
CIS 431/531
Intro to Parallel Computing
Lecture 2

What is Performance?



Instructor

Instructor Contact Information

Instructor: Jee Whan Choi
Office: 328 Deschutes
Lecture: MWF 12:00 - 12:50
Office Hours: MWF 13:00 - 14:00, or by appointment

Contact: jeec [at] uoregon.edu

Course website: https://jeewhanchoi.github.io/uocis531

https://jeewhanchoi.github.io/uocis531f21/


Grading

Undergraduate Graduate

Quiz 10% 5%

Homeworks 40% 35%

Project 40% 40%

Research Paper 0% 10%

Presentation 10% 10%



Workload

Quiz - randomly, on the topics from previous lectures 

Homeworks - hands-on experience on the covered topics 

Group Project - Term-long project on a topic of your choosing

Research Paper - short survey on a topic of your choosing

● graduate students only, but undergraduates are welcome to 
do one as well (extra credit)

Presentation - part of the group project (but another 10% because 
of its important)

NO EXAMS!



Group Project

Deliverables

1. Proposal (Due October 13th) A written proposal describing the area 
and problems to be explored, the motivation for choosing this area, 
possible directions of investigation, and expected results. This 
should be 4-5 pages (not counting references, if any).

2. Final Presentation (November 27th & November 29th & December 
1st) A final presentation and demonstration of your accomplishments 
is required. It should be approximately 15 minutes, with every 
member participating in the presentation.

3. Source Code (Due December 4th) The source code for your project 
should be version controlled using git or BitBucket, and your work 
should be committed frequently to track your progress.

4. Report (Due December 6th) A final report summarizing your 
attempts, accomplishments, and what was learned from the project. 
The report should be approximately 10 pages (not counting 
references), and should include the following sections - abstract, 
introduction, methodology, result, and conclusion.



Group Project

All coding must be done in C/C++ (unless discussed with instructor 
beforehand)

Code must work on the Talapas supercomputer (you’ll receive an 
email on how to set up an account soon)

See Canvas for sample final reports from previous terms



Survey

The survey paper is a short research paper-like report on a topic of your choice 
in HPC. The purpose of the survey paper is to evaluate your ability to identify a 
relevant topic, find & understand the related literature, and deliver a coherent 
summary of it.

See Canvas for more details

Deliverables

1. Survey Paper (Due November 22nd, 11:59 PM PT)

Again, if you have trouble identifying a topic, please come talk to me.



Misc.

● All coding must be version controlled using git & BitBucket.
● Commit your code frequently!

● All reports must be written using Latex.
● Use templates - it will make things easy
● ACM conference format (double-column) is recommended 

● See Canvas for details on grading policy, late submission, AEC, 
etc.



Logistics

Due end of this week

Invite me to your Bitbucket account: jeec@uoregon.edu

Find a partner for your group project

Create two Bitbucket Repos - 

1) Personal repo (1 per student) - uoregon-cis431531-f23

survey/

homework/01

homework/02

Etc.

2) Group repo (1 per group) - uoregon-cis431531-f23-group

proposal/

code/

report/

Come up with a cool group name! We’ll have a vote to pick the 
best one!



COVID
Please go over the COVID related information on the website

More details and examples on the website regarding the project and 
survey paper



Questions?



How do we 
measure 
performance?

P = W / T

● “Work” should be defined by the problem you are trying to 
solve - a popular metric for work is floating point operations 
(FLOP).

● Performance measures how much work is done in a unit time 
(i.e., FLOP/s)

● Other common metrics are 
● keys/second for sorting, or 
● traversed edges per second (TEPS) for graphs.

● It should not include overhead that does not contribute to 
calculating the result

● For example, if you compress/uncompress data to minimize 
data movement for a sorting algorithm, should this be 
counted as work?



Is FLOP/s a 
Good Metric?

It is certainly the most popular metric in HPC

However, it can be tricky to use - for example

Code 1

1 do i = 1, 1,000,000

2     A[i] = s * (B[i] + C[i]) + D[i]

3 enddo

Code 2

1 do i = 1, 1,000,000

2     A[i] = s * B[i] + s * C[i] + D[i]

3 enddo

What is the correct number of flops (in the inner loop)?



● What about other types of operations (e.g., trigonometric, 
square root, divide)?

● It is not always clear how many flops a given piece of code will 
use

● Some architectures might have specific instructions for 
those operations, while others may use a software 
implementations to calculate them 

● For example, with certain generation of GPUs, 
double-precision division was implemented using 
single-precision division, followed by Newton’s method to 
improve its precision

● Some algorithms do not use only floating point operations 
(e.g., integer or bit manipulation operations)

Is FLOP/s a 
Good Metric?



Good strategy 
for selection

Most common way to choose a metric is to look at what others have 
done in the past for the application area

Assuming it’s not a terrible metric,

Use the same metric

Compare against prior studies using the same metric



Other Metrics

● Time (simple)
● Percentage (%) of Peak FLOP/s - what ratio of the theoretical 

peak performance of the system are you achieving?
● Percentage (%) of Bandwidth (memory)

● some algorithms are limited by data transfer - expressing 
the performance in terms of data transfer may make more 
sense.

● Speedup (i.e., how much faster) over prior state-of-the-art.
● Number of iterations or updates (e.g., iterative solvers)
● Clock cycles

● Invariant to the changes in clock frequency.



Speedup

Let’s say you’ve improved the performance of your code - how do 
you measure your “success?”

Speedup S = Pnew / Poriginal 

                                             = (W / Tnew) / (W / Toriginal) 

                        = Toriginal / Tnew 

You can also have Tnew > Toriginal, in which case you have a slow-down



Speedup (on 
Parallel 
Systems)

Sequential execution time: T1 (or Tseq)

Parallel execution time on P processing units: Tp (or Tpar)

Speedup on this parallel system = T1  / Tp

Scalability

● Ability of a parallel algorithm to achieve gains proportional to 
the number of processors p

● Perfect scaling: T1  / Tp = p
● There are exceptions - superlinear scaling is possible

● Near perfect scaling can typically be seen in embarrassingly 
parallel applications/problems



Speedup (on 
Parallel 
Systems)

Sequential execution time: T1 (or Tseq)

Parallel execution time on P processing units: Tp (or Tpar)

Speedup on this parallel system: Sp = T1  / Tp

Scalability

● Ability of a parallel algorithm to achieve gains proportional to 
the number of processors p

● Perfect scaling: T1  / Tp = Sp = p
● Near perfect scaling can typically be seen in embarrassingly 

parallel applications/problems

Parallel efficiency: Ep = Sp / p

0 < Ep = 1.0 (perfect scaling)  < n (superlinear scaling)



Speedup 
Bounds (on 
Parallel 
Systems)

Amdahl’s Law

● Assume a program takes 10 hours to complete on a single 
processor.

● 10% of this program (i.e., 1 hour) cannot be parallelized
● 90% of this program (i.e., 9 hour) is embarrassingly parallel
● What is the maximum possible speedup with 20 processors?

 



Speedup 
Bounds

Amdahl’s Law

● Assume a program takes 10 hours to complete on a single 
core.

● 10% of this program (i.e., 1 hour) cannot be parallelized.
● 90% of this program (i.e., 9 hour) is embarrassingly parallel
● What is the maximum possible speedup with 20 cores?

● 1 hour is “untouchable.”
● 9 hours with 20 cores -> 9 / 20 is the new exec. time -> 0.45 

hours
● New execution time = 1 + 0.45 = 1.45 hours.
● Speedup = 10 / 1.45 = 6.9x

What about when you have an infinite number of cores?

What about when 50% of the program cannot be parallelized?



Speedup 
Bounds

Amdahl’s Law

Formally,

● Let f be the fraction of a program that is sequential (i.e., can 
never be parallelized)

● 1 - f is the fraction that can be parallelized
● T1 and Tp are execution times on 1 and p processors, 

respectively

Sp =  T1 / Tp 

                  = T1 / (f T1 + (1-f )T1 / p)

                  = 1 / (f + (1-f ) / p)

● As p -> ∞

               Sp ->  1 / f



There are two methods of evaluating scalability

Strong scaling

● Problem size is fixed, increase the # of processors 
● Difficult - Amdahl’s Law demonstrates that there is an 

upper-bound on speedup
● It is more difficult to achieve good performance with small 

workloads

Weak scaling

● Problem size increases with the # of processors
● Easier - emulates an embarrassingly parallel problem (but not 

always)

What can we expect for execution time when we have “good” strong 
scaling vs. “good” weak scaling?

Scalability



Gustafson’s Law (or Gustafson-Barsis’ Law)

● Given p processors and serial fraction f,
● Speedup = p + (1 - p) f
● 1 (f = 1) <= Speedup <= p (f = 0) 

Gustafson’s Law assumes weak scaling (i.e., work increases with P)

● If W is work and f is the fraction that is serial
● W = f W + (1-f )W
● If we want to increase the number of processors to p, then
● Wnew = f W + p (1-f )W -> only increase portion that can be 

parallelized
● Assuming both W and Wnew can be done in time T, then 
● Speedup = Perfp / Perf1 

                               = (Wnew/T) / (W/T) 

                               = Wnew / W

                               = (f W + p (1-f )W) / W

                               = f  + p (1-f )

                               = p + (1-p)f

Scaled 
Speedup



Amdahl’s vs. 
Gustafson



Amdahl’s vs. 
Gustafson



Questions?

Work

Performance

Scalability

Upper bound on Speedup for

Strong scaling

Weak scaling

Workload-centric view of performance



DAG & 
Work-Span

Directed Acyclic Graph (DAG) model of computation

● Consider an application as a collection of tasks
● Tasks are connected as a graph where a link 

denotes a dependency



DAG & 
Work-Span

Work-Span Model for a DAG

● A processor can work on a single task

T1 = # of tasks

Tp = time to execute with p processors

T∞ = span = number of tasks along the critical path

● Critical path = sequence of tasks along the DAG 
that takes the longest to execute

● What is the span in this example?



DAG & 
Work-Span

Work-Span Model for a DAG

T1 = # of tasks

Tp = time to execute with p processors

T∞ = span = number of tasks along the critical path

● Critical path = sequence of tasks along the DAG 
that takes the longest to execute

● What is the span in this example?
● T∞ = 5
● T1 = 7



Bounds on 
Greedy 
Scheduling

What would be the time to process a DAG given p processors using a 
greedy algorithm?

Suppose we have only p processors

Lower bound

max(T1/p, T∞) <= Tp 

T∞ is the lowest possible execution time

T1/p assumes everything can be processed in parallel



Bounds on 
Greedy 
Scheduling

What would be the time to process a DAG given p processors using a 
greedy algorithm?

Suppose we have only p processors

Lower bound

max(T1/p, T∞) <= Tp 

T∞ is the best possible execution time

T1/p assumes everything can be processed in parallel

Upper bound

Derived using Brent’s Lemma



Bounds on 
Greedy 
Scheduling

Brent’s Lemma

● Tp <= T∞ + (T1 - T∞) / p 
● Does this make sense?



Bounds on 
Greedy 
Scheduling

Brent’s Lemma

● Tp <= T∞ + (T1 - T∞) / p 
● Critical path (T∞) + Off-critical path



Amdahl vs. 
Brent



Questions?

Work-span model captures the dependency between tasks in a 
program

● As opposed to looking at the workload in Amdahl and 
Gustafson analysis

You can also derive a lower and upper bound using the work-span 
model

● Less optimistic than Amdahl and Gustafson



Scalability
As we saw, weak scaling is easier to obtain than strong scaling.

However, how can we (theoretically) determine how much W has to 
be increased to maintain efficiency for p processors?



How much increase in problem size is required to retain the same 
level of efficiency on a larger system?

Remember that, in perfect scaling T1/Tp = p -> T1 = pTp 

However, using a parallel system usually incurs an overhead (e.g., 
communication between processors, contention)

Let’s assume 

T0 = overhead = T(W, p)

pTp = total time spent by all p processors

pTp = T1 + T0

Tp = (T1 + T0) / p

S = T1/Tp = pT1 / (T1 + T0)

E = S / p = T1 / (T1 + T0) = 1 / (1 + T0/T1)

Isoefficiency



Isoefficiency

E =  1 / (1 + T0/T1)

Let’s say tc = time to do 1 operation (unit of work)

T1 = Wtc

E = 1 / (1 + T0/Wtc)

You can see that if W remains constant while p increases (i.e., T0 
increases), then the efficiency decreases.

On the other hand, if W increases while p remains constant, 
efficiency increases (assuming T0 grows more slowly than W)

We can maintain the same efficiency by increasing p, provided W 
also increases.

How much we increase W with p depends on the system.



Isoefficiency

E = 1 / (1 + T0/Wtc)

We can keep efficiency at a desired rate if we keep T0/W constant

T0/W = tc((1 - E) / E)

W = 1/tc (E / (1 - E)) T0

If K = 1/tc (E / (1 - E)) is a constant that depends on the 
efficiency, then

W = KT0

We can use this equation to obtain W as a function of p (i.e., of T0)

This is the Isoefficiency function 

● Small isoefficiency function implies that small increase in 
problem size is sufficient to use an increasing number of 
processors efficiently



Questions? We can determine how much W has to be increased to maintain 
efficiency using the Isoefficiency equation



Scalability

What impacts scalability?

Scalability in parallel architectures is impacted by

Number of processors

Memory architecture

Interconnect network

Other hardware bottlenecks

Scalability in algorithms is impacted by

Problem size

Algorithm

How much computation

How much memory access



Why aren’t parallel applications scalable?

Sequential performance

Critical path

Bottlenecks (e.g., one processor holding things up)

Algorithmic overhead

Communication overhead (more processors mean more 
communication)

Load imbalance (some processors are given more work)

Combinations of above

Scalability



Performance tuning process

Performance 
Tuning



Performance 
Optimization

Parallel/distributed systems are complex

Four layers

● Application (algorithm, data structure)
● Parallel programming interface (compilers, libraries, 

synchronization)
● OS (process and memory management, I/O)
● Hardware (CPU, memory, network)

Mapping/interaction between different layers

Factors which determine a program’s performance are complex, 
interrelated, and oftentimes hidden

Performance analysis tools can aid in optimizing performance 
quickly

● They help understand what, where, and how time is spent
● Hotspots - area of the code that uses a disproportionate 

amount of time
● Botteleneck - area of code that uses resources inefficiently (or 

there isn’t enough of the resource), causing (unnecessary) 
delays



Measuring 
Time

● Measuring time can be tricky
● Some clocks are more accurate than others
● Clocks are themselves software, not immune to overheads
● Parallel programs - make sure you have barriers to capture 

the correct completion point
● POSIX gettimeofday() function is a good tool for timing

● Available on all POSIX-compliant systems
● You can also write your own timing function by reading certain 

registers that keep track of clock cycles



gettimeofday

1 #include <sys/time.h>
2
3 void get_walltime_(double* wcTime) {
4 struct timeval tp;
5 gettimeofday(&tp, NULL);
6 *wcTime = (double)(tp.tv_sec + 
7                      tp.tv_usec/1000000.0);
8 }



Custom Timer

1 uint32_t hi, lo;
2 __asm__ __volatile__ (" rdtsc" : "=a"(lo), 
"=d"(hi));
3 return ( (uint64_t)lo)|( ((uint64_t)hi)<<32 );

● rdtsc - read time-stamp counter
● Processor monotonically increments this counter every cycle
● Have to translate the cycles to actual time (not shown here)



System 
Benchmarking

Evaluation of a system for specific application(s).

● Real(ish) applications
● LINPACK

● Used for Top500 (topp500.org)
● Solves dense systems of linear equations
● Generally considered not a good benchmark - only tests 

compute performance
● Preferred due to its simplicity
● Uses Basic Linear Algebra Subprogram (BLAS) library

● HPCG (High Performance Conjugate Gradient)
● Solves sparse systems
● More realistic for solving real problems

● Suites
● HPC Challenge Benchmarks
● UEABS (Unified European Applications Benchmark Suite)



● Synthetic microbenchmarks
● Typically tests some specific feature of an architecture (i.e., 

low-level benchmarking)
● Energy roofline model microbenchmarks 

(https://github.com/jeewhanchoi/a-roofline-model-of-energy-ubenchmarks)
● Stream benchmark (bandwidth) - Dr. John McCalpin (aka Dr. 

Bandwidth)
● Triad benchmark (multiply-add on 3 vectors)

● Often written in assembly
● Better control over the architecture.
● Typically simple enough to be written in assembly.

● Care must be taken to make sure the compiler does not 
optimize instructions away

System 
Benchmarking

https://github.com/jeewhanchoi/a-roofline-model-of-energy-ubenchmarks


System 
Benchmarking

Eliminating variation

● Benchmarking should be done in controlled environment (i.e., 
do not use your laptop)

● Use many iterations and provide statistical information (i.e., 
avg, min, max, outliers, etc.). Box and Whisker charts are 
useful for this.

● If testing data movement, make sure your data sizes are large 
enough that they do not fit in cache - otherwise, your loop will 
allow the data to be cached for subsequent iterations and 
lower the overall execution time significantly.



Questions?


