2D Gaussian
blur filter and 2D second derivative filter. Figure 1 shows the
convolution results for these filters and images.

For quantitative comparisons, Figure 2 exhibits the runtime
for all implementations. Table 2 shows the actual runtimes
for all implementations. The prefix D, W and FFT stands for
the type of algorithm; direct, Winograd and FFT. The postfix
S, OMP and CUDA represents the implementation method,
serial, OpenMP and CUDA. [1, 2]

For serial implementations, results show that throughout
all input sizes, the Winograd algorithm showed the best per-
formance. For input size 1024×1024, theWinograd algorithm
was up to 60% faster than the direct implementation. The
performance of the FFT implementations, however, was sig-
nificantly slower than the other two implementations. This
can be accounted by the characteristics of the FFT algorithm.
Since the algorithm requires both the input and filter to be in
identical sizes, when the filter is relatively smaller than the
input, it causes an unnecessary computational overhead that
results in longer runtime. More details on this characteristic
will be explained in Section 3.3.
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Figure 1: Filters and input-output images from input
layer experiment

Implementations
Input size D-S D-OMP D-CUDA W-S
256 × 256 0.0185 0.0188 1.50E-05 0.0117
512 × 512 0.0741 0.0774 1.63E-05 0.0475
1024 × 1024 0.2960 0.3129 3.03E-05 0.1864
Input size W-OMP W-CUDA FFT-S FFT-OMP
256 × 256 0.0025 0.0008 0.8914 0.0435
512 × 512 0.0091 0.0011 4.0128 0.1745
1024 × 1024 0.0387 0.00251 7.8287 0.7846

Table 1: Runtime(seconds) comparison for real images
with 3 × 3 filter convolutions

Figure 2: Runtime for real input images with size 256×
256, 512 × 512 and 1024 × 1024 using 3 × 3 filters

For OpenMP implementations, the performance gain the
Winograd algorithm was able to achieve was even more
impressive. For input size 512 × 512, the Winograd imple-
mentation was 8.46 times faster than the direct algorithm.
For FFT implementations, despite still being slower than

Figure 3: Runtime for synthetic input imageswith size
256 × 256, 512 × 512 and 1024 × 1024 using 3 × 3 filters.
(Lower is better)

direct and Winograd, we can see compared to the serial im-
plementation there was a 20 times speed up.

The results for CUDA implementations were interesting
considering that the direct implementation outperformed
the Winograd implementation. While the Winograd still
gained up to 9 times speedup compared to OpenMP imple-
mentations, the runtime of direct implementations were up
to 10,000 times faster. Counter-intuitive at first, we believe
this can be attributed to the difference in number of threads
available in CUDA. Because the convolution computations
can be split into smaller parallelizable “work” than the Wino-
grad algorithm, it was able to achieve speedups in orders of
magnitudes.

Figure 3, Figure 4, Figure 5 show comparative experiment
results for filter sizes 3×3, 5×5 and 7×7 with synthetic input
images. Although exact performance gains may slightly vary,
the characteristics of the results were consistent with our
previous analysis. Note that the Winograd implementation
results are only included in experiments using 3 × 3 filter
size.

3.2 Feature Layer
One of the key differences in convolution computations be-
tween feature layers and input layers is that it has smaller
height and width dimensions but larger number of channels.
All experiments used input size 16 × 16 and filters with size
3 × 3 while the number of channels varied from 128 to 1024.

In Figure 6 we show the runtimes for serial implementa-
tions for all three algorithms. We can see that for all data
arrangements, the Winograd algorithm outperforms both
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Figure 4: Runtime for synthetic input imageswith size
256 × 256, 512 × 512 and 1024 × 1024 using 5 × 5 filters

Figure 5: Runtime for synthetic input imageswith size
256 × 256, 512 × 512 and 1024 × 1024 using 7 × 7 filters

the direct and FFT algorithm. For the case of 16 × 16 × 512,
Winograd implementation shows 60% speedup compared
to direct implementation. Also, unsurprisingly, we can ob-
serve that as the data arrangement gets larger, the runtime
increases quadratically for all implementations.

In Figure 7 we plot the runtimes for OpenMP implemen-
tations for all three algorithms. The relative runtimes are
similar to their serial counterparts, where Winograd outper-
forms direct implementation by a factor of 2. Interestingly,
however, the absolute runtimes are orders of magnitudes
slower than the serial versions. Our interpretation of these
results is that the experimental design of the feature layer
causes too much context-switching to allow for effective
parallelism; while the input layer passed a relatively small
filter (e.g. 5× 5) over a relatively large images (e.g. 512× 512,)
the feature layer passed the same small filter over hundreds

Implementations
Input size D-S D-OMP D-CUDA W-S

128 0.00309 0.04661 0.00018 0.00195
256 0.00613 0.09263 0.00034 0.00389
512 0.01241 0.18552 0.00067 0.00775
1024 0.02449 0.37178 0.00133 0.01550

Input size W-OMP W-CUDA FFT-S FFT-OMP
128 0.02241 0.00063 0.00305 0.04630
256 0.04503 0.00115 0.00619 0.09275
512 0.08971 0.00234 0.01218 0.18573
1024 0.18055 0.00513 0.02440 0.37150

Table 2: Runtime(seconds) comparison for feature
layer convolution computations

Figure 6: Runtime comparison for serial implementa-
tions for feature layerswith size 16×16×128, 16×16×256,
16 × 16 × 512 and 16 × 16 × 1024 using 3 × 3 filters

of small images. For CUDA however, this is not an issue due
to the abundance in threads and our experiment results back
our assumption by showing the direct and Winograd CUDA
implementations attaining up to ×17 and ×3 speedups re-
spectively. In retrospect, by further optimizing the implemen-
tations for OpenMP alongside the data access patterns, we
believe it is possible to have OpenMP implementations with
better performance. Future work could consider designing
convolution operations specifically for data arrangements
with many small images; a "2.5-D" convolution operation
might allow for multiple images to be processed without
context-switching. The speedup comparison for direct and
Winograd implementation individually are shown in Figure
8 and Figure 9.

3.3 Comprehensive Trials
We performed a block of comprehensive trials for 512 × 512
matrices where for each trial the filter size was increased
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Figure 7: Runtime comparison for OpenMP imple-
mentations for feature layers with size 16 × 16 × 128,
16 × 16 × 256, 16 × 16 × 512 and 16 × 16 × 1024 using 3 × 3
filters

Figure 8: Direct convolution speedup comparison for
feature layers with size 16 × 16 × 128, 16 × 16 × 256, 16 ×
16 × 512 and 16 × 16 × 1024 using 3 × 3 filters

by a power of two, starting at 2 × 2. These results illustrate
the complexity of direct convolution; immediately, the direct
serial implementation’s runtime is multiplied by four when
the area of the filter is multiplied by four. Both direct parallel
implementations also succumb to this trend, however this
delayed to degree in both implementations. This characteris-
tic is illustrated by Figure 10 wherein the runtime for the
OpenMP and CUDA direct serial implementations are de-
pressed until the filter size grows beyond 16 × 16. For filters
larger than 16 × 16, the parallelized direct serial implemen-
tations follows the complexity of the serial implementation.
Note however, for Figures 10, 11, the vertical axis scales
logarithmically, implying a significant difference between
the runtimes/speedups of the different implementations.

Figure 9: Winograd algorithm speedup comparison
for feature layers with size 16 × 16 × 128, 16 × 16 × 256,
16 × 16 × 512 and 16 × 16 × 1024 using 3 × 3 filters

From Table 3, we observed a ×20 speedup using OpenMP
and a×72 speedup using CUDAwith a 32×32 filter. However,
this speedup becomes less meaningful as the complexity of
the operation grows too strongly with the filter size. Under
conditions when the filter size is larger, we observed that the
FFT implementations were faster than the direct implemen-
tations; filter size is not a direct factor in FFT convolution’s
complexity, however data size is a direct factor. This obser-
vation suggests a split problem-space between direct and
FFT convolution. For large filters it appears that FFT convo-
lution is better, but for small filters it would appear that the
direct method is still faster. We illustrate this bifurcation in
Figure 11 where direct CUDA convolution has the largest
speedup on the left of graph (denoting small filter sizes) and
the FFT OpenMP convolution implementation has the largest
speedup on the right of the graph (denoting large filter sizes.)

Future work could consider how to further optimize FFT
in both serial and in parallel. Calculating the root of unity
at each step in the Cool-Tukey algorithm is a fairly com-
pute heavy task that might benefit from memoization or
pre-computation in certain cases. Otherwise, a modified al-
gorithm that combines row/column traversing for loop with
the Cooley-Tukey algorithmmight benefit parallel implemen-
tations by reducing context-switching.

4 CONCLUSION
The increasing complexity of constructing and training con-
volutional neural networks (CNNs) has stirred interest in
improving convolution operations as they are considered
a bottleneck to network design. Consequently, there exist
numerous ongoing research topics aiming to improve the



Parallel Processing, Fall 2019, University of Oregon SOH, MCLAUGHLIN

Implementations
Filter D-S D-OMP D-CUDA FFT-S FFT-OMP
2 × 2 0.0362 0.0811 0.0079 4.0020 0.1813
4 × 4 0.1281 0.0977 0.0085 4.0065 0.1749
8 × 8 0.4890 0.0893 0.0127 4.0057 0.1750
16 × 16 1.9295 0.1249 0.0317 4.0204 0.1748
32 × 32 7.7966 0.3915 0.1072 4.0056 0.1751
64 × 64 29.905 1.4204 0.3702 4.0051 0.1881
128 × 128 115.75 5.4992 1.2086 4.0016 0.1750
256 × 256 453.95 21.712 4.0967 4.0099 0.2752
512 × 512 1745.5 83.389 14.634 4.0004 0.1809

Table 3: Runtime (seconds) comparison for synthetic
512 × 512 images convolved with various filter sizes

Figure 10: Comprehensive experiment results. Run-
time comparison for various filter sizes (lower is bet-
ter.)

Figure 11: Comprehensive experiment results.
Speedup comparison for various filter sizes (higher is
better.)

performance of convolutions. We implemented three meth-
ods of performing discrete convolution that are widely used
in CNNs: direct convolution, fast Fourier transformation, and
the Winograd algorithm. We evaluate each implementation
for characteristics that enable parallelism. After evaluation,
we apply parallelism to the three implementation using both
OpenMP and CUDA parallelism APIs. We share experiments
that we constructed to measure useful speedup due to par-
allelism within the context of a CNN, as well as the direct
performance of convolution operations. We demonstrate
significant speedups by applying parallelism, for all three
methods.
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