
CIS 431/531
Intro to Parallel Computing
Lecture 3

Parallel Computer Architectures I

Individual assignment repo - please create & share

Group project - please share the following info:

Bitbucket repo

Group name & members

Email me if you haven’t found a group by Friday

First assignment will be Oct 11 (Wednesday, week 3)

Please work on your project & survey while the load is light

Logistics

Previous
Lecture What is performance & how do you measure it?

Questions?

Quiz

Question 1 (9 minutes) -

● You have an application that takes 60 hours to execute on a
serial computer.

● Using six processors, you were able to achieve a speedup of
4x.

● What portion (i.e., how many hours) of the application was
serial, assuming the parallel portion was embarrassingly
parallel?

Hint: Amdahl’s Law -> Sp = 1 / (f + (1-f) / p)

Quiz

Question 2 (6 minutes) -

Given the following DAG, what is

1. T1 (i.e., how many units of time to
complete the application using
one processor)

2. T3 (i.e., how many units of time to
complete the application using
three processors)

3. T∞(Span)

Computer 101 What is a computer?

Computer 101

Stored-program computer architecture (modern architecture)

● Conceived by Turing in 1936, built by Eckert and Mauchly in
1949 (Electronic Discrete Variable Automatic Computer, or
EDVAC)

● von Neumann architecture - any stored-program architecture
that instruction fetch and data operation cannot occur
simultaneously

Architecture

Computer Architecture

● Microarchitecture - implementation of the processor
● Pipelining, OOE, branch prediction, etc.

● Instruction Set Architecture (ISA) - syntax of the interface to
the microarchitecture

● Assembly instructions, registers, etc.

(Parallel)
Architecture
Types

Flynn’s Taxonomy (1966)

SISD
traditional von

Neumann single
CPU computer

MISD
?

SIMD
fine-grained data
parallel computer
(vector processor)

MIMD
common

multi-processor
computer

D
at

a
st

re
am

 M
an

y

 O

ne

Instruction stream

 One Many

(Parallel)
Architecture
Types

Flynn’s Taxonomy (1966)

SISD
traditional von

Neumann single
CPU computer

MISD
fault-tolerant

computer

SIMD
fine-grained data
parallel computer
(vector processor)

MIMD
common

multi-processor
computer

D
at

a
st

re
am

 M
an

y

 O

ne

Instruction stream

 One Many

Generally, most modern architectures do not fit perfectly into a
single category.

Most architectures fall under multiple categories, or use a
combination of multiple paradigms.

● e.g., modern multi-core CPUs are MIMD, but also provide
SIMD in their µarchitecture and ISA

(Parallel)
Architecture
Types

Modern CPU
Architecture

Modern CPU
Architecture

Why

Why 2 LD
but 1 ST
unit?

Modern CPU
Features
(Overview)

Pipelining

Superscalar & OOE

Branch prediction

Hardware (multi)threading

SIMD

Caches

RISC vs. CISC

Pipelining
Dividing an instruction into smaller components executed by
different functional units.

Increase throughput since the processor does not have to wait until
an instruction has completed before starting execution of another
instruction.

Pipelining (FP)

1 do i=1,N
2 A(i) = B(i) * C(i)
3 enddo

Pipelining (FP)

If no pipelining, n instructions would take (n x 5) cycles (if each “step”
takes 1 cycle).

If pipelined, n instructions would take (n + 5 - 1) cycles.

Assuming pipeline depth is m,

Speedup = ?

Pipelining (FP)

If no pipelining, n instructions would take (n x 5) cycles (if each “step”
takes 1 cycle).

If pipelined, n instructions would take (n + 5 - 1) cycles.

Assuming pipeline depth is m,

Speedup = nm / (n + m - 1) = ~m (for n >> m)

What about throughput (Instructions per cycle (IPC))?
No pipelining:

n / (nm) = 1/m
With pipelining:

n / (n + m - 1) = 1 / (1 + (m-1) / n) = ~1

Pipelining

Speedup = nm / (n + m - 1) = ~m (for n >> m)

Does this mean that longer the pipeline, the better?

Hint: what is necessary for instructions to be issued every cycle?

Pipelining

Does this mean that longer the pipeline, the better?

Not necessarily - longer the pipeline, more independent instructions are
required to amortize the “wind-up/down” phase.

Interleaving

Remember, instructions can only execute if the data to operate on is
available in the register - data has to travel from the DRAM, through
the various caches, and then to the register.

If the operands are not available, pipeline cannot function as
intended.

Interleaving

1 do i=1,N
2 A(i) = s * A(i)
3 enddo

1 i = 1
2 LOAD R9 = s
3 loop: LOAD R1 = A(i)
4 R1 = MULT R1,R9 # “useful” work
5 STORE A(i) = R1
6 INC i # i=i+1
7 CMP i,N+1 # i.eq.N+1 ?
8 BNE loop # branch if not equal

The next instruction
cannot be
issued/scheduled until
everything in the loop
has completed

If LOAD takes 4 cycles, and MULT takes 2 cycles, it will take 6 cycles
to reach instruction 5 (STORE)

i = 1
2 LOAD R9 = s
3 loop: LOAD R1 = A(i)
4 LOAD R2 = A(i+1)
5 LOAD R3 = A(i+2)
6 LOAD R4 = A(i+3)
7 R1 = MULT R1,R9
8 R2 = MULT R2,R9
9 STORE A(i) = R1
10 R3 = MULT R3,R9
11 STORE A(i+1) = R2
12 R4 = MULT R4,R9
13 STORE A(i+2) = R3
14 STORE A(i+3) = R4
15 IADD i,4
16 CMP i,N+1
17 BNE loop

Software
Pipelining

After 4 cycles, A(i) is loaded

After 2 cycles, A(i) is ready
for ST

Multiple instructions are ready,
and can be scheduled in any
order

If LOAD takes 4 cycles, and MULT takes 2 cycles, it will take 6 cycles
to reach instruction 5 (STORE)

Interleaving

What if there are loop-carried dependencies (i.e., iteration i depends
on results from iteration j != i)?

Real dependency

1 do i=2,N
2 A(i)=s*A(i-1)
3 enddo

5 cycles per loop

Interleaving

What if there are loop-carried dependencies (i.e., iteration i depends
on results from iteration j != i)?

Real dependency Pseudo-dependency

1 do i=2,N
2 A(i)=s*A(i-1)
3 enddo

1 do i=1,N-1
2 A(i)=s*A(i+1)
3 enddo

5 cycles per loop

Questions?

Superscalar execution - a processor is capable of executing more
than one instruction at the same time (ILP - instruction level
parallelism)

Superscalar
and OOE

What is the maximum number of sustained IPC this system can
deliver?

Superscalar
and OOE

Superscalar
and OOE

Why did I explain superscalar and OOE together?

● Well, to execute multiple instructions at the same time, simple
in-order execution is typically incapable of providing enough
independent instructions to fill the pipeline.

● Therefore, we have a reordering buffer that analyzes the
instruction streams to find independent instructions and
schedule ready-to-execute instructions even if it came later -
i.e., out-of-order execution.

Superscalar
and OOE

Reordering buffer

● Scoreboarding
● Tomasulo’s algorithm

Hazards

Hazards

● Structural hazards
● Occurs when a part of processor’s hardware is needed by

two or more instructions at the same time
● Control hazards

● Branches - the architecture does not know which instruction
to fetch next

● Data hazards
● Read after write (RAW) - true dependency

● i2 reads a source before i1 writes to it
● i1. R2 <- R1 + R3
● i2. R4 <- R2 + R3

● Write after read (WAR) - anti-dependency
● i2 writes to a destination before i1 reads it
● i1. R4 <- R1 + R5

● i2. R5 <- R1 + R2

● Write after write (WAW) - output dependency
● i2 writes to a destination before it is written by i1
● i1. R2 <- R4 + R7

…

● i2. R2 <- R1 + R3

Hazards

Assume single-issue, in-order, and 5 stage pipeline, 1 unit type each

Assume there is only 1 memory unit and it services both read and write of
instructions and data

Structural
Hazard

Only 1 memory unit, and both instructions need to use it to fetch
data and instruction

Structural
Hazard

Insert “bubbles” (i.e., stalls) in the pipeline.

Branch prediction

● The processor tries to “guess” whether the branch will be
taken or not.

● If the prediction was incorrect (i.e., mispredicted), then the
pipeline needs to be flushed - very expensive.

● Why does branch prediction work? Shouldn’t it be 50/50?
(Hint: what is a big source of branches?)

Branch
Hazard

Branch prediction

● The processor tries to “guess” whether the branch will be
taken or not.

● If the prediction was incorrect (i.e., mispredicted), then the
pipeline needs to be flushed - very expensive.

● Loops are a big source of branches - branches are taken more
often than not.

Branch
Hazard

Branch
Prediction

Questions?

Data Hazards
(RAW)

RAW

Data Hazards
(RAW)

Operand Forwarding

Data Hazards

Does not always work...

Scoreboarding
and
Tomasulo’s
Algorithm

OOE helps “alleviate” these data hazards, so that more independent
instructions can be identified and issued.

Scoreboarding simply keeps track of instruction dependencies to
determine whether an instruction can start executing

It does not eliminate dependencies

Tomasulo’s algorithm uses scoreboarding with register
renaming/coloring to eliminate WAR and WAW dependencies.

WAR and WAW can be overcome if we change the source or
destination registers for one of the instructions that have
dependencies.

WAR
i1. R4 <- R1 + R5 ??
i2. R5 <- R1 + R2

WAW
i1. R2 <- R4 + R7 ??
i2. R2 <- R1 + R3

Scoreboarding
and
Tomasulo’s
Algorithm

OOE helps “alleviate” these data hazards, so that more independent
instructions can be identified and issued.

Scoreboarding simply keeps track of instruction dependencies to
determine whether an instruction can start executing

It does not eliminate dependencies

Tomasulo’s algorithm uses scoreboarding with register
renaming/coloring to eliminate WAR and WAW dependencies.

WAR and WAW can be overcome if we change the source or
destination registers for one of the instructions that have
dependencies.

WAR
i1. R4 <- R1 + R5 i1. R4 <- R1 + R5
i2. R5 <- R1 + R2 i2. R6 <- R1 + R2

WAW
i1. R2 <- R4 + R7 i1. R2 <- R4 + R7
i2. R2 <- R1 + R3 i2. R6 <- R1 + R3

Scoreboarding
and
Tomasulo’s
Algorithm

Instruction 1 has finished
executing, and 2 begins
execution

Scoreboarding
and
Tomasulo’s
Algorithm

Scoreboarding
and
Tomasulo’s
Algorithm

Scoreboarding
and
Tomasulo’s
Algorithm

In this case, OOE using scoreboarding does not help that much -
both in-order and OO finish at the same time.

Scoreboarding
and
Tomasulo’s
Algorithm

In this case, OOE using scoreboarding does not help that much -
both in-order and OO finish at the same time.

Scoreboarding
and
Tomasulo’s
Algorithm

Tomosulo’s algorithm can “rename” the registers in the hardware so
that instruction 5 no longer depends on instruction 3.

F4’

F4’

Questions?

Modern CPU
Features
(Overview)

Pipelining

Superscalar & OOE

Branch prediction

Hardware (multi)threading

SIMD

Caches

RISC vs. CISC

Threads and
Processes

Process - collection of resources required to execute a program

Virtual address space, executable code, etc.

Thread - unit of execution/resource utilization

Program counter, stack, a set of registers, etc.

Typically, multiple threads are executing within a process

Context switching - when you want to switch from executing one
thread to another

Expensive for threads

More expensive for processes

Hardware
Threading

Hardware (multi)threading.

● Simultaneous multithreading (SMT).
● Intel - hyper threading (HT).
● AMD - clustered multithreading (CMT).

Each SMT thread maintain its own architectural “state.”

● Data registers.
● Control registers (e.g., stack pointer, instruction pointer, etc.).
● Switching from one thread to another no long requires

expensive context switching

They still share execution resources

● Execution pipeline
● Cache

Hardware
Threading

Shared Private

Hardware
Threading

SMT increases ILP by adding another thread of execution -
additional thread may come from a different application.

However, it may decrease performance as well

● One thread has enough ILP to fill the pipeline - now, fewer
resources (e.g., registers, cache) are available for this tread if
SMT is used.

Some modern architectures require SMT to fully utilize the pipeline

● Intel Xeon Phi (RIP)
● IBM Power8/9

● One thread gets 64 entries in the fetch buffer
● Two thread gets 128 entries
● 4-8 threads gets 128 entries

Hardware
Threading

SIMD

Single Instruction Multiple Data

● First implemented in vector processors
● Also referred to as SIMD vectorization
● Present in most recent processors

● Intel - SSE/AVX
● AMD - 3DNow! (then SSE)
● Arm - NEON

● Compiler can sometimes figure this out automatically (they
are pretty good at it now)

● You can use intrinsics (special C/C++ instructions that mimic
SIMD assembly instructions) - they are just “hints” so the
compiler does not guarantee SIMD vectorization.

SIMD

(Intel) CPU
Programming

Intel provides a DETAILED guide on how to program their CPUs
using assembly/intrinsic instructions

Do not read it (it’s ~5000 pages). However, it could be a good place
lookup how certain instructions work.

Intel Software Developer’s Manual

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

Questions?

