
CIS 431/531
Intro to Parallel Computing
Lecture 2

What is Performance?

Instructor

Instructor Contact Information

Instructor: Jee Whan Choi
Office: 328 Deschutes
Lecture: MWF 12:00 - 12:50
Office Hours: MWF 13:00 - 14:00, or by appointment

Contact: jeec [at] uoregon.edu

Course website: https://jeewhanchoi.github.io/uocis531

https://jeewhanchoi.github.io/uocis531f21/

Grading

Undergraduate Graduate

Quiz 10% 5%

Homeworks 40% 35%

Project 40% 40%

Research Paper 0% 10%

Presentation 10% 10%

Workload

Quiz - randomly, on the topics from previous lectures

Homeworks - hands-on experience on the covered topics

Group Project - Term-long project on a topic of your choosing

Research Paper - short survey on a topic of your choosing

● graduate students only, but undergraduates are welcome to
do one as well (extra credit)

Presentation - part of the group project (but another 10% because
of its important)

NO EXAMS!

Group Project

Deliverables

1. Proposal (Due October 13th) A written proposal describing the area
and problems to be explored, the motivation for choosing this area,
possible directions of investigation, and expected results. This
should be 4-5 pages (not counting references, if any).

2. Final Presentation (November 27th & November 29th & December
1st) A final presentation and demonstration of your accomplishments
is required. It should be approximately 15 minutes, with every
member participating in the presentation.

3. Source Code (Due December 4th) The source code for your project
should be version controlled using git or BitBucket, and your work
should be committed frequently to track your progress.

4. Report (Due December 6th) A final report summarizing your
attempts, accomplishments, and what was learned from the project.
The report should be approximately 10 pages (not counting
references), and should include the following sections - abstract,
introduction, methodology, result, and conclusion.

Group Project

All coding must be done in C/C++ (unless discussed with instructor
beforehand)

Code must work on the Talapas supercomputer (you’ll receive an
email on how to set up an account soon)

See Canvas for sample final reports from previous terms

Survey

The survey paper is a short research paper-like report on a topic of your choice
in HPC. The purpose of the survey paper is to evaluate your ability to identify a
relevant topic, find & understand the related literature, and deliver a coherent
summary of it.

See Canvas for more details

Deliverables

1. Survey Paper (Due November 22nd, 11:59 PM PT)

Again, if you have trouble identifying a topic, please come talk to me.

Misc.

● All coding must be version controlled using git & BitBucket.
● Commit your code frequently!

● All reports must be written using Latex.
● Use templates - it will make things easy
● ACM conference format (double-column) is recommended

● See Canvas for details on grading policy, late submission, AEC,
etc.

Logistics

Due end of this week

Invite me to your Bitbucket account: jeec@uoregon.edu

Find a partner for your group project

Create two Bitbucket Repos -

1) Personal repo (1 per student) - uoregon-cis431531-f23

survey/

homework/01

homework/02

Etc.

2) Group repo (1 per group) - uoregon-cis431531-f23-group

proposal/

code/

report/

Come up with a cool group name! We’ll have a vote to pick the
best one!

COVID
Please go over the COVID related information on the website

More details and examples on the website regarding the project and
survey paper

Questions?

How do we
measure
performance?

P = W / T

● “Work” should be defined by the problem you are trying to
solve - a popular metric for work is floating point operations
(FLOP).

● Performance measures how much work is done in a unit time
(i.e., FLOP/s)

● Other common metrics are
● keys/second for sorting, or
● traversed edges per second (TEPS) for graphs.

● It should not include overhead that does not contribute to
calculating the result

● For example, if you compress/uncompress data to minimize
data movement for a sorting algorithm, should this be
counted as work?

Is FLOP/s a
Good Metric?

It is certainly the most popular metric in HPC

However, it can be tricky to use - for example

Code 1

1 do i = 1, 1,000,000

2 A[i] = s * (B[i] + C[i]) + D[i]

3 enddo

Code 2

1 do i = 1, 1,000,000

2 A[i] = s * B[i] + s * C[i] + D[i]

3 enddo

What is the correct number of flops (in the inner loop)?

● What about other types of operations (e.g., trigonometric,
square root, divide)?

● It is not always clear how many flops a given piece of code will
use

● Some architectures might have specific instructions for
those operations, while others may use a software
implementations to calculate them

● For example, with certain generation of GPUs,
double-precision division was implemented using
single-precision division, followed by Newton’s method to
improve its precision

● Some algorithms do not use only floating point operations
(e.g., integer or bit manipulation operations)

Is FLOP/s a
Good Metric?

Good strategy
for selection

Most common way to choose a metric is to look at what others have
done in the past for the application area

Assuming it’s not a terrible metric,

Use the same metric

Compare against prior studies using the same metric

Other Metrics

● Time (simple)
● Percentage (%) of Peak FLOP/s - what ratio of the theoretical

peak performance of the system are you achieving?
● Percentage (%) of Bandwidth (memory)

● some algorithms are limited by data transfer - expressing
the performance in terms of data transfer may make more
sense.

● Speedup (i.e., how much faster) over prior state-of-the-art.
● Number of iterations or updates (e.g., iterative solvers)
● Clock cycles

● Invariant to the changes in clock frequency.

Speedup

Let’s say you’ve improved the performance of your code - how do
you measure your “success?”

Speedup S = Pnew / Poriginal

 = (W / Tnew) / (W / Toriginal)

 = Toriginal / Tnew

You can also have Tnew > Toriginal, in which case you have a slow-down

Speedup (on
Parallel
Systems)

Sequential execution time: T1 (or Tseq)

Parallel execution time on P processing units: Tp (or Tpar)

Speedup on this parallel system = T1 / Tp

Scalability

● Ability of a parallel algorithm to achieve gains proportional to
the number of processors p

● Perfect scaling: T1 / Tp = p
● There are exceptions - superlinear scaling is possible

● Near perfect scaling can typically be seen in embarrassingly
parallel applications/problems

Speedup (on
Parallel
Systems)

Sequential execution time: T1 (or Tseq)

Parallel execution time on P processing units: Tp (or Tpar)

Speedup on this parallel system: Sp = T1 / Tp

Scalability

● Ability of a parallel algorithm to achieve gains proportional to
the number of processors p

● Perfect scaling: T1 / Tp = Sp = p
● Near perfect scaling can typically be seen in embarrassingly

parallel applications/problems

Parallel efficiency: Ep = Sp / p

0 < Ep = 1.0 (perfect scaling) < n (superlinear scaling)

Speedup
Bounds (on
Parallel
Systems)

Amdahl’s Law

● Assume a program takes 10 hours to complete on a single
processor.

● 10% of this program (i.e., 1 hour) cannot be parallelized
● 90% of this program (i.e., 9 hour) is embarrassingly parallel
● What is the maximum possible speedup with 20 processors?

Speedup
Bounds

Amdahl’s Law

● Assume a program takes 10 hours to complete on a single
core.

● 10% of this program (i.e., 1 hour) cannot be parallelized.
● 90% of this program (i.e., 9 hour) is embarrassingly parallel
● What is the maximum possible speedup with 20 cores?

● 1 hour is “untouchable.”
● 9 hours with 20 cores -> 9 / 20 is the new exec. time -> 0.45

hours
● New execution time = 1 + 0.45 = 1.45 hours.
● Speedup = 10 / 1.45 = 6.9x

What about when you have an infinite number of cores?

What about when 50% of the program cannot be parallelized?

Speedup
Bounds

Amdahl’s Law

Formally,

● Let f be the fraction of a program that is sequential (i.e., can
never be parallelized)

● 1 - f is the fraction that can be parallelized
● T1 and Tp are execution times on 1 and p processors,

respectively

Sp = T1 / Tp

 = T1 / (f T1 + (1-f)T1 / p)

 = 1 / (f + (1-f) / p)

● As p -> ∞

 Sp -> 1 / f

There are two methods of evaluating scalability

Strong scaling

● Problem size is fixed, increase the # of processors
● Difficult - Amdahl’s Law demonstrates that there is an

upper-bound on speedup
● It is more difficult to achieve good performance with small

workloads

Weak scaling

● Problem size increases with the # of processors
● Easier - emulates an embarrassingly parallel problem (but not

always)

What can we expect for execution time when we have “good” strong
scaling vs. “good” weak scaling?

Scalability

Gustafson’s Law (or Gustafson-Barsis’ Law)

● Given p processors and serial fraction f,
● Speedup = p + (1 - p) f
● 1 (f = 1) <= Speedup <= p (f = 0)

Gustafson’s Law assumes weak scaling (i.e., work increases with P)

● If W is work and f is the fraction that is serial
● W = f W + (1-f)W
● If we want to increase the number of processors to p, then
● Wnew = f W + p (1-f)W -> only increase portion that can be

parallelized
● Assuming both W and Wnew can be done in time T, then
● Speedup = Perfp / Perf1

 = (Wnew/T) / (W/T)

 = Wnew / W

 = (f W + p (1-f)W) / W

 = f + p (1-f)

 = p + (1-p)f

Scaled
Speedup

Amdahl’s vs.
Gustafson

Amdahl’s vs.
Gustafson

Questions?

Work

Performance

Scalability

Upper bound on Speedup for

Strong scaling

Weak scaling

Workload-centric view of performance

DAG &
Work-Span

Directed Acyclic Graph (DAG) model of computation

● Consider an application as a collection of tasks
● Tasks are connected as a graph where a link

denotes a dependency

DAG &
Work-Span

Work-Span Model for a DAG

● A processor can work on a single task

T1 = # of tasks

Tp = time to execute with p processors

T∞ = span = number of tasks along the critical path

● Critical path = sequence of tasks along the DAG
that takes the longest to execute

● What is the span in this example?

DAG &
Work-Span

Work-Span Model for a DAG

T1 = # of tasks

Tp = time to execute with p processors

T∞ = span = number of tasks along the critical path

● Critical path = sequence of tasks along the DAG
that takes the longest to execute

● What is the span in this example?
● T∞ = 5
● T1 = 7

Bounds on
Greedy
Scheduling

What would be the time to process a DAG given p processors using a
greedy algorithm?

Suppose we have only p processors

Lower bound

max(T1/p, T∞) <= Tp

T∞ is the lowest possible execution time

T1/p assumes everything can be processed in parallel

Bounds on
Greedy
Scheduling

What would be the time to process a DAG given p processors using a
greedy algorithm?

Suppose we have only p processors

Lower bound

max(T1/p, T∞) <= Tp

T∞ is the best possible execution time

T1/p assumes everything can be processed in parallel

Upper bound

Derived using Brent’s Lemma

Bounds on
Greedy
Scheduling

Brent’s Lemma

● Tp <= T∞ + (T1 - T∞) / p
● Does this make sense?

Bounds on
Greedy
Scheduling

Brent’s Lemma

● Tp <= T∞ + (T1 - T∞) / p
● Critical path (T∞) + Off-critical path

Amdahl vs.
Brent

Questions?

Work-span model captures the dependency between tasks in a
program

● As opposed to looking at the workload in Amdahl and
Gustafson analysis

You can also derive a lower and upper bound using the work-span
model

● Less optimistic than Amdahl and Gustafson

Scalability
As we saw, weak scaling is easier to obtain than strong scaling.

However, how can we (theoretically) determine how much W has to
be increased to maintain efficiency for p processors?

How much increase in problem size is required to retain the same
level of efficiency on a larger system?

Remember that, in perfect scaling T1/Tp = p -> T1 = pTp

However, using a parallel system usually incurs an overhead (e.g.,
communication between processors, contention)

Let’s assume

T0 = overhead = T(W, p)

pTp = total time spent by all p processors

pTp = T1 + T0

Tp = (T1 + T0) / p

S = T1/Tp = pT1 / (T1 + T0)

E = S / p = T1 / (T1 + T0) = 1 / (1 + T0/T1)

Isoefficiency

Isoefficiency

E = 1 / (1 + T0/T1)

Let’s say tc = time to do 1 operation (unit of work)

T1 = Wtc

E = 1 / (1 + T0/Wtc)

You can see that if W remains constant while p increases (i.e., T0
increases), then the efficiency decreases.

On the other hand, if W increases while p remains constant,
efficiency increases (assuming T0 grows more slowly than W)

We can maintain the same efficiency by increasing p, provided W
also increases.

How much we increase W with p depends on the system.

Isoefficiency

E = 1 / (1 + T0/Wtc)

We can keep efficiency at a desired rate if we keep T0/W constant

T0/W = tc((1 - E) / E)

W = 1/tc (E / (1 - E)) T0

If K = 1/tc (E / (1 - E)) is a constant that depends on the
efficiency, then

W = KT0

We can use this equation to obtain W as a function of p (i.e., of T0)

This is the Isoefficiency function

● Small isoefficiency function implies that small increase in
problem size is sufficient to use an increasing number of
processors efficiently

Questions? We can determine how much W has to be increased to maintain
efficiency using the Isoefficiency equation

Scalability

What impacts scalability?

Scalability in parallel architectures is impacted by

Number of processors

Memory architecture

Interconnect network

Other hardware bottlenecks

Scalability in algorithms is impacted by

Problem size

Algorithm

How much computation

How much memory access

Why aren’t parallel applications scalable?

Sequential performance

Critical path

Bottlenecks (e.g., one processor holding things up)

Algorithmic overhead

Communication overhead (more processors mean more
communication)

Load imbalance (some processors are given more work)

Combinations of above

Scalability

Performance tuning process

Performance
Tuning

Performance
Optimization

Parallel/distributed systems are complex

Four layers

● Application (algorithm, data structure)
● Parallel programming interface (compilers, libraries,

synchronization)
● OS (process and memory management, I/O)
● Hardware (CPU, memory, network)

Mapping/interaction between different layers

Factors which determine a program’s performance are complex,
interrelated, and oftentimes hidden

Performance analysis tools can aid in optimizing performance
quickly

● They help understand what, where, and how time is spent
● Hotspots - area of the code that uses a disproportionate

amount of time
● Botteleneck - area of code that uses resources inefficiently (or

there isn’t enough of the resource), causing (unnecessary)
delays

Measuring
Time

● Measuring time can be tricky
● Some clocks are more accurate than others
● Clocks are themselves software, not immune to overheads
● Parallel programs - make sure you have barriers to capture

the correct completion point
● POSIX gettimeofday() function is a good tool for timing

● Available on all POSIX-compliant systems
● You can also write your own timing function by reading certain

registers that keep track of clock cycles

gettimeofday

1 #include <sys/time.h>
2
3 void get_walltime_(double* wcTime) {
4 struct timeval tp;
5 gettimeofday(&tp, NULL);
6 *wcTime = (double)(tp.tv_sec +
7 tp.tv_usec/1000000.0);
8 }

Custom Timer

1 uint32_t hi, lo;
2 __asm__ __volatile__ (" rdtsc" : "=a"(lo),
"=d"(hi));
3 return ((uint64_t)lo)|(((uint64_t)hi)<<32);

● rdtsc - read time-stamp counter
● Processor monotonically increments this counter every cycle
● Have to translate the cycles to actual time (not shown here)

System
Benchmarking

Evaluation of a system for specific application(s).

● Real(ish) applications
● LINPACK

● Used for Top500 (topp500.org)
● Solves dense systems of linear equations
● Generally considered not a good benchmark - only tests

compute performance
● Preferred due to its simplicity
● Uses Basic Linear Algebra Subprogram (BLAS) library

● HPCG (High Performance Conjugate Gradient)
● Solves sparse systems
● More realistic for solving real problems

● Suites
● HPC Challenge Benchmarks
● UEABS (Unified European Applications Benchmark Suite)

● Synthetic microbenchmarks
● Typically tests some specific feature of an architecture (i.e.,

low-level benchmarking)
● Energy roofline model microbenchmarks

(https://github.com/jeewhanchoi/a-roofline-model-of-energy-ubenchmarks)
● Stream benchmark (bandwidth) - Dr. John McCalpin (aka Dr.

Bandwidth)
● Triad benchmark (multiply-add on 3 vectors)

● Often written in assembly
● Better control over the architecture.
● Typically simple enough to be written in assembly.

● Care must be taken to make sure the compiler does not
optimize instructions away

System
Benchmarking

https://github.com/jeewhanchoi/a-roofline-model-of-energy-ubenchmarks

System
Benchmarking

Eliminating variation

● Benchmarking should be done in controlled environment (i.e.,
do not use your laptop)

● Use many iterations and provide statistical information (i.e.,
avg, min, max, outliers, etc.). Box and Whisker charts are
useful for this.

● If testing data movement, make sure your data sizes are large
enough that they do not fit in cache - otherwise, your loop will
allow the data to be cached for subsequent iterations and
lower the overall execution time significantly.

Questions?

